NATIONAL REGISTER OF HISTORIC PLACES

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
Lenoir, Caldwell County, CW0423, Listed 09/18/2017
Nomination by Heather Fearnbach
Photographs by Heather Fearnbach, August and September 2016

East elevation, north section, looking southwest

1896/1903 factory, first floor, southwest section, looking south
United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking “x” in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter “N/A” for “not applicable.” For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

historic name  J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
other names/site number  Hayes Cotton Mill, CW0423

2. Location

street & number  1201 Steele Street
N/A not for publication
city or town  Lenoir
N/A vicinity
state  North Carolina  code  NC
county  Caldwell  code  27
zip code  28645

3. State/Federal Agency Certification

As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set for in 36 CFR Part 60. In my opinion, the property meets does not meet the National Register criteria. I recommend that this property be considered significant nationally statewide locally. (See continuation sheet for additional comments.)

Signature of certifying official/Title  Date
North Carolina Department of Natural and Cultural Resources
State or Federal agency and bureau

In my opinion, the property meets does not meet the National Register criteria. (See Continuation sheet for additional comments.)

Signature of certifying official/Title  Date
State or Federal agency and bureau

4. National Park Service Certification

I hereby certify that the property is:

☐ entered in the National Register.  
☐ determined eligible for the National Register. 
☐ determined not eligible for the National Register. 
☐ removed from the National Register. 
☐ other, (explain:)  

Signature of the Keeper  Date of Action

☐ See continuation sheet  
☐ See continuation sheet  
☐ See continuation sheet  
☐ See continuation sheet  
☐ See continuation sheet
### 5. Classification

<table>
<thead>
<tr>
<th>Ownership of Property</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ private</td>
<td>✓ building(s)</td>
<td>Contributing: 1, Noncontributing: 0</td>
</tr>
<tr>
<td>☐ public-local</td>
<td>☐ district</td>
<td>buildings: 1, sites: 0, structures: 0, objects: 0, Total: 1</td>
</tr>
<tr>
<td>☐ public-State</td>
<td>☐ site</td>
<td></td>
</tr>
<tr>
<td>☐ public-Federal</td>
<td>☐ structure</td>
<td></td>
</tr>
<tr>
<td>☐ public-Federal</td>
<td>☐ object</td>
<td></td>
</tr>
</tbody>
</table>

**Name of related multiple property listing**

(Enter “N/A” if property is not part of a multiple property listing.)

**Number of Contributing resources previously listed in the National Register**

N/A

### 6. Function or Use

<table>
<thead>
<tr>
<th>Historic Functions</th>
<th>Current Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUSTRY: Manufacturing Facility</td>
<td>COMMERCE/TRADE: Auto Repair Shop</td>
</tr>
<tr>
<td>INDUSTRY: Industrial Storage</td>
<td>COMMERCE/TRADE: Warehouse</td>
</tr>
</tbody>
</table>

### 7. Description

**Architectural Classification**

(Enter categories from instructions)

Other: Heavy-timber mill construction

**Materials**

(Enter categories from instructions)

- foundation BRICK
- walls BRICK CONCRETE METAL
- roof SYNTHETICS: Rubber
- other

**Narrative Description**

(Describe the historic and current condition of the property on one or more continuation sheets.)
8. Statement of Significance

Applicable National Register Criteria
(Mark “x” in one or more boxes for the criteria qualifying the property for National Register listing.)
- ☑ A Property is associated with events that have made a significant contribution to the broad patterns of our history.
- ☐ B Property is associated with the lives of persons significant in our past.
- ☑ C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.
- ☐ D Property has yielded, or is likely to yield, information important in prehistory or history.

Areas of Significance
(Enter categories from instructions)
- Architecture
- Industry

Period of Significance
1896-1965

Criteria Considerations
(Mark “x” in all the boxes that apply.)
Property is:
- ☑ A owned by a religious institution or used for religious purposes.
- ☐ B removed from its original location.
- ☐ C a birthplace or grave.
- ☐ D a cemetery.
- ☐ E a reconstructed building, object, or structure.
- ☐ F a commemorative property
- ☐ G less than 50 years of age or achieved significance within the past 50 years.

Significant Dates
1896
1903
1918
early 1950s

(COMPLETE if Criterion B is marked)
N/A

Cultural Affiliation
N/A

Architect/Builder
Unknown

Narrative Statement of Significance
(Explain the significance of the property on one or more continuation sheets.)

9. Major Bibliographical References

Bibliography
(Cite the books, articles, and other sources used in preparing this form on one or more continuation sheets.)

Previous documentation on file (NPS):
- ☑ preliminary determination of individual listing (36 CFR 67) has been requested
- ☐ previously listed in the National Register
- ☐ previously determined eligible by the National Register
- ☐ designated a National Historic Landmark
- ☐ recorded by Historic American Buildings Survey
  #
- ☐ recorded by Historic American Engineering Record

Primary location of additional data:
- ☑ State Historic Preservation Office
- ☐ Other State Agency
- ☐ Federal Agency
- ☐ Local Government
- ☐ University
- ☑ Other

Name of repository: Wilson Library, UNC-Chapel Hill
Caldwell Heritage Museum, Lenoir
Caldwell County Public Library, Lenoir
J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
Caldwell County, NC

10. Geographical Data

Acreage of Property  3.22 acres

UTM References
(Place additional UTM references on a continuation sheet.)
See Latitude/Longitude coordinates continuation sheet.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See continuation sheet

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)

11. Form Prepared By

name/title   Heather Fearnbach
organization  Fearnbach History Services, Inc.
date          4/7/2017
street & number  3334 Nottingham Road
telephone      336-765-2661
city or town    Winston-Salem
state          NC
zip code       27104

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps
A USGS map (7.5 or 15 minute series) indicating the property’s location
A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
Representative black and white photographs of the property.

Additional items
(Check with the SHPO or FPO for any additional items.)

Property Owner
(Complete this item at the request of SHPO or FPO.)

name   James C. Sullivan Revocable Trust
street & number  159 Huntington Drive
telephone      828-310-7749
city or town    Hudson
state          NC
zip code       28638

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listing. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seq.)

Estimated Burden Statement: Public reporting burden for this form is estimated to average 18.1 hours per response including time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Chief, Administrative Services Division, National Park Service, P. O. Box 37127, Washington, DC 20013-7127; and the Office of Management and Budget, Paperwork Reductions Projects (1024-0018), Washington, DC 20303.
Section 7. Narrative Description

Setting

Located south of Lenoir’s commercial center, the plant that historically served as J. M. Bernhardt Planing Mill and Box Factory, Steele Cotton Mill, and Hayes Cotton Mill occupies a 3.22-acre parcel bounded by Steele Street to the northeast, College Avenue to the southeast, a Duke Power electrical substation to the southwest, and Harper Avenue and the Carolina and North Western Railroad tracks and right-of-way to the northwest. A gravel drive leads from College Avenue to the southwest basement entrance. Asphalt–paved access roads and parking areas are north, west, and east of the additions at the mill’s north end. The factory is rotated approximately thirty degrees from true cardinal direction alignment. However, for the purposes of this document the following description is written as if it has true north-south orientation.

The plant is at a lower elevation than Steele Street and College Avenue. The site’s topography slopes down to the west, allowing for a partially above-grade basement. Grass embankments ameliorate the change in elevation. The almost-vertical drop on College Avenue’s west side necessitated the construction of a steel-frame elevated walkway to span the distance between the embankment and the service door into the second story of the factory’s east wall.

The bank that abuts the south elevation tapers gradually to a plateau containing a concrete-paved parking area at the southeast basement entrance and a gravel drive that terminates at the southwest basement entrance. Further west, a creek with steep banks runs through the property on the mill’s northwest side and is channeled through a culvert beneath the building’s west section.

Narrow swaths of grass lawn surround the mill. The areas bordering the plant have been overtaken by vines and deciduous and evergreen trees and shrubs. Most of the west elevation and some of the east elevation is obscured by this overgrowth.

The area surrounding the complex is characterized by twentieth-century industrial, commercial, and residential development. Some one-story, frame, gable- and hip-roofed, early-twentieth-century mill worker houses remain east of the factory. The 1902-1903 Lenoir Cotton Mill – Blue Bell, Inc. plant is located to the southeast and a circa 1950 freight depot stands to the south. The 1922 Lenoir High School and its athletic field (now Mack Cook Stadium, a city-owned soccer field) replaced the lumber yard northeast of the factory, between Steele Street and the downtown business district.
Site Evolution

The long, linear manufacturing plant was erected in phases beginning with the southeast section. The one-story-on-basement, frame 1896 factory was thirty-six feet wide and approximately three times as long. A one-story boiler room and a small one-story shavings collection room abutted the west elevation’s north end. In 1903, the factory was expanded with a second story and a west addition that more than doubled its width to about one hundred feet. Load-bearing brick east and west walls were constructed and the west 1896 wall removed to create an open interior plan. The frame north elevation was sheathed with iron panels. The south elevation remained frame. The 1896 boiler room, which had been demolished to allow for the expansion, was replaced with a one-story frame boiler room that projected from the factory’s northwest corner. An eighty-foot-tall, square, brick smokestack north of the boiler room was also erected in 1903.

Improvements in conjunction with the building’s 1918 modification to serve as a cotton yarn spinning mill included the construction of load-bearing brick north and south walls, a one-story picker room at the north end, an entrance tower on the south elevation, a restroom tower on the west elevation, and a one-story-on-basement cotton warehouse north of the mill. The frame 1903 boiler room was replaced with a two-room brick structure comprising a north boiler room and south engine room. Sanborn maps indicate that it only had one level, but the brick walls rise to two-story height. The freestanding 1903 smokestack remained. A second square brick smokestack was erected in 1918 at the engine room’s northeast corner abutting the picker room’s west wall. The 1903 smokestack and the 1918 boiler room’s north room’s north and west walls were demolished sometime after Hayes Cotton Mill ceased production in 1965 and before James C. Sullivan acquired the property in 1982.

A series of additions constructed between 1951 and 1954 extend from the 1896/1903/1918 plant’s north and west elevations. A two-story, flat-roofed, brick-and-frame addition fills the space between the 1918 picker room and cotton warehouse to the north. The tall, one-story, brick addition west of the picker room wraps around the 1918 smokestack. On the boiler room’s south side, a one-story, flat-roofed, brick addition projects from the factory’s west elevation. A one-story, shed-roofed, brick and concrete block addition extends from the west wall near its south end. This addition replaced a small transformer room constructed between 1921 and 1927. Loading docks and an elevated walkway have been built to facilitate the plant’s ongoing use.

The early 1950s addition that extended from the cotton warehouse’s west elevation sustained damage from a roof leak and flooding that caused partial wall and roof collapse around 1990. The remaining portion of that structure was demolished in 2016. The south section of the 1896/1903/1918 building’s
The two-story-on-basement 1896/1903/1918 building is characterized by six-to-one common-bond brick walls erected in 1903 and 1918. On the 1918 north elevation, the wall’s upper section extends beyond the east and west elevations and steps up to a stepped parapet. Two- and three-header-course lintels and slightly projecting brick window sills frame tall segmental-arched window and door openings. Most multipane, double-hung, wood sash and eight-pane wood transoms were removed and the window openings enclosed with running-bond brick. The infill is flush with the wall plane. Near the top of many openings, two or four clear glass blocks allow light to permeate the interior. A few eight-pane wood transoms remain on the east, west, and south elevations.

The low-pitched-gable roof system initially included projecting rafter ends that created deep eaves. However, contractors removed the rafter ends and overhanging eaves in conjunction with a late-twentieth-century roof installation. The roof retains its original pitch, but metal coping now caps the walls and aluminum gutters and downspouts control water run-off.

The building’s south section is now only one-story-on-basement due to the upper floor’s circa 1995 removal. A flat roof was installed using heavy-timber beams salvaged from the original structure. A frame wall sheathed with corrugated metal siding encloses the south end of the second story’s extant north section.

Historic photographs illustrate that the south elevation was twelve bays wide. The wall’s west section comprises three bays of window openings. The lower two stories of the originally three-level 1918 entrance tower project from the fourth bay. The tower walls are blind. The double-leaf, wood, first-story door with tall, six-horizontal-panel sections provides the only egress. The windows and most of the walls in the two bays east of the tower have been removed to allow for the installation of a basement service door. A sliding plywood door secures that opening. The second story may have also included a service door, but the opening has been infilled with brick around two small, rectangular, single-pane, aluminum windows.

The three south elevation bays east of the tower originally contained windows. The west basement window has been removed and the opening enlarged to create a service door supported with a steel lintel. The building’s southeast corner sustained extensive damage when a truck backed into the south

2 Photographs from 1938, circa 1959, and 1968 publications in the collection of the Caldwell Heritage Museum in Lenoir.
wall around 1995. The reconstructed walls are concrete block veneered in running-bond red brick. A roll-up metal service door and a single-leaf steel door allow first-floor access. Wood steps with wood railings rise to a wood landing adjacent to the single-leaf entrance.

Most of the west elevation is obscured by vines and other vegetation. A one-story, shed-roofed, mid-twentieth-century addition extends from the wall near its south end. Running-bond red brick sheathes the addition’s south wall and a sliding door pierces its concrete-block west wall.

The three-story restroom tower near the west elevation’s center is slightly taller than the mill roof. High eight-pane sash illuminate the restrooms on each level. North of the tower, an arched double-leaf horizontal-panel door facilitates basement access. To the north, at the main block’s north end, a one-story, brick, early 1950s office addition with a collapsed roof extends along the boiler room’s south wall.

The frame 1903 boiler room was replaced in 1918 with a brick structure containing a north boiler room and south engine room. Sanborn maps indicate that it only had one level, but the brick walls rise to two-story height. The north room’s north and west walls were demolished between 1965 and 1982. The remaining soft brick walls are in poor condition and the roof and floor system have collapsed. The tall arched window openings on the south elevation have been infilled with brick and concrete block. The west wall is blind. Near the north elevation’s west end, the wall beneath an original arched window opening was removed to allow for a single-leaf door opening.

A one-story-on-basement twenty-five-foot-long picker room abuts the plant’s north end. A two-level, flat-roofed, early 1950s addition extends north from the picker room to the opening room at the cotton warehouse’s south end. The addition’s north wall is brick-veneered concrete-block. On its four-bay east and west elevations, plywood panels sheath the structural steel frame around tall, paired, eighteen-pane, steel sash that illuminate the large, open, second-story room.

A one-story, shed-roofed, early 1950s warehouse projects from the two-level addition’s west elevation. The warehouse has a blind brick west wall and a metal-siding-sheathed north wall with a corrugated metal sliding door. The lower section of the tall, square, 1918 smokestack that extends from the picker room’s west elevation rises at the addition’s southeast corner. A segmental-arched, three-header-course lintel tops the smokestack’s clean-out door, which is accessed from the picker room’s basement.

A tall, one-story, early 1950s warehouse addition extends from the west half of the two-level addition’s north elevation. The addition has a concrete-block west wall and a brick-veneered concrete-block north wall. Small, rectangular, steel-frame clerestory windows pierce its west elevation. A double-leaf metal sliding door secures the entrance near the wall’s center. The service door openings
on the north elevation have been enclosed with brick and a single-leaf steel door with a glazed upper section.

The one-story-on-basement early 1950s addition that projected from tall one-story addition’s north elevation and the 1918 cotton warehouse’s west elevation suffered partial wall and roof collapse around 1990. The remaining portion of that structure was demolished in 2016. The cotton warehouse’s west wall had been removed upon the 1950s addition’s construction. The 1950s concrete-block partition wall at the basement level is intact. Portions of the upper level’s frame partition wall have collapsed along with section of the roof and floor system.

The 1918 cotton warehouse’s blind north wall is executed in six-to-one common bond. At its northeast corner, the wall’s upper section extends beyond the east elevation, stepping up to a flat parapet. The same detail is repeated on the south wall.

The cotton warehouse comprises two storage sections and an opening room at its south end. Corrugated-metal siding sheathes the north warehouse section’s east elevation above brick basement walls. A single-leaf door and a two-part wood-sash window were added in conjunction with the siding installation. Four formed-concrete steps lead to the concrete-block loading dock outside the door. Directly below the window, at the east elevation’s north end, a single-leaf door with a nine-pane upper section and two flanking glass-block windows pierce the basement wall. The south warehouse section’s east elevation retains vertical board sheathing and a matching sliding door. The adjacent loading dock has brick walls and a concrete floor.

The two-bay-wide brick opening room at the cotton warehouse’s south end was also constructed in 1918. The tall rectangular window opening has been infilled with brick. An arched three-header-course lintel surmounts a replacement double-leaf vertical-board door.

The loading dock extends south along the east elevation of the two-level 1950s addition. The addition’s plywood-panel-sheathed second story is cantilevered above the loading dock and supported by steel I-beams. Four bays of tall, paired, eighteen-pane, steel-frame sash with operable six-pane lower hoppers illuminate the upper level. Plywood panels enclose the wide window opening in the brick-veneered ground-floor wall. A double-leaf steel door allows egress.

At the loading dock’s south terminus, a double-leaf steel door has been added on picker room’s north wall near its east end. The north elevation is blind at the basement level, but three windows, now infilled with brick, lit the upper story. Rectangular, horizontal, one-over-one aluminum sash have been added in each segmental-arched window opening’s upper section.
A steel-frame elevated walkway with a board floor extends from the embankment east of the plant to the service door in the north bay of the 1896/1903/1918 building’s second story. A sliding door and a steel-bar security door fill the opening. As elsewhere, most east elevation windows have been removed and the openings enclosed with brick. A few eight-pane wood transoms remain. The wall’s south section sustained structural damage when a truck backed into the south wall’s east end around 1995. The building’s southeast corner was reconstructed to one-story height with concrete block veneered in running-bond red brick.

Interior

The mill’s open plan and interior finishes are substantially intact. The building is characterized by painted brick walls; substantial wood, cast-iron, and steel columns, posts, and beams; wood roof decking; hardwood floors; and metal-clad kalamein doors. Long rows of columns and posts divide the manufacturing areas into wide bays that accommodated sizable machinery.

Round wood columns and heavy-timber posts and beams support the 1896/1903/1918 factory’s first- and second-story floor and roof systems. Steel connecting plates secure the columns to the beams. The upper levels contain four approximately twenty-five-foot-wide bays flanked by rows of round wood columns spaced at eight-foot intervals. Some heavy-timber beams have been reinforced with steel. In the basement’s north section, cast-iron columns, likely installed in conjunction with the 1918 improvements, have replaced some of the heavy-timber posts. Square heavy-timber posts on tall brick plinths, square brick posts, and heavy-timber beams support the 1918 picker room. Steel I-beams and columns were used to construct post-1950 additions.

The 1896/1903/1918, and early 1950 sections retain wood floors on the upper levels. The original floor system consists of three-inch-thick plank decking, a three-inch-thick diagonal-board middle layer, and a narrow tongue-and-groove hardwood top layer. Most of the basement floor is poured concrete, but some hardwood floor boards remain, albeit in poor condition, in the 1896/1903/1918 factory’s northeast section. The 1918 engine room, the one-story additions that extend from the west elevation south of the engine room, and the 1918 cotton warehouse have experienced roof and floor system collapse. The one-story early 1950s warehouse addition has a dirt floor.

The restrooms in the 1918 addition that projects from the center of the 1896/1903 plant’s west elevation are simply finished with plaster walls, concrete floors, painted-wood stall partition walls, and white porcelain fixtures. Linear and pedant fluorescent lights and sprinkler system pipes hang from the ceilings throughout the plant. Surface-mounted metal conduit houses electrical wiring.

On the 1896/1903 factory’s north elevation, a long, straight run of wood stairs with a vertical-board railing connected the first and second floors. The staircase collapsed in 2016. However, a straight run
of wood steps secured by a wood-frame and wire-mesh enclosure facilitates basement access. Most of the original basement structure comprises robust square heavy-timber posts and beams, although some supplementary cast-iron and steel posts have been added. Mid-twentieth-century partition walls divide some outer bays and enclose restrooms, offices, workshops, and mechanical and storage rooms. The basement and later additions have open plans.

**Integrity Statement**

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill possesses good integrity of location, setting, feeling, association, design, materials, and workmanship. The 1896/1903/1918 building retains character-defining features of late-nineteenth and early-twentieth-century industrial architecture. The load-bearing six-to-one common bond brick exterior walls with segmental-arched window and door openings were erected in 1903 and 1918. On the 1918 north elevation, the wall’s upper section extends beyond the east and west elevations and steps up to a stepped parapet. This detail is replicated on the 1918 cotton warehouse’s north and south elevations. The factory’s round wood and cast-iron column, heavy-timber post-and-beam interior structural system, triple-thickness wood floors, and wood roof decking are intact. These elements, in conjunction with metal-clad kalamein doors and firewalls between combustible areas such are representative of fire-resistant construction practices.

Although most original window and door openings have been infilled with brick since the mid-twentieth century, some eight-pane wood transoms survive. The transoms will serve as models for the replacement sash. Brick infill will be removed and historically appropriate windows installed in conjunction with the rehabilitation. The early 1950s additions did not involve extensive modification to the 1896/1903/1918 building; only the creation of door openings to facilitate interior connectivity.

**Archaeological Potential Statement**

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill is closely related to the surrounding environment. Archaeological remains, such as trash deposits, privies, and structural remains may be present, and could provide information valuable to the understanding and interpretation of the structure. Information concerning environmental transformation, work culture and worker health, as well as structural details, is often evident in the archaeological record. Therefore, archaeological remains may well be an important component of the mill’s significance. No investigation has been undertaken to discover these remains, but it is likely that they exist, and this should be considered in the property’s development.
Section 8. Statement of Significance

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill – Hayes Cotton Mill meets Criterion A for industry and Criterion C for its local architectural significance. The concerns’ contributions to the local economy as manufacturers, employers, consumers of local goods and services, and taxpayers, were enormous. John Mathias Bernhardt, who became one of Lenoir’s leading industrialists, established the planing mill and box factory in 1896. The plant was the town’s largest manufacturing enterprise by 1900, supplying hardwood and white pine dimensional lumber and boxes of all sizes to clients throughout the region. After Bernhardt sold the factory in February 1917, it briefly served as a furniture and lumber warehouse. Following expansions and equipment installation, one hundred workers commenced producing weaving and knitting yarns at Steele Cotton Mill in January 1919. New York agents marketed the company’s yarns. The enterprise remained successful through 1946, when Hayes Cotton Mill purchased the plant. The concern undertook $500,000-worth of improvements between 1946 and 1954. Machinery quantities and workforce size remained constant through 1965. Soon after, Hayes Cotton Mill moved its operation to Hudson.

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill is architecturally significant as the plant manifests typical early- to mid-twentieth-century industrial design. The 1896/1903/1918 factory features load-bearing brick exterior walls executed in six-to-one common bond with segmental-arched window and door openings. The round wood and cast-iron column and heavy-timber post-and-beam interior structural system and triple-thickness wood floors are representative of fire-resistant early-twentieth-century industrial architecture. The 1918 addition displays the ongoing prevalence of heavy-timber framing with brick firewalls between combustible areas. The early 1950s additions employ structural-steel framing systems. The period of significance begins in 1896, with the original factory’s completion, and continues to 1965. The plant’s function and physical expansion after 1965 are not of exceptional significance.

Historical Background and Industrial Context

The 1884 completion of the Chester and Lenoir Narrow Gauge Railroad, a 110-mile freight and passenger line originating in South Carolina, stimulated commercial and industrial growth along its route. Entrepreneurs John Mathias Bernhardt and George Washington Finley Harper were among those who capitalized on the opportunity for more expeditious trade. Bernhardt, born in 1860 on his family’s farm east of Lenoir, graduated from the municipality’s Finley High School in 1877. While a teenager, he worked in the store operated by James C. Harper and his son G. W. F. Harper, which had served Lenoir residents since around 1845. Bernhardt attended Davidson College between January 1883 and May 1884, but left prior to completing his course of study in order to pursue business opportunities in his hometown. On January 1, 1884, Bernhardt and his older brother George Lynn Bernhardt had become G. W. F. Harper’s partners in the general mercantile. G. L. Bernhardt, as

J. M. Bernhardt gained knowledge of the lumber industry from his father and while working for the Department of the Interior as a land surveyor in Oregon’s Hood River Valley. Upon his return to Caldwell County, his speculative endeavors included purchasing sizable forested tracts to timber. He also invested in a Blowing Rock farm called Green Hill. In 1889, Bernhardt encouraged other community leaders to collectively establish Lenoir Furniture Company, the municipality’s first furniture factory. He traveled to “northern cities” to procure the plant’s equipment in April of that year. Bernhardt served as the company’s president and superintendent until November 1890, when G. F. Harper succeeded him.4

In December 1893, J. M. Bernhardt, G. L. Bernhardt, G. F. Harper, and G. W. F. Harper, who had operated as private banker for some time, established Lenoir’s first local bank. G. W. F. Harper was the institution’s president from its founding until his 1921 death. His son G. F. Harper, initially a cashier, later became vice-president, a position he retained for fifty-two years. The Bernhardts served on the Board of Directors. The concern incorporated as the Bank of Lenoir in 1904 and opened a first-floor office in the three-story, mid-nineteenth-century, brick building that housed the Harper and Bernhardt mercantile on the southwest corner of South and West Main Streets (the building is no longer extant). The bank, which boasted Lenoir’s first telephone exchange in 1895, was strategically located at a prominent corner in the most heavily developed commercial block in town.5

The Bernhardts and Harpers were also heavily involved with local railroads. G. W. F. Harper was a principle stockholder and became in 1893 the president of the Chester and Lenoir Narrow Gauge Railroad. He guided the concern through receivership to become the Carolina and North Western Railway in 1897. J. M. Bernhardt, while general production manager at Caldwell Land and Lumber

---


Bernhardt established a related business in 1896, a planing mill and box factory in Lenoir. The plant utilized timber supplied by concerns including Caldwell Land and Lumber Company to mill hardwood and white pine dimensional lumber and boxes of all sizes. Bernhardt selected an optimal site for the factory, southwest of downtown near the intersection of what is now West Avenue and Harper Avenue (originally West Main Street and Spring Street) and the primary Carolina and North Western Railroad line. The rectangular, one-story-on-basement, frame building had a one-story boiler room and a small one-story shavings collection room at its northwest corner. A conveyor belt connected the shavings room to a round, brick, twelve-foot-tall sawdust incinerator northwest of the creek. Two long, rectangular, open-sided lumber sheds south and west of the plant flanked a railroad spur that terminated at a sizable lumber yard to the east.7

Bernhardt’s planing mill and box factory was the town’s largest manufacturer by 1900. In 1902, Lenoir boasted at least ten industrial concerns, including flour and lumber mills, furniture producers, and building supply companies, most of which were located along railroad lines. Downtown businesses prospered as the population increased in conjunction with industrial expansion. G. L. Bernhardt erected a three-story brick store to house Lenoir Hardware and Furniture Company on Main Street in 1903, moving the business from the building that had served as the James Harper and Sons general store, Harper and Bernhardt, and Bernhardt Hardware and Furniture Company.8


In March 1899, J. M. Bernhardt reported that although the planing mill generated 35,000 feet of lumber each week, the concern was behind schedule in filling orders. He added another steam boiler to power the equipment at that time, and an additional boiler and a band saw in March 1900. By 1903, the operation required additional space. Contractors almost doubled the building’s width, added a second floor, and sheathed the north wall with iron cladding and the east and west walls with brick veneer. The expansion required the removal and replacement of the 1896 boiler room. Installation of new boilers was completed in May and masons erected an eighty-foot-tall brick smokestack in August. Bernhardt estimated that the 1903 improvements cost $9,000.9

Lenoir industrial concerns continued to proliferate. In 1905, F. P., J. C., and William Moore commenced constructing a factory to house Moore Furniture Company, incorporated in 1906 by stockholders including J. P. Coffey and H. T. Newland. Approximately one hundred employees fabricated case goods and tables that year. Other newly established manufacturing endeavors included Lenoir Brick and Tile, Prince Harness, Lenoir Clothing, J. H. Coffey Wagon, Lenoir Bottling, and Blue Ridge Bobbin and Handle companies. In 1908, J. M. Bernhardt, who had been supplying Moore Furniture Company with lumber, acquired majority interest in that firm and incorporated Bernhardt Manufacturing Company, which specialized in bedroom and dining room furniture.10

By 1913, Caldwell County entrepreneurs had opened seven furniture factories. T. J. Lutz operated the Hudson Chair Company, W. J. Lenoir was Caldwell Furniture Company’s proprietor, G. F. Harper owned Harper Furniture Company, L. H. Tuttle Kent created Coffey Manufacturing Company, R. B. Dula founded Lenoir Chair Manufacturing Company, and O. P. Lutz managed the Moore-Stone Chair Company. Thomas Hamilton Broyhill led Lenoir Furniture Company, created in 1912 when he assumed control of Kent Furniture Company. J. M. Bernhardt, T. H. Broyhill, and other Lenoir entrepreneurs traveled throughout the country to represent their businesses at trade shows. In 1914, Bernhardt expanded his planing operation to Boydton, Virginia, where he commissioned the construction of a mill. John S. Barlow completed the equipment installation in March.11

The Lenoir planing mill and box factory stood empty for a several years before J. M. Bernhardt sold the property to T. H. Broyhill in February 1917. Bernhardt then shifted his attention to reorganizing

---

Bernhardt Manufacturing Company to produce only chairs. Bernhardt Chair Company commenced production in October 1917 with a daily output of three hundred chairs. He served as the concern’s president, B. L. Stone its vice-president and plant supervisor, and M. L. Cornwell its secretary-treasurer. The factory operated in conjunction with Ethel Chair Company, established in 1915 with B. L. Stone as president and M. L. Cornwell secretary-treasurer. Bernhardt purchased his partners’ interests in Bernhardt Chair Company in 1921 and administered the business until his 1931 retirement. As the concern evolved into Bernhardt Industries, one of North Carolina’s leading furniture manufacturers, it erected plants, showrooms, and corporate offices southwest of downtown.¹²

T. H. Broyhill initially used the former box factory as a furniture and lumber warehouse. However, he soon incorporated Steele Cotton Mill Company in collaboration with investors including E. F. Allen, Virgil D. Guire, and that concern occupied the plant. R. L. Steele, who had served as vice-president and a director of First National Bank of Lenoir and Lenoir Hardware and Furniture Company, functioned as the business’s president and T. H. Broyhill its secretary-treasurer.¹³ In May 1918, they engaged contractors to construct a one-story-on-basement, twenty-five-foot-long picker room on the factory’s north end. By August, workers had refurbished the existing building, installed new equipment, and begun erecting a one-story-on-basement cotton warehouse north of the mill.¹⁴ The warehouse has a central brick firewall and brick north and south elevations, but is otherwise frame. A long, L-shaped loading dock extended from the picker room’s northeast corner along most of the warehouse’s east elevation.¹⁵

Heavy rains in late October 1918 caused the creek that ran beneath the mill to overflow, resulting in partial collapse of the frame boiler room, which was soon replaced with a two-room brick boiler and engine room. The plant commenced operating on January 23, 1919, and increased production capacity in July by installing additional equipment. The mill basement housed the twisting department, the first floor the spinning and carding equipment, and the second floor served as storage. In August, the company began erecting more houses for its employees near the mill. Residents frequented the one-

---

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
Caldwell County, NC

story frame grocery and feed store that stood at the southeast corner of College and Underdown Avenues’ intersection.  

Subsequent plant improvements included electric power and light installation. In July 1922, engineers from Greenville, South Carolina-based Lockwood, Greene, and Company’s Charlotte office planned Steele Cotton Mill’s electrification, as well as that of Hudson, Lenoir, Moore, and Whitnel mills. Gastonia electricians Michael and Blevins installed the necessary wiring and equipment after Southern Power Company extended lines from Hickory.  

Steele Cotton Mill was the one of seven spinning concerns in Lenoir and the vicinity in 1925. R. L. Steele remained the company’s president and T. H. Broyhill its secretary-treasurer and cotton buyer. Superintendent J. P. Chester managed 100 employees who produced 24-36-guage weaving and knitting yarns for the plush and lace trade utilizing 6,020 ring spindles. F. A. Thompson was the purchasing agent and Stevens Yarn Company of New York the selling agent.  

At Lenoir Cotton Mill, 175 workers operated 6,720 ring spindles under F. C. White’s direction. Caldwell County Cotton Mill Company, incorporated in 1923, had installed 6,048 ring spindles, 3,024 twisting spindles, and 20 cards in its Hudson plant. Nelson Cotton Mill, organized in 1922, employed 140 men and women in its 6,000-spindle factory. Hudson Cotton Manufacturing Company’s 180 workers generated skeins yarns using 5,376 spindles, Whitnel Cotton Mill’s 165 laborers generated peeler yarns on 6,276 spindles, and Moore Cotton Mill’s 140 operatives ran 5,376 spindles.  

Steele Cotton Mill was the only area plant that experienced significant growth between 1925 and 1930. Two hundred employees operated 10,056 ring spindles, 5,040 twisting spindles, and 40 cards through the Great Depression. Although many mills reduced output or permanently discontinued operations, Steele Cotton Mill Company’s administration, employee numbers, and equipment quantities remained the same in 1935.  

North Carolina textile mills diversified production during the early 1930s as the industry faced challenges nationwide. More efficient equipment and mechanization that transformed manufacturing

---

19 Ibid.
operations led to mill employee layoffs. Job loss, decreased pay, and poor working conditions made unions more appealing. These factors set the stage for mill employees across the South to participate in the General Textile Strike of 1934, which closed down textile mills throughout the region. The extent of union organization in Lenoir mills is unknown. Many mill owners fired known union members and sympathizers. Union efforts were not in vain, however, as the Roosevelt administration’s social and economic reform programs eventually resulted in the institution of a forty-hour work week and increased worker pay.21

Steele Cotton Mill Company increased production as the economy improved, adding 2,157 spindles between 1935 and 1939. Only three Lenoir textile manufacturers—O. P. Lutz Hosiery Mill, Moore Cotton Mill, and Steele Cotton Mill—reported production in 1939. However, the Lenoir Board of Trade stated that the city’s twelve furniture plants employed thousands of workers, and related manufacturers—makers of mirrors, veneers, and other products used by the furniture industry—provided more jobs. Lenoir had three hospitals, three residential suburbs, and a Donald Ross-designed golf course, and was said to be the state’s fastest growing city since World War I. The population numbered twelve thousand, triple that of 1920, and downtown included five hardware and furniture stores and four drug stores.22

At the beginning of the 1940s, thirty-three Lenoir industrial plants provided work for five thousand people and local manufacturers sold products in Canada and Mexico as well as in every state. An article in the September 1941 centennial edition of the News-Topic claimed that Lenoir was the “second largest furniture manufacturing city in [the] United States.” Caldwell County then contained twelve cotton mills and five hosiery mills, three of which, including Steele Cotton Mill, were in Lenoir.23

World War II brought new challenges and opportunities. Approximately 4,327 Caldwell County residents served in the military during the war, and those left behind were occupied with the war effort in a variety of ways, from participating in bond drives to filling vacant positions at mills and factories that accelerated their production to meet the needs of servicemen and women. Industrial jobs rose by seventy-five percent in the South over the course of World War II, with traditionally underemployed groups such as women, African Americans, and the elderly receiving invaluable education, training,


23 Miller's Lenoir City Directory, 1943-1944, 267; LNT, September 12, 1941, p. 1.
and experience. Output soared after May 1943, when President Franklin D. Roosevelt established the Office of War Mobilization to coordinate a diverse array of support endeavors including manufacturing, scientific research, and agricultural production.24

President R. L. Steele, secretary T. H. Broyhill, and treasurer Sidney S. Paine continued to head Steele Cotton Mill in 1941. F. A. Thompson was the company’s secretary and cotton buyer. Superintendent P. A. Carpenter managed 150 employees who produced 30-guage, 2-ply weaving yarns utilizing 12,216 ring spindles, 6,048 twisting spindles, and 40 cards. In 1944, the plant’s 225 workers operated the same amount of equipment. That year, Steele Cotton Mill, Moore Cotton Mill, and Lenoir Pad and Paper Company, a cotton batting vendor, were Lenoir’s only textile manufacturing concerns. Moore Cotton Mill’s 85 employees generated knitting and weaving yarns on 6,000 ring spindles, 3,200 twisting spindles, and 20 cards.25

Steele Cotton Mill’s administrative entity changed following the war. In April 1946, Steele Cotton Mill Company directors Barney Barton Hayes, his son Richard Barton Hayes, known as Barton, and Barton’s wife Estoy Bragg Hayes orchestrated the business’s dissolution and the incorporation of Hayes Cotton Mill. Barton Hayes served as the company’s president, Estoy Hayes its vice-president, and New York investor Justin J. Bayer its secretary. Bayer was also one of the original stockholders.26

By the time of Hayes Cotton Mill’s formation, B. B. Hayes had been working in the textile industry for almost sixty years. He began his career in the late 1880s at Richland Cotton Mill in Columbia, South Carolina, followed by a short stint at Clifton Cotton Mill in Clifton, South Carolina. Hayes moved to Gaston County, North Carolina, in 1891 and worked in Mt. Holly textile mills until January 1902. He then accepted a position at Lenoir Cotton Mill, where he oversaw the carding and spinning department until 1904. Hayes next relocated to Hudson as the superintendent of Hudson Cotton Manufacturing Company, established that year. He subsequently assisted with the creation and management of other operations including Whitnel, Moore, Caldwell, and Nelson cotton mills. After his death on March 15, 1947, his son Barton Hayes, a 1929 Davidson College graduate who had worked in his family’s businesses since the early 1930s, continued to manage Hayes Cotton Mill.27

25 Davison’s Textile Blue Book, 1941, 246; Davison’s Textile Blue Book, 1944, 256;
27 “B. B. Hayes is Official of Cotton Mill,” LNT, September 12, 1941, p. 7; Greene and Wagner, Hudson Heritage, 406-409; Frances Hayes Swanson (the daughter of Barton and Estoy Hayes), email communication with Heather Fearnbach, December 2016.
Hayes Cotton Mill, Moore Cotton Mill, and Lenoir Pad and Paper Company remained in operation in 1950, by which time greater Lenoir’s population of had grown to 15,106. G. W. Haas superintended Hayes Cotton Mill’s 225 employees as they produced carded and combed cotton yarn, some of which was dyed on site. Moore Cotton Mill’s 85 employees spun knitting and weaving yarns.28

Although Sanborn maps indicate that Hayes Cotton Mill’s footprint was unchanged through August 1950, a series of one-and two-story additions were subsequently constructed. Most likely date to 1951-1954, as the company spent $500,000 on plant improvements between 1946 and 1954. That year, Barton Hayes consolidated the property’s ownership locally by purchasing all outside investor stock.29


Although much of the Lenoir plant remained vacant, businesses including Broyhill Furniture leased warehouse space. Bost Lumber Company, founded in the early twentieth century by John F. Bost Sr., used the basement for building supply storage. The company’s interior design and coating department—Niederhammer’s, Inc. Decorating Center—occupied the cotton warehouse’s upper floor beginning around 1984. Bost Lumber Company vacated the basement circa 1990. James C. Sullivan purchased the building from J. Donald Davis Sr. and his wife Joan C. Davis on April 1, 1982. The James C. Sullivan Revocable Trust, administered by his son, retains ownership of the property.31

Industrial Architecture Context

In the first purpose-built industrial buildings erected in the United States, designers strove to accommodate machinery in a manner that allowed for efficient access to power sources as well as maximum utilization of natural light and ventilation. By the mid-nineteenth century, “slow-burn”

28 Davison’s Textile Blue Book, 1950, 323.
masonry construction, with load-bearing brick walls, exposed heavy-timber framing, thick plank floors, gabled roofs, large operable windows and transoms, and metal fire doors predominated. Heavy-timber framing members that were at least twelve inches square with chamfered edges effectively slowed the progress of fire, particularly when used in combination with a floor system that encompassed three- to four-inch-thick plank decking covered with waterproof paper and topped with hardwood floors. The floor system was left exposed underneath in order to avoid the use of flammable ceiling materials and finishes. Chamfering the corners of beams, posts, and girders removed splinters that could ignite easily.32

During the late nineteenth century, mill and factory design evolved from a vernacular process whereby owners worked with builders who erected edifices based on mutually understood norms to a field dominated by professionally-trained mill engineers who designed industrial buildings and supervised their construction. Standards imposed by machinery manufacturers and insurance companies also guided industrial architecture’s evolution. In order to minimize fire risk, stairwells, which could serve as conduits for fire movement between floors, were located in projecting stair towers. Brick interior walls and galvanized-sheet-metal-clad, solid-core-wood doors, known as kalamein doors, separated the mill sections where fires might start or spread rapidly. These heavy doors would automatically close in the case of a fire, as the heat would melt a soft metal link in the door’s counterweight assembly and the door would slide shut on the sloped metal track. As an additional precaution, water reservoirs and elevated water tanks supplied automatic sprinkler systems in many industrial complexes.33

As the twentieth century dawned, architects and engineers continued to plan manufacturing complexes with function rather than aesthetics in mind. However, new building materials, technology, and forms manifested efficiency, modernity, and economic progress. Mill and factory designers began to specify steel and reinforced-concrete columns and beams in conjunction with brick, concrete, terra cotta block, or tile curtain walls that provided structural bracing but did not carry any weight. Bands of steel-frame multipane windows and roof monitors provided workers with abundant light and ventilation. Steel truss roof systems spanned open interiors that accommodated sizable equipment and allowed for flexibility as manufacturing needs changed.34

Although structural systems for some late-nineteenth-century industrial buildings included cast-iron or wrought-iron columns or steel posts and beams, high cost greatly limited the materials’ use until the early twentieth century. The ability to withstand the weight and vibrations of heavy machinery without failing contributed to the popularity of structural-steel construction, as did the ease of fabricating

framing systems from standard factory-generated parts. Typical elements include I-, T-, H-, and box-shaped columns and beams; round posts; and reinforcing plates, angles, and webs. Steel components could be riveted together, creating strong connections, and tended to be smaller and lighter than heavy-timber or iron framing members. This allowed for wider and taller buildings with more square footage for equipment. The popularity of flat roofs and sizable roof monitors also resulted in structural-steel framing prevalence. In order to reduce oxidation and achieve fire resistance, steel members were coated with intumescent paint; sprayed with a thin mixture of cement, sand, and water called gunite; or encased in concrete.35

North Carolina industrialists benefited from the contributions of resident engineers who disseminated specifications dictating best practices in mill layout and design. Innovators in this discipline included South Carolina native Daniel A. Tompkins, sent by the Pittsburgh-based Westinghouse Engine Company to Charlotte in the early 1880s to sell and coordinate the installation of the company’s equipment in the region. Tompkins became a driving force in the southern textile industry, partnering with Charlotte grain merchant R. M. Miller in 1883 to establish the D. A. Tompkins Company, an engineering firm. The company created plans for over one hundred mills in addition to other industrial buildings.36 Charlotte examples such as Ada, Alpha, and Victor Mills (all erected in 1889), Highland Park Mill No. 1’s 1891 and 1895 buildings, and the 1892 Atherton Mill are comparable to the 1896/1903 J. M. Bernhardt Planing Mill and Box Factory.

Thomasville, North Carolina, native Stuart Warren Cramer, who began his career with the D. A. Tompkins Company, was another highly-influential mill engineer. Cramer set up his own Charlotte firm in 1895, and by 1915 had designed almost one-third of the new mills erected in the South during that period. Hudson Cotton Manufacturing Company’s 1904 mill is the only Caldwell County factory that has been attributed to him at this time. In addition to preparing mill plans, Cramer equipped facilities with textile production machinery of all types, some of which he invented. His salesmen, based in Charlotte and Atlanta offices, travelled throughout the country. Cramer’s innovations in textile mill climate control garnered him international recognition, and he is credited with conceiving the term “air conditioning.” Cramer often served his clients as a business advisor as well as a designer. For example, he installed an air-conditioning system at Loray Mill in Gastonia in 1908 and became the company’s president four years later. Cramer established and led the American Cotton Manufacturers Association and the National Council of American Textile Manufacturers. He invested in textile concerns including Highland Park Manufacturing Company in Charlotte and Mayes Manufacturing Company in the Gaston County community of Mayesworth, which became known as Cramerton in

35 Ibid.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 8 Page 19 J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill Caldwell County, NC

1922. The mill complexes and the associated housing that Cramer designed at those and other locations featured efficient layouts that demonstrated his integrated work flow concepts.37

Stuart Cramer recruited talented architects and engineers such as Richard C. Biberstein of Fredericksburg, Texas, to work in his office. Biberstein, born in 1859, attained a mechanical engineering degree from the Worcester (Massachusetts) Polytechnic Institute in 1882. He found employment at U. S. Electric Lighting Company in Newark, New Jersey, and Atlas Engine Works in Indianapolis before moving to Charlotte in 1887 to accept a draftsman position at industrialist John Wilkes’s Mecklenburg Iron Works. H. S. Chadwick offered him a similar job at the Charlotte Machine Company, which manufactured mill equipment, in 1897. Biberstein remained on staff until 1902, when he became Stuart Cramer’s employee, thus garnering valuable experience that prepared him to launch an independent firm specializing in mill design three years later.38

Caldwell County’s late-nineteenth- and early-twentieth-century textile mills

In order to take advantage of lower land prices and allow for unfettered expansion, Caldwell County industrialists often erected mills and worker housing on a town’s outskirts. By 1987, when historian Vickie Mason conducted a reconnaissance-level inventory of the county’s historic architecture, many late nineteenth- and early twentieth-century factories had been demolished or encapsulated within later additions. The project thus documented only a few industrial buildings. It is therefore impossible to ascertain how many mills survive without additional survey.

However, examination of a small sample—Lenoir Cotton Mill, Hudson Cotton Manufacturing Company (NR 2013), and J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill—reveals similar features. All are characterized by heavy-timber interior structural systems, load-bearing brick exterior walls, low-pitched gable roofs, segmental-arched and rectangular window openings, segmental-arched door openings, and decorative entrance, stair, and restroom towers. Large multipane windows and transoms, some of which remain, illuminated the interiors, where hardwood floors and substantial wood posts and beams prevail. Exposed rafter ends support deep eaves.

The individuals who rendered plans for the 1896/1903 J. M. Bernhardt Planing Mill and Box Factory and the 1902-1903 Lenoir Cotton Mill have not been identified. Daniel A. Tompkins and Stuart W. Cramer are possible candidates. Cramer designed the 1904 Hudson Cotton Manufacturing Company and supplied the plant’s machinery.39

The one-story, two-level, brick Hudson Cotton Manufacturing Company stands parallel to Main Street in Hudson. The 320-foot-long by 75-foot-wide edifice is executed in five-to-one common bond with segmental-arched window and door openings and a very low-pitched gable roof. Projecting rafter ends buttress the deep eaves. Documentary photos illustrate the original double-hung, eight-over-eight, wood-sash windows with arched eight-pane transoms. Interior brick removal from one window opening in early 2014 revealed an intact, encapsulated, original window unit, indicating that others may be extant. The distinctive three-stage entrance tower features corbelled hoods above the entrance and paired second-story windows, corbelled oculus surrounds, corbelled cornices and pilaster caps, and a crenellated parapet. Masons also executed in 1904 the matching ell at the mill’s northeast corner. A tall, round smokestack rises on the ell’s east end.

Twenty years later, Hudson Cotton Manufacturing Company erected a rear addition, also in five-to-one common bond with segmental-arched window and door openings and a very low-pitched gable roof, on the 1904 building’s east side, almost doubling the plant’s size. Around 1930, a matching fourteen-bay-wide and one-bay-deep brick addition extended the façade’s north end to the west. Chamfered square wood posts and substantial wood beams support the floor and roof systems in the 1904, 1924, and circa 1930 sections. Richard C. Biberstein’s firm prepared plans for the company’s additions through 1934.40

Lenoir Cotton Mill – Blue Bell, Inc. is significant due to its age and architectural integrity. Like the other Caldwell County plants, the 1902 mill and 1903 addition manifest early-twentieth-century industrial design components such as round wood column and heavy-timber post-and-beam interior structural systems. The load-bearing brick exterior walls are executed in six-to-one common bond with segmental-arched window and door openings. The two-stage pyramidal-hip-roofed office tower is an important survival. Original interior features such as double-thickness wood floors and kalamein doors were commonly employed in fire-resistant industrial buildings.

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill is similar in that the 1896 plant and 1903 addition feature a round wood column and heavy-timber post-and-beam interior structural system

40 “Hudson Cotton Manufacturing Company,” Project files, Box 55, Folder 38, BBMRR.
in conjunction with load-bearing brick exterior walls executed in six-to-one common bond. Segmental-arched window and door openings embellish the building. The mill retains an open plan and painted brick walls, wood roof decking, hardwood floors, and metal-clad kalamein doors.

The plant’s configuration also minimized fire risk. Improvements in conjunction with the building’s 1918 modification to serve as a cotton yarn spinning mill included the construction of a one-story picker room at the north end, an entrance tower on the south elevation, a restroom tower on the west elevation, an enlarged boiler room, and a one-story-on-basement cotton warehouse north of the mill. The 1918 additions display the ongoing prevalence of heavy-timber framing with brick firewalls between combustible areas.
Section 9. Bibliography


Biberstein, Bowles, Meacham, and Reed Records. J. Murrey Atkins Library Special Collections, University of North Carolina at Charlotte.


*Carolina Watchman*.

*Charlotte Observer* (abbreviated CO after first mention in the footnotes)


J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
Caldwell County, NC


*Lenoir News* (abbreviated *LN* after first mention in the footnotes)

*Lenoir News-Topic* (abbreviated *LNT* after first mention in the footnotes).

*Lenoir Topic* (abbreviated *LT* after first mention in the footnotes).


Manufacturers’ Record.


North Carolina Department of Labor and Printing. *Twenty-Fourth Annual Report of the Department of
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Section number 9 Page 24

J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
Caldwell County, NC


Shuford, Stephen P. (CEO of Shurtape Technologies, LLC). Email correspondence with David Rivers, January 29, 2013, including “First Century Highlights,” a printed timeline of Shuford Mills Inc., Hickory, North Carolina; and a narrative timeline of Shuford Mills, Inc.

Statesville Record.


Swanson, Frances Hayes. (Daughter of Barton and Estoy Hayes) Email communication with Heather Fearnbach, December 2016.

United States Census, Population and Manufactures Schedules, 1900-1940.


Weekly News, Lenoir (abbreviated WN after first mention in the footnotes).


Section 10. Geographical Data

Latitude/Longitude Coordinates

1. Latitude: 35.909979   Longitude: -81.546298

Verbal Boundary Description

The boundaries of the J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill are indicated by the bold line on the enclosed map, which encompasses all of tax parcel 2749650842. Scale approximately 1” = 100’

Boundary Justification

The nominated 3.22-acre tax parcel is the full extent of acreage historically associated with the J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill.

Additional Documentation: Current Photographs

Photographs by Heather Fearnbach, 3334 Nottingham Road, Winston-Salem, NC, on August 15, 2016, except where indicated below. Digital images located at the North Carolina SHPO.

1. Southeast oblique
2. South elevation, looking northwest
3. West elevation, south section, looking northeast (Annie Laurie McDonald, photographer, September 13, 2016)
4. East elevation, north section, looking southwest
5. East elevation, south section, looking southwest (Annie Laurie McDonald, photographer, September 13, 2016)
6. 1896/1903 factory, basement, southeast section, looking northwest
7. 1896/1903 factory, basement, northeast section, looking south
8. 1896/1903 factory, first floor, southwest section, looking south
9. 1918 picker room, upper level, looking west
10. 1950s addition, looking west
J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
1201 Steele Street, Lenoir, Caldwell County, North Carolina

Heather Fearnbach, Fearnbach History Services, Inc. / April 2017
Base 2014 aerial photo courtesy of http://gis.caldwellcountync.org/maps/
Scale 1” = 200 feet
J. M. Bernhardt Planing Mill and Box Factory – Steele Cotton Mill
1201 Steele Street, Lenoir, Caldwell County, North Carolina, National Register Boundary Map

Heather Fearnbach, Fearnbach History Services, Inc. / April 2017
Base 2014 aerial photo courtesy of http://gis.caldwellcountync.org/maps/