Lenoir Cotton Mill – Blue Bell, Inc. Plant
Lenoir, Caldwell County, CW0408, Listed 09/18/2017
Nomination by Heather Fearnbach
Photographs by Heather Fearnbach, August 2016

Southeast corner, view northwest

1902-1903 mill, basement, looking southwest
National Register of Historic Places Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in *How to Complete the National Register of Historic Places Registration Form* (National Register Bulletin 16A). Complete each item by marking “x” in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter “N/A” for “not applicable.” For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

<table>
<thead>
<tr>
<th>historic name</th>
<th>Lenoir Cotton Mill – Blue Bell, Inc. Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>other names/site number</td>
<td>N/A</td>
</tr>
</tbody>
</table>

2. Location

<table>
<thead>
<tr>
<th>street & number</th>
<th>1241 College Avenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>city or town</td>
<td>Lenoir</td>
</tr>
<tr>
<td>state</td>
<td>North Carolina</td>
</tr>
<tr>
<td>code</td>
<td>NC</td>
</tr>
<tr>
<td>county</td>
<td>Caldwell</td>
</tr>
<tr>
<td>code</td>
<td>27</td>
</tr>
<tr>
<td>zip code</td>
<td>28645</td>
</tr>
</tbody>
</table>

3. State/Federal Agency Certification

As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set for in 36 CFR Part 60. In my opinion, the property meets does not meet the National Register criteria. I recommend that this property be considered significant nationally statewide locally. (See continuation sheet for additional comments.)

<table>
<thead>
<tr>
<th>Signature of certifying official/Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Carolina Department of Natural and Cultural Resources</td>
<td></td>
</tr>
<tr>
<td>State or Federal agency and bureau</td>
<td></td>
</tr>
</tbody>
</table>

In my opinion, the property meets does not meet the National Register criteria. (See Continuation sheet for additional comments.)

<table>
<thead>
<tr>
<th>Signature of certifying official/Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>State or Federal agency and bureau</td>
<td></td>
</tr>
</tbody>
</table>

4. National Park Service Certification

<table>
<thead>
<tr>
<th>I hereby certify that the property is:</th>
<th>Signature of the Keeper</th>
<th>Date of Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ entered in the National Register.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ See continuation sheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ determined eligible for the National Register.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ See continuation sheet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ determined not eligible for the National Register.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ removed from the National Register.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>☐ other,(explain:)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Classification

<table>
<thead>
<tr>
<th>Ownership of Property</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Check as many boxes as apply)</td>
<td>(Check only one box)</td>
<td>(Do not include previously listed resources in count.)</td>
</tr>
<tr>
<td>☑ private building(s)</td>
<td></td>
<td>Contributing buildings 2</td>
</tr>
<tr>
<td>☐ public-local district site</td>
<td></td>
<td>Noncontributing buildings 0</td>
</tr>
<tr>
<td>☐ public-State structure object</td>
<td></td>
<td>sites 0</td>
</tr>
<tr>
<td>☐ public-Federal</td>
<td></td>
<td>structures 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>objects 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 3</td>
</tr>
</tbody>
</table>

Name of related multiple property listing

(Enter “N/A” if property is not part of a multiple property listing.)

N/A

Number of Contributing resources previously listed in the National Register

N/A

6. Function or Use

<table>
<thead>
<tr>
<th>Historic Functions</th>
<th>Current Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Enter categories from instructions)</td>
<td>(Enter categories from instructions)</td>
</tr>
<tr>
<td>INDUSTRY: Manufacturing Facility</td>
<td>COMMERCE/TRADE: Specialty Store</td>
</tr>
<tr>
<td>INDUSTRY: Industrial Storage</td>
<td>COMMERCE/TRADE: Warehouse</td>
</tr>
</tbody>
</table>

7. Description

<table>
<thead>
<tr>
<th>Architectural Classification</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Enter categories from instructions)</td>
<td>(Enter categories from instructions)</td>
</tr>
<tr>
<td>Other: Heavy-timber mill construction</td>
<td>foundation BRICK</td>
</tr>
<tr>
<td></td>
<td>walls BRICK</td>
</tr>
<tr>
<td></td>
<td>CONCRETE</td>
</tr>
<tr>
<td></td>
<td>METAL</td>
</tr>
<tr>
<td></td>
<td>roof SYNTHETICS: Rubber</td>
</tr>
<tr>
<td></td>
<td>other</td>
</tr>
</tbody>
</table>

Narrative Description

(Describe the historic and current condition of the property on one or more continuation sheets.)
Applicable National Register Criteria

<table>
<thead>
<tr>
<th>Mark “x” in one or more boxes for the criteria qualifying the property for National Register listing.</th>
<th>Areas of Significance (Enter categories from instructions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ A Property is associated with events that have made a significant contribution to the broad patterns of our history.</td>
<td>Architecture</td>
</tr>
<tr>
<td></td>
<td>Industry</td>
</tr>
<tr>
<td>□ B Property is associated with the lives of persons significant in our past.</td>
<td></td>
</tr>
<tr>
<td>☑ C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.</td>
<td></td>
</tr>
<tr>
<td>□ D Property has yielded, or is likely to yield, information important in prehistory or history.</td>
<td></td>
</tr>
</tbody>
</table>

Criteria Considerations

<table>
<thead>
<tr>
<th>Mark “x” in all the boxes that apply.</th>
<th>Significant Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1902</td>
</tr>
<tr>
<td></td>
<td>1903</td>
</tr>
<tr>
<td></td>
<td>Late 1950s</td>
</tr>
<tr>
<td>Property is:</td>
<td>(Complete if Criterion B is marked)</td>
</tr>
<tr>
<td>☑ A owned by a religious institution or used for religious purposes.</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Cultural Affiliation</td>
</tr>
<tr>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>□ B removed from its original location.</td>
<td>Architect/Builder</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
</tr>
<tr>
<td>□ C a birthplace or grave.</td>
<td></td>
</tr>
<tr>
<td>□ D a cemetery.</td>
<td></td>
</tr>
<tr>
<td>□ E a reconstructed building, object, or structure.</td>
<td></td>
</tr>
<tr>
<td>□ F a commemorative property</td>
<td></td>
</tr>
<tr>
<td>□ G less than 50 years of age or achieved significance within the past 50 years.</td>
<td></td>
</tr>
</tbody>
</table>

Narrative Statement of Significance

(Explain the significance of the property on one or more continuation sheets.)

9. Major Bibliographical References

Bibliography

(Cite the books, articles, and other sources used in preparing this form on one or more continuation sheets.)

Previous documentation on file (NPS):

- ☑ preliminary determination of individual listing (36 CFR 67) has been requested
- ☑ previously listed in the National Register
- ☑ Previously determined eligible by the National Register
- ☑ designated a National Historic Landmark
- ☑ recorded by Historic American Buildings Survey
- ☑ recorded by Historic American Engineering Record

Primary location of additional data:

- ☑ State Historic Preservation Office
- ☑ Other State Agency
- ☑ Federal Agency
- ☑ Local Government
- ☑ University
- ☑ Other

Name of repository: Wilson Library, UNC-Chapel Hill

Caldwell Heritage Museum, Lenoir

Caldwell County Public Library, Lenoir
10. Geographical Data

Acreage of Property 3.93 acres

UTM References
(Place additional UTM references on a continuation sheet.)
See Latitude/Longitude coordinates continuation sheet.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)

11. Form Prepared By

name/title Heather Fearnbach
organization Fearnbach History Services, Inc.
date 12/19/2016
street & number 3334 Nottingham Road
telephone 336-765-2661
city or town Winston-Salem
state NC
zip code 27104

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps
A USGS map (7.5 or 15 minute series) indicating the property's location
A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
Representative black and white photographs of the property.

Additional items
(Check with the SHPO or FPO for any additional items.)

Property Owner

(name Thump Barrel, LLC, c/o Dinell Clark
street & number 197 Wellman Avenue
city or town North Chelmsford
state MA
zip code 01863)

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listing. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seq.)

Estimated Burden Statement: Public reporting burden for this form is estimated to average 18.1 hours per response including time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Chief, Administrative Services Division, National Park Service, P. O. Box 37127, Washington, DC 20013-7127; and the Office of Management and Budget, Paperwork Reductions Projects (1024-0018), Washington, DC 20303.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 7 Page 1 Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

Section 7. Narrative Description

The mill is rotated approximately fifteen degrees from true cardinal direction alignment. However, for the purposes of this document the following description is written as if it has true north-south orientation.

Setting

Located south of Lenoir’s commercial center, the plant that historically functioned as Lenoir Cotton Mill and Blue Bell, Inc. occupies an irregularly shaped 3.93-acre lot bounded by College Avenue to the north, Underdown Avenue to the east, small mill employee house parcels fronting Underdown Avenue to the south, and a 5.4-acre tract that contains a Carolina and North Western Railroad depot to the west. Underdown Avenue is at a higher elevation than College Avenue, resulting in terrain that slopes down to the west. A C-shaped asphalt-paved drive intersects Underdown Avenue at two points east and southeast of the mill and leads to an asphalt-paved parking area at the same lower elevation as the primary entrance at the mill’s southeast corner. East of the entrance drive, what is now a grass lawn was the upper parking lot.

A straight run of concrete steps with a central metal-pipe railing leads to the concrete sidewalk on the late 1950s addition’s south side. A brick retaining wall runs east-west on the sidewalk’s south edge. At the adjacent parking area’s southeast corner, a longer run of steps flanked by concrete retaining walls and steel-pipe railings provides access to the upper parking lot. North of the mill, a straight run of steps with concrete retaining walls and steel-pipe railings ameliorates the change in grade. A concrete sidewalk extends to the central entrance on the 1903 addition’s north elevation. A fire hydrant and water pressure valve are on the grass embankment bank south of the steps.

The asphalt-paved drive that provided access from College Avenue to the loading docks on the mill’s west side has not been maintained and is overgrown with vegetation. A creek runs through the property west of the mill.

Lenoir Cotton Mill – Blue Bell, Inc. Plant, 1902-1903, 1927-1946, late 1950s

Exterior

The long, linear manufacturing plant’s 1902 (south) section is approximately 77 feet wide by 216 feet long. The one-story-on-basement brick factory was expanded to the north in 1903 with a 136-foot-long addition. By 1913, the original mill housed the roving and carding operations, while the twisting, winding, and shipping departments occupied the north addition. The picker, engine, and boiler rooms are at the south end, separated from the manufacturing areas by brick firewalls. The engine and boiler
rooms extend from the mill’s southwest corner. Blue Bell, Inc. constructed the one-story, flat-roofed, late 1950s cutting room addition that spans the entire length of the 1902-1903 east elevation. The cutting department had previously been located in the 1902-1903 basement, along with the shipping and receiving departments and the cafeteria, which was beneath the offices that by then filled the picker room. A series of one- and two-story brick additions erected sometime between 1927 and 1946 and one-story concrete block, late 1950s additions project from the basement’s west elevation.1

The 1902-1903 building is characterized by a low-pitched-gable roof with rounded rafter ends that support deep eaves, five-to-one common-bond brick walls, tall segmental-arched window and door openings with two-header-course lintels, and slightly projecting wood window sills. Most eight-over-eight, double-hung, wood sash and eight-pane transoms are substantially intact, although covered with T-111 panels.

The nine-bay-wide south elevation initially comprised eight windows and a door in the east bay that provided access into the picker room. However, the door has been removed and the opening partially infilled with brick to allow for a window’s installation. A straight run of concrete steps with a metal-pipe railing leads to the basement entrance in the second bay from the south wall’s west end. The picker room’s east elevation is two bays deep.

At the picker room’s northeast corner, a two-bay-wide and one-bay-deep brick office tower rises in two stages above the roof. Segmental-arched two-header-course lintels surmount the lower-stage windows. Corbelled sills and paired, round-arched, corbelled lintels frame the upper-stage openings. A corbelled cornice further ornaments the tower, which originally had a flat roof and a tall flat parapet with corbelled brick corners. The standing-seam-metal pyramidal hip roof that was added in the early twentieth century covers the parapet with the exception of the corners that pierce the roof.

A one-story on basement engine room and single-level boiler room extend from the mill’s southwest corner. The boiler room (to the south) has a blind east elevation, a two-bay south elevation, and a three-bay west elevation. Interior access is possible from the engine room’s basement as well as the exterior door on the boiler room’s west elevation. A one-story shed-roofed room projects from the south elevation’s center.

The engine room is four bays wide and four bays deep. The west elevation’s basement fenestration now comprises (from north to south) a single-leaf entrance, a brick-enclosed window opening, and two

windows covered with plywood. Segmental-arched two-header-course lintels cap the three original openings. The rectangular window opening in the second bay from the south end was a later addition. Three brick courses separate that opening from the wood lintel of the upper-level window opening above it. The upper-level window opening has been infilled with brick and is at a lower elevation than the other three eight-over-eight, double-hung, wood sash and eight-pane transoms that illuminate the main floor.

A concrete loading dock wraps around the engine room’s northwest corner. A metal roll-up service door has been installed in the north elevation’s west basement bay. The remaining three bays encompass a service door opening and flanking windows. However, a late 1950s shed addition extends north from the engine room’s two east bays, resulting in that section of wall’s treatment as an interior partition. The window and door were subsequently removed, leaving empty openings. A metal shed canopy spans the two west bays, sheltering the loading dock. Four eight-over-eight, double-hung, wood sash and eight-pane transoms pierce the north elevation’s upper story.

Four two-story brick additions erected between 1927 and 1946 project from the west elevation. A one-bay-square elevator shaft rises at the building’s northwest corner. A wide segmental-arched opening pierces the upper section of the shaft’s west elevation. In the thirteenth bay from the wall’s north end, a one-and-one-half-story, one-bay-square stair tower rises on the north side of a two-story, three-bay-wide and two-bay-deep restroom tower. The stair tower’s north elevation is blind. A large segmental-arched window opening fills much of the west elevation. A flat steel canopy shelters the concrete loading dock outside the door in the west bay of the restroom tower’s south elevation. Eight-over-eight, double-hung, wood sash windows fill the remaining bays on the south elevation, the three openings on the west elevation’s upper level, and the west elevation’s south basement bay. The openings in the two north basement bays are covered with plywood. A square restroom tower projects from the seventh bay from the west wall’s south end. High square windows light the interior.

One-story, shed-roofed, concrete-block, late 1950s additions span much of the distance between the towers. A six-bay-long addition extends north from the engine room’s two east bays to the south tower. The L-shaped addition on the tower’s north side has a two-bay-square south section and a single-bay-wide-and-deep north section. A twelve-bay-long addition extends north from the stair tower to the elevator shaft. Most of the fifteen-pane steel sash with six-pane lower hoppers that illuminated the additions are intact, but the majority have been covered with exterior T-111 panels.

The 1903 addition’s north elevation originally comprised a central double-leaf door flanked by eight (four on each side) eight-over-eight, double-hung, wood sash with eight-pane transoms.² In the mid-

² “Blue Bell, Inc.,” October 1946 photograph taken by Sparks Studio of Lenoir, Caldwell Heritage Museum.
twentieth century, Blue Bell, Inc. installed a no-longer-extant flat-roofed metal canopy above the door as well as raised signage advertising the company name, plant location, and logo. Five window openings remain; one in the westernmost bay and the others in the four east bays. Some of the original sash and transoms have been encapsulated between interior and exterior plywood and T-111 panels. The window opening in the second bay from the west end has been infilled with brick. An angled concrete sidewalk leads from the base of a straight run of concrete steps to the single-leaf steel door in the fifth bay from the east end. Metal roll-up service doors secure the two loading docks to the west, which replaced two original windows. The site’s sloping grade allows enough clearance for truck beds to align with the docks. The loading area is now a grass lawn.

The five-bay north elevation of the one-story, flat-roofed, late 1950s addition in the 1902-1903 mill’s east side has a flat, terra-cotta-coping-capped parapet that is taller than the adjacent north elevation of the 1903 addition as well as the remainder of the late 1950s addition. Masons executed the brick veneer in five-to-one common bond. A flat metal canopy once surmounted the double-leaf wood door with square base panels and glazed upper sections in the west bay. The window openings in the east four bays gradually decrease in size from west to east due to the adjacent embankment. The full-height west window contains an eighteen-pane steel sash with a six-pane lower hopper. Plywood interior and exterior panels cover the shorter sash to the east.

The late 1950s addition’s east elevation primarily comprises eighteen-pane steel sash with six-pane lower hoppers. Near the wall’s center, a double-leaf wood door with paired, vertical, rectangular base panels and glazed upper section allows interior access. A flat metal canopy shelters the double-leaf wood door with square base panels and glazed upper sections in the south elevation’s west bay. The three central bays originally contained tall windows, but a double-leaf door has been installed in the center opening. A short, square, east opening allows access to the water pressure valve in the addition’s southeast corner.

Interior

The mill’s open plan and interior finishes are substantially intact. Painted brick walls; substantial wood columns, posts, and beams; wood roof decking boards; hardwood floors; and metal-clad kalamein doors characterize the 1902-1903 building. Long rows of columns and posts divide the manufacturing areas into three wide bays that accommodated sizable machinery. Round wood columns and heavy-timber beams support the floor and roof systems. Steel connecting plates secure the columns to the beams. The original floor system consists of three-inch-thick plank decking, a three-inch-thick diagonal-board middle layer, and a tongue-and-groove hardwood top layer.
The restrooms in the north tower that projects from the west elevation are simply finished with plaster walls, vinyl-composition-tile floors, painted-wood stall partition walls, and white porcelain fixtures. Fixtures and partitions have been eliminated from the south tower.

At the 1902 building’s south end, a short narrow corridor leads to what was an entrance vestibule adjacent to the wood steps that provide access to the small office tower that rises in two stages above the roof. A short railing comprised of square balusters, a matching flat handrail, and a square newel post with a flat square cap secures the lower stair run. The corridor west of the stairs, which is labeled “dust house” on Sanborn maps, and the vestibule have plaster walls and ceilings and narrow hardwood floors. In the tower, brick walls, wood rafters, and wide-board roof decking have been painted. The wood frame of a dropped acoustical-tile ceiling remains. Such towers often housed factory whistles and/or water tanks that required elevation to gravity-feed sprinkler systems. In this case, a 10,000-gallon steel water tank remains in the tower’s upper stage, which is only accessible from the roof.

Mid-twentieth-century frame partition walls, some sheathed with faux-wood paneling, divide the picker room into four offices, a break room, a conference room, a storage room, and restrooms. The dropped ceiling’s wood frame is intact, but the acoustical tiles that were attached to it have been removed. Narrow hardwood floors are exposed in most areas, but have been covered with vinyl composition tile in one office and the conference room.

On the engine room’s south elevation, a straight run of stairs enclosed with a vertical-board wall facilitates basement access. The open basement rooms are characterized by robust square heavy-timber posts and beams. In a few instances, steel columns or I-beams have replaced some of the heavy-timber posts. The poured-concrete floor provides a durable work surface. The boiler room, accessed from a door at the engine room’s southwest corner, has a concrete floor and a high ceiling designed to accommodate sizable equipment. The wood rafters and wide-board roof decking are exposed.

Flat steel trusses span the distance between the 1902-1903 mill’s east elevation and the one-story late 1950s east addition’s concrete-block exterior wall. The rubber membrane roof rests on corrugated metal decking. Although vinyl composition tile sheathes a few floor sections, the poured concrete floor is exposed in the majority of the long open room. The one-story late 1950s additions on the west elevation also have open plans and concrete floors, but heavy-timber beams and wide-board roof decking support the low shed roofs. These areas are accessible from the basement, where windows have been removed in some 1902-1903 walls encapsulated by the additions. In other cases, portions of walls between these mill sections have been demolished to create wide openings.
Linear and pedant fluorescent lights, sprinkler system pipes, and a minimal amount of rigid metal ductwork and ventilation equipment hang from the ceilings throughout the plant. Surface-mounted metal conduit houses electrical wiring. Ceiling fans and window hoppers facilitated air circulation.

Smokestack, 1902, Contributing Structure

A round, 100-foot-tall, freestanding smokestack stands next to the boiler room’s southeast corner. A stepped foundation supports the tapered stack executed in six-to-one common bond. A segmental-arched, two-header-course lintel tops the clean-out door on the base’s south side.

Opening room, erected between 1921 and 1927, Contributing Building

A one-story, brick, square opening room is southeast of the smokestack. The blind south and west walls rise to flat parapets above the low shed roof, which slopes to the east. Two twenty-pane steel sash with eight-pane lower hoppers pierce the north elevation. A wide door opening on the east elevation allows interior access. The wood floor boards have been removed and the joists are in poor condition. The south elevation initially abutted a one-story frame cotton warehouse to the south. The party wall was not intended to be exposed to the elements and was stuccoed on the warehouse side. The stucco has been partially removed and the brick is spalling. By 1927, a frame platform connected the picker room at the mill’s south end to the opening room and warehouse. A railroad spur line terminated west of the warehouse.

Integrity Statement

Lenoir Cotton Mill – Blue Bell, Inc. possesses good integrity of location, setting, feeling, association, design, materials, and workmanship. The building displays character-defining features of early- to mid-twentieth-century industrial architecture. The 1902 plant and 1903 addition retain round wood column and heavy-timber post-and-beam interior structural systems. The load-bearing brick exterior walls are executed in six-to-one common bond with segmental-arched window and door openings. These elements, in conjunction with triple-thickness wood floors and kalamein doors, are representative of early-twentieth-century fire-resistant industrial architecture. The two-stage office tower and eight-over-eight, double-hung, wood sash and eight-pane transoms are important survivals.

The late 1950s additions retain original structural systems and windows. The east cutting room addition comprises a flat steel truss roof system, brick-veneered concrete-block exterior walls, poured-concrete floors, and eighteen-pane steel sash with six-pane lower hoppers. The one-story, shed-roofed, concrete-block, late 1950s, basement-level additions on the west elevation have heavy-timber roof beams spanned by wide-board decking, poured-concrete floors, and fifteen-pane steel sash with six-pane lower hoppers. The late 1950s additions did not involve extensive modification to the 1902-1903
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 7 Page 7 Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

mill; only the creation of door openings and the removal of some window sash to facilitate interior connectivity.

Archeological Potential Statement

Lenoir Cotton Mill – Blue Bell, Inc. is closely related to the surrounding environment. Archaeological remains, such as trash deposits, privies, and structural remains may be present, and could provide information valuable to the understanding and interpretation of the structure. Information concerning environmental transformation, work culture and worker health, as well as structural details, is often evident in the archaeological record. Therefore, archaeological remains may well be an important component of the mill’s significance. No investigation has been undertaken to discover these remains, but it is likely that they exist, and this should be considered in the property’s development.
Section 8. Statement of Significance

Lenoir Cotton Mill – Blue Bell, Inc. meets Criterion A for industry and Criterion C for its local architectural significance. The concerns’ contribution to the local economy as manufacturers, employers, consumers of goods and services, and taxpayers were enormous. Lenoir Cotton Mill commenced production in January 1902 and doubled its capacity upon the completion of a September 1903 addition. The operation remained the largest of Caldwell County’s seven textile manufacturers through the early 1920s. Lenoir Cotton Mill maintained an approximately two-hundred-person workforce through 1935, but sold the plant in January 1939. The mill served as furniture storage prior to being leased by Greensboro-headquartered work clothes manufacturer Blue Bell, Inc., as a satellite plant to fulfill contracts for military apparel and the retail market. The factory played an important role in Blue Bell, Inc.’s production. By October 1952, four hundred Lenoir employees had the ability to generate as many as 84,000 pairs of pants each week, primarily women’s and girls’ sportswear. The company’s workforce was predominantly female, affording women the opportunity to hold a wide variety of positions in an industry other than textile manufacturing. Blue Bell, Inc. remained Caldwell County’s only sizable apparel manufacturer as it utilized the Lenoir plant until 1983.

Lenoir Cotton Mill – Blue Bell, Inc. is architecturally significant as the plant manifests typical early- to mid-twentieth-century industrial design. The 1902 plant and 1903 addition feature round wood column and heavy-timber post-and-beam interior structural systems. The load-bearing brick exterior walls are executed in six-to-one common bond with segmental-arched window and door openings. These elements, in conjunction with original interior features such as triple-thickness wood floors and kalamein doors, are representative of early-twentieth-century fire-resistant industrial architecture. The two-stage office tower and the eight-over-eight, double-hung, wood sash and eight-pane transoms are also important survivals. The late 1950s cutting room addition comprises a steel truss roof system and brick-veneered concrete-block exterior walls. The period of significance begins in 1902, with the original section’s completion, and continues to 1967. The plant’s industrial function and physical expansion after 1967 are not of exceptional significance.

Historical Background and Industrial Context

North Carolina’s early textile operations depended on waterpower, making locations along the Haw, Deep, and Catawba rivers, where slate formations create falls and rapids, ideal for manufacturing. German merchant Michael Schenck erected a sawmill, gristmill, and several ironworks in Lincoln County before hiring ironworkers Absolom Warwick and Michael Beam to construct North Carolina’s first cotton mill in 1813. Only a few other entrepreneurs attempted textile production before the late 1820s, when the North Carolina legislature approved the incorporations of approximately fifteen new companies. Henry Humphreys was the first North Carolina textile mill owner to experiment with steam power, installing a system in 1828 at his Mt. Hecla Cotton Factory near Greensboro that inspired
others to invest in the technology. However, it was not until the late 1830s that industrialists capitalized on the piedmont’s available sites, transportation, and labor force to establish spinning mills.3

Samuel Finley Patterson, James Harper, and his nephew James Clarence Harper organized Caldwell County’s first textile mill, Patterson Manufacturing Company. The 1848 plant, situated north of Lenoir on the Yadkin River, produced wool and cotton plaids and sheeting. Granite Falls Manufacturing Company, established by P. G. Moore around 1880 south of Hudson on Gun Powder Creek, was the county’s earliest large-scale cotton-yarn-spinning enterprise. These and other textile mills initially relied on dams and waterwheels to power their equipment.4 However, steam and electric power availability encouraged factory movement to urban areas in close proximity to railroad lines and sizable potential employee pools.

Caldwell County residents celebrated the 1884 completion of the Chester and Lenoir Narrow Gauge Railroad, a 110-mile freight and passenger line originating in South Carolina that stimulated commercial and industrial growth along its route. Lenoir entrepreneurs George Washington Finley Harper and Marshall M. Courtney were among those who benefited from the opportunity for more expeditious trade. G. W. F. Harper owned a general mercantile established by his father James C. Harper to serve Lenoir residents around 1845. On January 1, 1884, Harper partnered with his future son-in-law John Mathias Bernhardt and John’s older brother George Lynn Bernhardt to create Harper and Bernhardt.5

Marshall M. Courtney and B. M. Tuttle opened a general store at Tuttle’s Crossroads (now Hartland) in 1872 and expanded the operation to Lenoir in 1879. That year, the partners commissioned the construction of a no-longer-extant two-story brick commercial building that occupied a corner lot adjacent to the Central Hotel. Courtney purchased Tuttle’s interest in the business in 1883 and partnered with his brother, R. G. Courtney, in the venture. Around 1888, they erected the warehouse that still stands behind the Courtney Buildings (facing Church Street) to store their inventory.

Courtney Brothers sold a wide variety of merchandise, from farm equipment to medicine. On September 19, 1888, M. M. Courtney became the business’s sole proprietor.6

The Bernharths and Harpers were also heavily involved with railroad development. G. W. F. Harper was a principle stockholder and became in 1893 the president of the Chester and Lenoir Narrow Gauge Railroad. He guided the concern through receivership to become the Carolina and North Western Railway in 1897. J. M. Bernhardt, while general production manager at Caldwell Land and Lumber Company (incorporated in 1892), encouraged the concern’s owners to build the Caldwell and Northern Railway. He also assisted with the route’s survey. Beginning in 1893, freight cars transported lumber from the small community of Collettsville, located ten miles southwest of Lenoir, to the larger municipality’s industries. A passenger line extended northwest of Lenoir in phases to Wilson Creek, Mortimer, and finally to Edgemont by 1906. The Carolina and North Western Railway assumed control of the Caldwell and Northern Railway in 1905 and merged the concerns in 1910.7

J. M. Bernhardt’s Lenoir planing mill and box factory, which commenced operating in 1896, was the town’s largest manufacturing concern by 1900. In 1902, Lenoir boasted at least ten industrial enterprises, ranging from flour to lumber mills, furniture producers, and building supply companies, most of which were located along railroad lines. Downtown businesses prospered as the population increased in conjunction with industrial expansion.8

It was in this auspicious economic climate that Gastonia industrialist J. D. Moore approached M. M. Courtney with the idea of building Lenoir’s first cotton mill. He offered to invest $40,000 if local businessmen would match his contribution. Courtney and other community leaders met at the Bank of Lenoir on March 14, 1901, and pledged subscriptions of $35,000 toward the endeavor. Moore and J. O. White, the superintendent of Modena Mill (Moore’s Gastonia plant established in 1893), visited Lenoir the following week. They assisted with the selection of an optimal site southwest of downtown

United States Department of the Interior
National Park Service
National Register of Historic Places
Continuation Sheet

Section number 8 Page 11 Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

near the intersection of what is now College and Underdown Avenues and the primary Carolina and North Western Railroad line. By the end of the month, stockholders organized Lenoir Cotton Mill and elected M. M. Courtney to serve as the company’s president, G. W. F. Harper its vice-president, and J. D. Moore its secretary and treasurer. These men, plus J. O. White, who would superintend the mill, and J. L. Nelson, comprised the board of directors.9

On April 22, 1901, Lenoir Cotton Mill paid G. F. Harper, his wife Frances C. Harper, and James H. Beall $2,000 for three tracts encompassing approximately twenty acres. That month, the company awarded P. L. Baker and G. L. Bernhardt a contract to erect twelve employee residences and to supply windows, doors, and other wood elements for the mill. J. W. Harris and Artie Johnson finished painting the dwellings in early August, which was also when masons began laying the factory’s brick walls. Journalists proclaimed that the cottages were neat, convenient, and should serve as models for those building other mill villages. The factory’s metal roof was substantially complete in early December. In January 1902, contractors including Gastonia plumber A. H. Tuttle had almost finished work and equipment was being installed.10

As the endeavor prospered, the company announced in early December 1902 plans to erect an addition. At that time, mill workers utilized 3,360 spindles to spin Egyptian cotton yarn. J. W. Suddeth began expanding the building in March 1903 and completed work in September. The approximately $70,000 136-foot-long addition doubled the plant’s production capacity by allowing for a total of 6,720 spindles. A new engine powered the equipment. In 1904, 150 employees spun forty-to-seventy-gauge two and-three-ply yarn sold by the Philadelphia agency Charles J. Webb and Company. F. C. White and T. A. Wright, both from Gastonia, oversaw the mill’s operation. Barney Barton Hayes managed the carding and spinning department from January 1902 until 1904, when he became the superintendent of the newly established Hudson Cotton Manufacturing Company.11

Lenoir Cotton Mill’s administrative offices soon required more space. The company elected in March 1904 to utilize the Main Street building that formerly housed the Bank of Lenoir for this purpose. Staff occupied newly remodeled offices in June.12

10 Caldwell County Deed Book 34, pp. 23-26; WN, August 2, 1901, p. 4, August 15, 1901, p. 2, December 6, 1901, p. 3, January 10, 1902, p. 3, October 31, 1902, p. 3; “Ideal Mill Cottages,” Gastonia Gazette, August 15, 1901, p. 2; LNT, September 12, 1941, p. 1;
12 WN, March 18, 1904, p. 3; June 24, 1904, p. 3.
In addition to Modena Mill and Lenoir Cotton Mill, J. D. Moore had invested in textile concerns including Hudson Cotton Manufacturing Company and Dallas Cotton Mills in Gaston County, organized in 1890. Following Moore’s August 1905 death, Lenoir Cotton Mill stockholders elected his son H. B. Moore to serve as the company’s secretary and J. L. Nelson its treasurer. The business reported earnings of $22,500 during the second half of 1905.13

Industrial ventures continued to proliferate as the decade progressed. In 1905, F. P., J. C., and William Moore commenced constructing a factory to house Moore Furniture Company, incorporated in 1906. Approximately one hundred employees fabricated case goods and tables that year. Other recently created manufacturing endeavors included Lenoir Brick and Tile, Prince Harness, Lenoir Clothing, J. H. Coffey Wagon, Lenoir Bottling, and Blue Ridge Bobbin and Handle companies. In 1908, J. M. Bernhardt, who had been supplying Moore Furniture Company with lumber, acquired majority interest in that firm and incorporated Bernhardt Manufacturing Company, which specialized in bedroom and dining room furniture.14

Investors organized two textile mills that began operating near Lenoir in 1907. Contractors erected Whitnel Cotton Mill in April 1907 on a site in Freeland, a community three miles south of the county seat. G. L. Bernhardt served as the concern’s president, G. F. Harper its vice-president, and J. L. Nelson its secretary-treasurer. The company offices were in Lenoir. Globe resident F. P. Moore and Joe C. Moore, H. B. Moore, and M. G. Shearer, all of Lenoir, incorporated Moore Cotton Mill in July. J. O. White was the concern’s general manager. The group acquired acreage north of Lenoir upon which a mill was soon built. Both enterprises produced cotton yarn. In 1910, Lenoir Cotton Mill remained Caldwell County’s largest spinning plant, with 150 employees and 6,720 spindles. Hudson Cotton Manufacturing Company housed 5,376 spindles, Whitnel Cotton Mill 5,000 spindles, and Moore Cotton Mill’s 60 employees operated 3,400 spindles.15

J. L. Nelson and J. O. White continued to lead the consortium of Hudson, Lenoir, Moore, and Whitnel mills, sometimes referred to as the “Nelson group of mills.” The offices consolidated in July 1920 and moved from Gastonia to Lenoir. Administrative staff included J. L. Nelson Jr., appointed that month to serve as the company’s assistant treasurer and manager. M. M. Courtney remained Lenoir Cotton Mill’s president until his July 1921 death, after which J. H. Beall headed the concern. In July 1922, engineers from Greenville, South Carolina-based Lockwood, Greene, and Company’s Charlotte office

planned the electrification of Hudson, Lenoir, Moore, and Whitnel mills as well as Steele Cotton Mill. Gastonia electricians Michael and Blevins installed the necessary wiring and equipment after Southern Power Company extended lines from Hickory.16

Lenoir Cotton Mill’s workforce grew slightly by 1925, when 175 employees operated 6,720 ring spindles under F. C. White’s direction. The plant remained profitable, but was no longer the largest of the seven spinning concerns in Lenoir and the vicinity. Caldwell County Cotton Mill Company, incorporated in 1923, had installed 6,048 ring spindles, 3,024 twisting spindles, and 20 cards in its Hudson plant. Nelson Cotton Mill, organized in 1922, employed 140 men and women in its 6,000-spindle factory. At Steele Cotton Mill, located on College Avenue opposite Lenoir Cotton Mill, superintendent J. P. Chester managed 100 workers who spun cotton yarns on 6,020 ring spindles. Hudson Cotton Manufacturing Company’s 180 employees generated skeins yarns using 5,376 spindles, Whitnel Cotton Mill’s 165 laborers generated peeler yarns on 6,276 spindles, and Moore Cotton Mill’s 140 operatives ran 5,376 spindles.17

Lenoir Cotton Mill’s administration, employee numbers, and equipment quantities remained constant between 1925 and 1930. Steele Cotton Mill was the only one of the six other local plants that experienced significant growth during this period. That company’s 200 employees operated 10,056 ring spindles, 5,040 twisting spindles, and 40 cards in 1930.18

North Carolina textile mills diversified production during the early 1930s as the industry faced challenges nationwide. More efficient equipment and mechanization that transformed manufacturing operations led to mill employee layoffs. Job loss, decreased pay, and poor working conditions made unions more appealing. These factors set the stage for mill employees across the South to participate in the General Textile Strike of 1934, which closed down textile mills throughout the region. The extent of union organization in Lenoir mills is unknown. Many mill owners fired known union members and sympathizers. Union efforts were not in vain, however, as the Roosevelt administration’s social and economic reform programs eventually resulted in the institution of a forty-hour work week and increased worker pay.19

18 Davison’s Textile Blue Book (1930), 312.
Lenoir Cotton Mill navigated these challenges, operating through 1935 with the same number of employees and spindles, but closed within a few years. On January 2, 1939, the company conveyed the 4.81-acre mill tract to John M. Bernhardt’s sons, George H. Bernhardt and John C. Bernhardt, who led Bernhardt Furniture Company, and Andrew S. Nelson, an automobile dealer and oil and gas distributor. Bernhardt Furniture Company initially used the property as storage. 20

Only three Lenoir textile manufacturers—O. P. Lutz Hosiery Mill, Moore Cotton Mill, and Steele Cotton Mill—reported production in 1939. However, as the economy began to recover, the Lenoir Board of Trade stated that the city’s twelve furniture plants employed thousands of workers, and related manufacturers—makers of mirrors, veneers, and other products used by the furniture industry—provided more jobs. Lenoir had three hospitals, three residential suburbs, and a Donald Ross-designed golf course, and was said to be the state’s fastest growing city since World War I. The population numbered twelve thousand, triple that of 1920, and downtown included five hardware and furniture stores and four drug stores. 21 By the beginning of the 1940s, thirty-three Lenoir industrial plants provided work for five thousand people and local manufacturers sold products in Canada and Mexico as well as in every state. An article in the September 1941 centennial edition of the News-Topic claimed that Lenoir was the nation’s “second largest furniture manufacturing city.” Caldwell County then contained twelve cotton mills and five hosiery mills, three of which were in Lenoir. 22

World War II brought new challenges and opportunities. Approximately 4,327 Caldwell County residents served in the military during the war, and those left behind were occupied with the effort in a variety of ways, from participating in bond drives to filling vacant positions at mills and factories that accelerated their production to meet the needs of servicemen and women. Industrial jobs rose by seventy-five percent in the South over the course of World War II, with traditionally underemployed groups such as women, African Americans, and the elderly receiving invaluable education, training, and experience. Output soared after May 1943, when President Franklin D. Roosevelt established the Office of War Mobilization to coordinate a diverse array of support endeavors including manufacturing, scientific research, and agricultural production. Repurposing of vacant industrial complexes was commonly employed to facilitate expedited production. 23

22 Miller’s Lenoir City Directory, 1943-1944, 267; LNT, September 12, 1941, p. 1.
Greensboro-headquartered work clothes manufacturer Blue Bell, Inc. benefited from this initiative. The company’s administrators served on the War Production and War Labor boards and advised government agencies including the Office of Price Administration and the Quartermaster General’s office. In order to fulfill contracts for military apparel and the retail market, Blue Bell, Inc. leased the former Lenoir Cotton Mill to serve as a satellite plant in 1943. At that time, the company generated approximately thirty-six million garments annually at fourteen plants in Georgia, Illinois, Indiana, Maryland, Mississippi, North Carolina, Virginia. Blue Bell, Inc. shifted production quotas during the war so that approximately sixty percent of its output at seven locations was clothing for the armed forces. Military commissions included white twill jackets and denim and white trousers for the U. S. Navy; and jungle suits, one-piece suits, denim pants and coats, olive-drab herringbone-patterned jackets and trousers, and regulation khaki dress pants and shirts for the U. S. Army. Marketing offices in Chicago, Greensboro, Nashville, and New York promoted the company’s retail line, which comprised men’s and boys’ overalls, dungarees, pants, one-piece suits, shirts, coats, and jackets sold under the trade names Blue Bell, Big Ben, and Casey Jones.24

Blue Bell, Inc.’s sales escalated dramatically during the post-war years, climbing from $13,795,450 in 1943 to $46,630,060 in 1950, when the company asserted that it remained the world’s largest work clothes manufacturer. The 1947 introduction of Wrangler-brand leisure wear had been a tremendous success.25 The company’s growth manifested a broader trend in the apparel industry, which burgeoned nationally following the war. In North Carolina, less than forty firms reported production between 1939 and 1945, but by 1954 approximately 175 businesses operated 200 plants that generated outerwear, clothing, undergarments, accessories, and other fabricated textile products such as awnings, bags, carpets, mops, ribbons, and tarpaulins. Most were located in the Piedmont. The Employment Security Commission asserted that the state’s abundant supply of female laborers, many of whom had garnered skills in textile mills that translated easily to apparel making, encouraged such endeavors. Also, worker compensation in southern states was less than that in the north, providing investors with the potential for greater profit. Still, apparel manufacturing comprised only 4.3 percent of North

The Lenoir factory played an important role in Blue Bell, Inc.’s production chain and in the local economy, as it was one of Caldwell County’s chief industrial concerns and its only sizable apparel manufacturer for almost forty years. Dot Land, who worked at the plant from 1949 until 1983, remembered that the facility afforded women the opportunity to hold a wide variety of positions in an industry other than textile manufacturing. Furniture factories, which dominated Lenoir’s industrial sector, did not typically hire females to fill production jobs until the 1960s. The Blue Bell, Inc. plant was also unusual in its large number of African American and Asian employees.

By October 1952, Blue Bell, Inc.’s Lenoir factory had the capacity to fabricate as many as 84,000 pairs of pants each week, primarily women’s and girls’ sportswear. Superintendent Roy W. Greeson, plant manager A. L. Lomax, and industrial engineer Robert S. Hines oversaw the facility’s almost four hundred employees, most of whom were women who worked in the sewing department. Men operated the cutting department, which generated piece goods for assembly, as well as the shipping and receiving department. Amenities included a cafeteria, a break room, and a medical clinic manned by a registered nurse. The company subsidized seasonal parties and parades. Employees were able to purchase discounted Blue Bell, Inc. clothing and boots in the basement store, and could select other items from catalogs.

Blue Bell, Inc.’s sales rose to $58,073,919 in 1956 as more than two hundred wholesalers distributed popular products including Wrangler jeans to thirty thousand retail establishments throughout the nation. The company expanded many of its twenty-seven plants in seven states to meet demand. Lenoir was among them. Although Blue Bell, Inc. had updated the facility and installed new equipment prior to commencing operations at that location in March 1944, the most significant

28 Mrs. Land began her tenure with Blue Bell, Inc., as a sewing machine operator, became a supervisor, and subsequently oversaw the first aid, human resources, and payroll departments. Dot Land, telephone conversation with Heather Fearnbach, April 17, 2017.
modification occurred with the construction of the sizable one-story late 1950s cutting room addition that spanned the factory’s east elevation.30

Blue Bell, Inc. initiated European production at a Belgium plant in 1961. Subsequent acquisitions included Red Kap, a Canadian industrial and occupational clothing manufacturer in 1964, and J. W. Carter, a western boot producer, in 1967. Blue Bell, Inc.’s Lenoir plant continued to generate sportswear through 1983. Company labels then included Wrangler, Rustler, and Maverick jeans, as well as Red Kap, Jantzen (swimwear and sportswear), Sedgefield, and Lucchese Boots.31

Blue Bell, Inc. adjusted each plant’s production quota in response to orders for various lines. The Lenoir factory operated a single shift, which typically ran from 7:00 am to 3:30 pm, although some employees worked an additional hour of overtime. Jeans, trousers for the U. S. Navy, and Jantzen sportswear were among the items fabricated in Lenoir that were shipped to Greensboro for distribution. The Lenoir plant’s cutting department also supplied the company’s Taylorsville factory, located just over twenty miles to the east in Alexander County, with piece goods to be assembled in that facility.32

Net sales jumped from $872 million to $1,356,640 billion in 1980, and then dropped slightly each year through 1983 in response to the economic recession during that period. Blue Bell, Inc., and VF Corporation of Pennsylvania’s 1986 merger created one of the world’s two largest jeans manufacturers. The company now operates an international consortium of plants in Asia, Europe, and Latin America from a Greensboro headquarters.33

Although the Bernhardt family retained ownership of the Lenoir plant until May 2007, the title holders changed in a series of transactions. On December 1, 1944, A. S. Nelson and his wife Janice N. Nelson conveyed their one-quarter undivided interest in the former Lenoir Cotton Mill property to George H. Bernhardt. Lillian W. Bernhardt inherited her husband George H. Bernhardt’s one-half undivided interest in the former mill tract when he died in 1947. Following her death on December 5, 1977, First Union National Bank, the executor of her estate, sold her interest to Caldwell Realty and Investment Company for $75,000 on June 27, 1980. John C. Bernhardt transferred his one-half undivided interest in the parcel to JCB Properties, LLC, on November 30, 1999. After the Blue Bell, Inc. plant closed in 1983, the building functioned as a warehouse for Bernhardt Furniture Company and other local furniture manufacturers until late 2009. Caldwell Realty and Investment Company and JCB Properties, LLC, conveyed the tract to the current owner, Thump Barrel, LLC, on May 11, 2007.

32 Dot Land, telephone conversation with Heather Fearnbach, April 17, 2017.
However, Bernhardt Furniture Company continued to lease the mill for two years. The building has housed Lenoir Trade Market, a thrift store, on the main level since early 2010.34

Industrial Architecture Context

In the first purpose-built industrial buildings erected in the United States, designers strove to accommodate machinery in a manner that allowed for efficient access to power sources as well as maximum utilization of natural light and ventilation. By the mid-nineteenth century, “slow-burn” masonry construction, with load-bearing brick walls, exposed heavy-timber framing, thick plank floors, gabled roofs, large operable windows and transoms, and metal fire doors predominated. Heavy-timber framing members that were at least twelve inches square with chamfered edges effectively slowed the progress of fire, particularly when used in combination with a floor system that encompassed three- to four-inch-thick plank decking covered with waterproof paper and topped with hardwood floors. The floor system was left exposed underneath in order to avoid the use of flammable ceiling materials and finishes. Chamfering the corners of beams, posts, and girders removed splinters that could ignite easily.35

During the late nineteenth century, mill and factory design evolved from a vernacular process whereby owners worked with builders who erected edifices based on mutually understood norms to a field dominated by professionally-trained mill engineers who designed industrial buildings and supervised their construction. Standards imposed by machinery manufacturers and insurance companies also guided industrial architecture’s evolution. In order to minimize fire risk, stairwells, which could serve as conduits for fire movement between floors, were located in projecting stair towers. Brick interior walls and galvanized-sheet-metal-clad, solid-core-wood doors, known as kalamein doors, separated the mill sections where fires might start or spread rapidly. These heavy doors would automatically close in the case of a fire, as the heat would melt a soft metal link in the door’s counterweight assembly and the door would slide shut on the sloped metal track. As an additional precaution, water reservoirs and elevated water tanks supplied automatic sprinkler systems in many industrial complexes.36

North Carolina industrialists benefited from the contributions of resident engineers who disseminated specifications dictating best practices in mill layout and design. Innovators in this discipline included South Carolina native Daniel A. Tompkins, sent by the Pittsburgh-based Westinghouse Engine

Company to Charlotte in the early 1880s to sell and coordinate the installation of the company’s equipment in the region. Tompkins became a driving force in the southern textile industry, partnering with Charlotte grain merchant R. M. Miller in 1883 to establish the D. A. Tompkins Company, an engineering firm. The company created plans for over one hundred mills in addition to other industrial buildings.\[^{37}\] Charlotte examples such as Ada, Alpha, and Victor Mills (all erected in 1889), Highland Park Mill No. 1’s 1891 and 1895 buildings, and the 1892 Atherton Mill are comparable to the 1902-1903 Lenoir Cotton Mill.

Thomasville, North Carolina, native Stuart Warren Cramer, who began his career with the D. A. Tompkins Company, was another highly-influential mill engineer. Cramer set up his own Charlotte firm in 1895, and by 1915 had designed almost one-third of the new mills erected in the South during that period. Hudson Cotton Manufacturing Company’s 1904 mill is the only Caldwell County factory that has been attributed to him at this time. In addition to preparing mill plans, Cramer equipped facilities with textile production machinery of all types, some of which he invented. His salesmen, based in Charlotte and Atlanta offices, travelled throughout the country. Cramer’s innovations in textile mill climate control garnered him international recognition, and he is credited with conceiving the term “air conditioning.” Cramer often served his clients as a business advisor as well as a designer. For example, he installed an air-conditioning system at Loray Mill in Gastonia in 1908 and became the company’s president four years later. Cramer established and led the American Cotton Manufacturers Association and the National Council of American Textile Manufacturers. He invested in textile concerns including Highland Park Manufacturing Company in Charlotte and Mayes Manufacturing Company in the Gaston County community of Mayesworth, which became known as Cramerton in 1922. The mill complexes and the associated housing that Cramer designed at those and other locations featured efficient layouts that demonstrated his integrated work flow concepts.\[^{38}\]

Stuart Cramer recruited talented architects and engineers such as Richard C. Biberstein of Fredericksburg, Texas, to work in his office. Biberstein, born in 1859, attained a mechanical engineering degree from the Worcester (Massachusetts) Polytechnic Institute in 1882. He found employment at U. S. Electric Lighting Company in Newark, New Jersey, and Atlas Engine Works in Indianapolis before moving to Charlotte in 1887 to accept a draftsman position at industrialist John Wilkes’s Mecklenburg Iron Works. H. S. Chadwick offered him a similar job at the Charlotte

United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 8 Page 20 Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

Machine Company, which manufactured mill equipment, in 1897. Biberstein remained on staff until 1902, when he became Stuart Cramer’s employee, thus garnering valuable experience that prepared him to launch an independent firm specializing in mill design three years later.39

During the twentieth century’s first decades, architects and engineers continued to plan manufacturing complexes that were similar in appearance to earlier industrial buildings. However, new building materials, technology, and forms manifested efficiency, modernity, and economic progress. Mill and factory designers specified steel and reinforced-concrete columns, posts, and beams in conjunction with brick, concrete, terra cotta block, or tile curtain walls that provided structural bracing but did not carry any weight. Bands of steel-frame multipane windows and roof monitors provided workers with abundant light and ventilation. Steel truss roof systems spanned open interiors that accommodated sizable equipment and allowed for flexibility as manufacturing needs changed.40

Although structural systems for some late-nineteenth-century industrial buildings included cast-iron or wrought-iron columns or steel posts and beams, high cost greatly limited the materials’ use until the early twentieth century. The ability to withstand the weight and vibrations of heavy machinery without failing contributed to the popularity of structural-steel construction, as did the ease of fabricating framing systems from standard factory-generated parts. Typical elements include I-, T-, H-, and box-shaped beams and posts; round columns; reinforcing plates; and angles, which serve as braces, tension members, struts, or lintels. Steel components could be riveted together, creating strong connections, and tended to be smaller and lighter than heavy-timber or iron framing members. This allowed for wider and taller buildings with more square footage for equipment. The popularity of flat roofs and sizable roof monitors also resulted in structural-steel framing prevalence. In order to reduce oxidation and achieve fire resistance, steel members were coated with intumescent paint; sprayed with a thin mixture of cement, sand, and water called gunite; or encased in concrete.41

Albert Kahn was one of only a few American architects who specialized in industrial building design during the early twentieth century. In many of his commissions, traditional load-bearing walls were replaced with curtain walls containing large steel-frame windows and monitor roofs provided illumination and ventilation. His office supplied factory plans to hundreds of American industrialists including automobile manufacturers Packard, Chrysler, Ford, and General Motors, as well as for international clients. At the Packard Motor Car Company Forge Shop (1910) in Detroit, Kahn used a steel structural frame to support a traveling crane mounted to the roof trusses and glass curtain walls to

40 Bradley, The Works, 144-147.
41 Ibid.
allow for maximum light and air circulation. He minimized the exterior walls’ bay articulation by specifying narrow steel columns of about the same size as steel window sashes. Kahn’s firm continued to employ bands of steel windows in conjunction with masonry or concrete screens to conceal steel structural framing in edifices such as the Industrial Works (ca. 1915) in Bay City, Michigan. The firm’s design for the Dodge Half-Ton Truck Plant in Detroit, completed in 1937, was a much more sophisticated building with tall glazed curtain walls reminiscent of Walter Gropius’s Bauhaus School (1926) in Dessau, Germany. Gropius’s streamlined design for the 1911 Fagus Factory in Germany, which features steel-frame multipane curtain walls, was also internationally influential.42

Modernist architectural principles such as simplicity, efficiency, affordability, and intrinsic material expression were inherently applicable to industrial buildings. Industrial architecture continued to reflect these tenets as the twentieth century progressed. Building materials and labor were in short supply during World War II, but when construction resumed after the war’s end, steel and reinforced-concrete industrial edifices with masonry (brick, tile, or concrete) curtain walls predominated. Windows decreased in size and number in the 1960s as central air conditioning became prevalent.

Caldwell County’s late-nineteenth- and early- to mid-twentieth-century textile mills

In order to take advantage of lower land prices and allow for unfettered expansion, Caldwell County industrialists often erected mills and worker housing on a town’s outskirts. By 1987, when historian Vickie Mason conducted a reconnaissance-level inventory of the county’s historic architecture, many late nineteenth- and early twentieth-century factories had been demolished or encapsulated within later additions. The project thus documented only a few industrial buildings. It is therefore impossible to ascertain how many mills survive without additional survey.

However, examination of a small sample—Lenoir Cotton Mill, Hudson Cotton Manufacturing Company (NR 2013), and J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill—reveals similar features. The late-nineteenth- and early-twentieth-century sections of all three plants are characterized by heavy-timber interior structural systems, load-bearing brick exterior walls, low-pitched gable roofs, segmental-arched and rectangular window openings, segmental-arched door openings, and decorative entrance, stair, and restroom towers. Large multipane windows and transoms, some of which remain, illuminated the interiors, where hardwood floors and substantial wood posts and beams prevail. Exposed rafter ends support deep eaves.

42 Gropius, the highly influential founder of the German design school known as the Bauhaus, which operated from 1919 until 1933, taught at Harvard’s Graduate School of Design beginning in 1937. “Art: Industrial Architect,” Time, August 8, 1938; Bradley, The Works, 248, 248-258.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 8 Page 22 Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

Mid-twentieth-century manufacturing and warehouse additions at each plant exhibit a functional aesthetic in their form, massing, expressed structural systems, and open plans with fenestration dictated by interior use. Brick and concrete-block walls are cost-effective, durable, fire-resistant, and require little maintenance. Structural systems comprise steel trusses, posts, and beams, and poured-concrete foundations. These elements supported heavy equipment and minimized vibration. High ceilings and open floor plans accommodated sizable machinery. As the additions were not originally air-conditioned, large multipane steel windows provided light and ventilation.

The individuals who rendered plans for the 1896/1903 J. M. Bernhardt Planing Mill and Box Factory and the 1902-1903 Lenoir Cotton Mill have not been identified. Daniel A. Tompkins and Stuart W. Cramer are possible candidates. Cramer designed the 1904 Hudson Cotton Manufacturing Company and supplied the plant’s machinery.43

The one-story, two-level, brick Hudson Cotton Manufacturing Company stands parallel to Main Street in Hudson. The 320-foot-long by 75-foot-wide edifice is executed in five-to-one common bond with segmental-arched window and door openings and a very low-pitched gable roof. Projecting rafter ends buttress the deep eaves. Documentary photos illustrate the original double-hung, eight-over-eight, wood-sash windows with arched eight-pane transoms. Interior brick removal from one window opening in early 2014 revealed an intact, encapsulated, original window unit, indicating that others may be extant. The distinctive three-stage entrance tower features corbelled hoods above the entrance and paired second-story windows, corbelled oculus surrounds, corbelled cornices and pilaster caps, and a crenellated parapet. Masons also executed in 1904 the matching ell at the mill’s northeast corner. A tall, round smokestack rises on the ell’s east end.

Twenty years later, Hudson Cotton Manufacturing Company erected a rear addition, also in five-to-one common bond with segmental-arched window and door openings and a very low-pitched gable roof, on the 1904 building’s east side, almost doubling the plant’s size. Around 1930, a matching fourteen-bay-wide and one-bay-deep brick addition extended the façade’s north end to the west. Chamfered square wood posts and substantial wood beams support the floor and roof systems in the 1904, 1924, and ca. 1930 sections. Richard C. Biberstein’s firm prepared plans for the company’s additions through 1934.44 The narrow 1950s additions at the 1904 and 1924 buildings’ south ends and on the 1924 building’s northeast corner are sheathed with twelve-to-one common bond brick veneer. The windows in the additions were removed and the openings filled with brick in conjunction with air-conditioning system installation, which likely occurred in the late 1950s or early 1960s.

43 “A Mill at Hudson, N. C.,” Manufacturers’ Record, March 24, 1904, p. 205; “Hudson Cotton Manufacturing Company,” Drawings, Box AD14, Roll 6, BBMRR.
44 “Hudson Cotton Manufacturing Company,” Project files, Box 55, Folder 38, BBMRR.
J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill is similar, in that the 1896 plant and 1903 addition feature a round wood column and heavy-timber post-and-beam interior structural system in conjunction with load-bearing brick exterior walls executed in six-to-one common bond. Segmental-arched window and door openings embellish the building. The mill retains an open plan and painted brick walls, wood roof decking, hardwood floors, and metal-clad kalamein doors. The 1918 additions display the ongoing prevalence of heavy-timber framing with brick firewalls between combustible areas. The 1950s additions employ structural-steel framing systems typically utilized during that period.

Lenoir Cotton Mill – Blue Bell, Inc. is particularly significant due to its age and architectural integrity. Like the other Caldwell County plants, the 1902 mill and 1903 addition manifest early-twentieth-century industrial design components such as round wood column and heavy-timber post-and-beam interior structural systems. The load-bearing brick exterior walls are executed in six-to-one common bond with segmental-arched window and door openings. The two-stage office tower and eight-over-eight, double-hung, wood sash and eight-pane transoms are important survivals. The late 1950s additions also retain original structural systems and windows. The east addition comprises a flat steel truss roof system, brick-veneered concrete-block exterior walls, poured-concrete floors, and eighteen-pane steel sash with six-pane lower hoppers. The one-story, shed-roofed, concrete-block, late 1950s, basement-level additions on the west elevation have heavy-timber roof beams spanned by wide-board decking, poured-concrete floors, and fifteen-pane steel sash with six-pane lower hoppers. The large windows and hoppers are notable, as many manufacturing buildings erected during and after the 1950s were windowless air-conditioned plants. The Lenoir plant’s lack of central air conditioning reflects the temperate climate. Window hoppers and ceiling fans facilitated air circulation.

The 1902-1903 mill features triple-thickness wood floors and kalamein doors, which were commonly employed in fire-resistant industrial buildings. The plant’s configuration also minimized fire risk. The picker, engine, and boiler rooms are at the south end, separated from the manufacturing areas by brick firewalls. The engine and boiler rooms extend from the mill’s southwest corner. This approach was prudent, as evidenced by a June 1912 fire in the picker room that caused an estimated $1,500-worth of damage, but was contained before it spread to other areas of the mill. Other fire safety features included the freestanding smokestack, an 89,200-gallon reservoir north of the engine room, a 10,000-gallon water tank in the tower at the mill’s south end, and a deep well supplied the sprinkler system. Small, one-story, frame hose, valve, and pump houses facilitated the fire suppression system’s operation.45

Distance between combustible buildings and the mill was also recommended by insurance providers. A frame T-shaped platform connected the picker room to the one-story frame cotton warehouse to the south. A similar platform extended from the warehouse’s west elevation toward the railroad. A one-story frame shed stood east of the warehouse. A December 19, 1916, warehouse fire resulted in an estimated $1,200-worth of inventory loss and structural damage. North of the mill, a one-story frame cotton waste house was located adjacent to the railroad and College Avenue.

46 “Lenoir Cotton Mill is Damaged,” Daily Record (Hickory), December 21, 1916, p. 3.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 9 Page 25
Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

Section 9. Bibliography

Biberstein, Bowles, Meacham, and Reed Records. J. Murrey Atkins Library Special Collections, University of North Carolina at Charlotte.

Carolina Watchman.

Charlotte Observer (abbreviated CO after first mention in the footnotes)

Clark, Dinell (mill owner). Email correspondence with Heather Fearnbach, April 2017.

Hayes, Robert (grandson of Barney B. Hayes and son of R. Barton Hayes),

“The History of Blue Bell, Inc.” *Southern Garment Manufacturer*, August 1944.

United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 9 Page 27 Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

Lenoir News (abbreviated LN after first mention in the footnotes)

Lenoir News-Topic (abbreviated LNT after first mention in the footnotes).

Lenoir Topic (abbreviated LT after first mention in the footnotes).

Manufacturers’ Record.

Shuford, Stephen P. (CEO of Shurtape Technologies, LLC). Email correspondence with David Rivers, January 29, 2013, including “First Century Highlights,” a printed timeline of Shuford Mills Inc., Hickory, North Carolina; and a narrative timeline of Shuford Mills, Inc.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 9 Page 28 Lenoir Cotton Mill – Blue Bell, Inc.
Caldwell County, NC

Statesville Record.

United States Census, Population and Manufactures Schedules, 1900-1940.

Walker, Robert D., Jr. “Can’t and Never Will: Remembering the Carolina & North-Western.” In A

Weekly News, Lenoir (abbreviated WN after first mention in the footnotes).

Wermiel, Sara E. “Heavy Timber Framing in Late-Nineteenth-Century Commercial and Industrial

Westergaard, Catherine. “Stuart W. Cramer.” North Carolina Architects and Builders: A Biographical

Section 10. Geographical Data

Latitude/Longitude Coordinates

1. Latitude: 35.908445 Longitude: -81.546560

Verbal Boundary Description

The boundaries of the Lenoir Cotton Mill – Blue Bell, Inc. plant are indicated by the bold line on the enclosed map, which encompasses all of tax parcel 2749559283. Scale approximately 1” = 100’

Boundary Justification

The nominated 3.94-acre tax parcel is the full extent of acreage historically associated with the Lenoir Cotton Mill – Blue Bell, Inc. plant.

Additional Documentation: Current Photographs

Photographs by Heather Fearnbach, 3334 Nottingham Road, Winston-Salem, NC, on August 15, 2016. Digital images located at the North Carolina SHPO.

1. Southeast oblique
2. South elevation, smokestack, and opening room
3. Opening room, northeast oblique
4. West elevation, south section, looking southeast
5. West elevation, north section, looking southeast
6. North elevation
7. 1902-1903 mill, looking north
8. 1902 engine room, basement, looking southwest
9. 1902-1903 mill, basement, looking north
10. Late 1950s addition on the mill’s east side, looking south
Lenoir Cotton Mill – Blue Bell, Inc. Plant
1241 College Avenue, Lenoir, Caldwell County, North Carolina

Carolina and North Western Railroad

College Avenue

Underdown Avenue

Scale 1” = 200 feet