United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determinations for individual properties and districts. See instructions in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials, and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

historic name (former) Raleigh Electric Company Power House

other names/site number Carolina Power & Light Power House

2. Location

street & number 513 - 515 W. Jones Street

cyty or town Raleigh

state North Carolina code NC county Wake code 183 zip code 27605

3. State/Federal Agency Certification

As the designating authority under the National Historic Preservation Act, as amended, I hereby certify that this X nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property X meets □ does not meet the National Register criteria. I recommend that this property be considered significant □ nationally □ statewide X locally. (See continuation sheet for additional comments.)

[Signature of certifying official/Title]

State of Federal agency and bureau

[Date]

In my opinion, the property □ meets □ does not meet the National Register criteria. (See continuation sheet for additional comments.)

[Signature of certifying official/Title]

State or Federal agency and bureau

[Date]

4. National Park Service Certification

I hereby certify that the property is:

□ listed in the National Register.
□ See continuation sheet.
□ determined eligible for the National Register.
□ See continuation sheet.
□ determined not eligible for the National Register.
□ removed from the National Register.
□ other, explain:

[Signature of the Keeper]

[Date of Action]
(former) Raleigh Electric Company Power House
Wake County, North Carolina
Name of Property
County and State

5. Classification

<table>
<thead>
<tr>
<th>Ownership of Property</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Check as many boxes as apply)</td>
<td>(Check only one box)</td>
<td>(Do not include previously listed resources in the count.)</td>
</tr>
<tr>
<td>□ private</td>
<td>□ building(s)</td>
<td>Contributing</td>
</tr>
<tr>
<td>□ public-local</td>
<td>□ district</td>
<td></td>
</tr>
<tr>
<td>□ public-State</td>
<td>□ site</td>
<td></td>
</tr>
<tr>
<td>□ public-Federal</td>
<td>□ structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ object</td>
<td></td>
</tr>
</tbody>
</table>

Name of related multiple property listing
(Enter "N/A" if property is not part of a multiple property listing.)

N/A

6. Function or Use

<table>
<thead>
<tr>
<th>Historic Functions</th>
<th>Current Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Enter categories from instructions)</td>
<td>(Enter categories from instructions)</td>
</tr>
<tr>
<td>Industry/Processing/Extraction: energy facility</td>
<td>Industry/Processing/Extraction: industrial storage</td>
</tr>
</tbody>
</table>

7. Description

<table>
<thead>
<tr>
<th>Architectural Classification</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Enter categories from instructions)</td>
<td>(Enter categories from instructions)</td>
</tr>
<tr>
<td>Other: Early 20th century heavy industrial</td>
<td>foundation concrete</td>
</tr>
<tr>
<td></td>
<td>walls brick</td>
</tr>
<tr>
<td></td>
<td>roof metal</td>
</tr>
<tr>
<td></td>
<td>other wood</td>
</tr>
</tbody>
</table>

Narrative Description
(Describe the historic and current condition of the property on one or more continuation sheets.)
(former) Raleigh Electric Company Power House

Name of Property

Wake County, North Carolina
County and State

8. Statement of Significance

Applicable National Register Criteria
(Mark "X" in one or more boxes for the criteria qualifying the property for National Register listing.)

[X] A Property is associated with events that have made a significant contribution to the broad patterns of our history.

[] B Property is associated with the lives of persons significant in our past.

[] C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.

[] D Property has yielded, or is likely to yield, information important in prehistory or history.

Criteria Considerations
(Mark "x" in all the boxes that apply.)

Property is:

[] A owned by a religious institution or used for religious purposes.

[] B removed from its original location.

[] C a birthplace or grave.

[] D a cemetery.

[] E a reconstructed building, object, or structure.

[] F a commemorative property.

[] G less than 50 years of age or achieved significance within the past 50 years.

Areas of Significance
(Enter categories from instructions)

Industry

Period of Significance

C. 1910–1930

Significant Dates

1910

Significant Person

(Complete if Criterion B is marked above)

N/A

Cultural Affiliation

N/A

Architect/Builder

Unknown

Narrative Statement of Significance
(Explain the significance of the property on one or more continuation sheets.)

9. Major Bibliographical References

Bibliography
(Cite the books, articles, and other sources used in preparing this form on one or more continuation sheets.)

Previous documentation on file (NPS):

[] preliminary determination of individual listing (36 CFR 67) has been requested

[] previously listed in the National Register

[] previously determined eligible by the National Register

[] designated a National Historic Landmark

[] recorded by Historic American Buildings Survey

[] recorded by Historic American Engineering Record

Primary location of additional data:

[X] State Historic Preservation Office

[] Other State agency

[] Federal agency

[] Local government

[] University

[] Other

Name of repository:
(former) Raleigh Electric
Company Power House
Name of Property
Wake County, North Carolina
County and State

10. Geographical Data

Acreage of Property less than one acre

UTM References
(Place additional UTM references on a continuation sheet.)

1 1 1 2 1 1 0 0
Zone Easting Northing
2
3
4

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)

11. Form Prepared By

name/title Brad Brewster/Planner
date 5/2/97
organization EDAW, Inc.
street & number 1505 Western, Ste. 601
telephone (206) 622-1176

city or town Seattle state WA zip code 98101

Additional Documentation
Submit the following items with the completed form:

Continuation Sheets

Maps

A USGS map (7.5 or 15 minute series) indicating the property's location.
A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs

Representative black and white photographs of the property.

Additional items
(Check with the SHPO or FPO for any additional items)

Property Owner
(Complete this item at the request of SHPO or FPO.)

name Mr. Les Pearce, Manager - Real Estate, Carolina Power & Light
street & number 411 Fayetteville Street Mall
telephone (919) 546-4208

city or town Raleigh state NC zip code 27602

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seq.).

Estimated Burden Statement: Public reporting burden for this form is estimated to average 18.1 hours per response including time for reviewing instructions, gathering and maintaining data, and completing and reviewing the form. Direct comments regarding this burden estimate or any aspect of this form to the Chief, Administrative Services Division, National Park Service, P.O. Box 37127, Washington, DC 20013-7127; and the Office of Management and Budget, Paperwork Reductions Projects (1024-0018), Washington, DC 20503.
Narrative Description

Exterior:

The Raleigh Electric Company Power House is an early twentieth century electrical power generation facility located in Raleigh, North Carolina. The imposing, triparte, gable-front steel-framed common bond brick edifice directly addresses West Jones Street and is composed of two original ca 1910 two-story blocks on the east and a 1930 one-story replacement block on the west end. It is located on a 2.41 acre site bounded on the north by West Jones Street, on the south by the Carolina Power and Light (CP&L) property, on the west by the Norfolk Southern Railroad (originally Seaboard Air Lines Railroad) tracks, and on the east by N. West Street. Originally built as a coal-fired steam plant and substation, it is now used as a wiring and maintenance building. Modern transformers are found near the corner of Jones and West Streets.

The original site consisted of a series of areas that each housed functions related to the production of electrical power. At the northwest corner of the site, closest to the railroad tracks, was located the coal bunker, trestle, and storage area for the plant, and two plant cooling towers. To the west of this area was placed the original boiler room for the plant. Centrally located along Jones Street was a large brick building which housed the original power turbines for the plant. The ca 1910 steam plant originally supplied electricity to the streetcar network operated by the Raleigh Street Railway Company where the car barn for trolleys was located at the corner of Jones and West Streets. Finally, plant cooling towers were located to the south of the car barn. This functional relationship is illustrated on Attachment #1, a 1916 contour and site property map of the site.

The (former) Power House was the central element of this original complex and remains as the dominant element of its block today. It is a large industrial building, measuring 103 feet in length by 97 feet in width, and consists of three interrelated blocks, roughly equal in size, connected together by three front-gabled corrugated metal-covered roofs, which form the main elevation facing north onto West Jones Street. The building exhibits a then-advanced structural system of steel framing system, with common bond brick forming its exterior skin.

The two original blocks are two stories tall with gable roofs (see Attachment #2). Expressed corner posts, central pier (from the roof peak to the ground), and crenellated brick raking at the eave lines are distinctive exterior features. All windows are delineated by semicircular relieving arches, formed by three rows of soldiercourse brick. In the first bay of the westernmost block, the original window has been bricked in. In the
second bay of the same block, the double wooden doors which formed the original entryway were also replaced by more modern window units prior to 1930. Above this original doorway, the second story window opening has also been bricked in. In the first bay of the central building block, the original window opening has also been altered, reducing its overall length by bricking in the top of the opening. Above it, the original window opening has also been completely bricked in. In the second bay of this block, the original window opening has been transformed into a double doored entryway for the plant. Above it, the original window opening has been modified and closed by brick courses.

The west facade of the building is also brick (see Attachment #2). Four recessed panels, beginning at the northwest corner, and a series of circular, bricked-in duct openings, denote access points into the original car barn.

The rear, or southern facade, of this portion of the building has been extensively modified. Originally a mirror-image of the front facade, its brick skin has been removed. At the first floor level, modern concrete block has been applied (see steel framing diagram as Attachment #3). On the second floor above it, corrugated metal sheeting has been applied. The original fenestration pattern has also been modified through the addition of large doorways on the first floor level, and large vent panels inserted on the second floor.

The westernmost section of the building is files storage building, built in 1930, which replaced the original boiler room for the plant. The gable-roofed, one-story brick structure replaced a slightly shorter twin of the other two extant sections of the plant. The 1930 replacement structure was constructed on the foundation walls of the original. Its exterior is also brick, and is enhanced by a stylized roof rake system with expressed corner posts and central pier, stylistically similar to the other two building sections. The roof is covered with corrugated metal similar to those of the 1910 blocks. Four sixteen-light windows with steel lintels and concrete sills pierce the north facade. A simple wooden door with transom, surmounted by a round-headed arch window, are centrally placed within the facade. Its roof was supported by a broad steel truss system (see Attachment #4).

The west facade of this section generally reflects its original construction features. Its brick facade is punctuated by a single door opening, and seven window openings. The door opening, protected by a modern wooden hood, marks the fifth bay. Window openings are generally twenty-light, square, openings, also with steel lintels and concrete sills. Smaller movable pivot windows are inset into the larger openings. Although some
lights have been removed to accommodate individual window air conditioning units, most windows are complete.

The south facade of this 1930 addition has been closed with brick. The rear portion of the file storage building was demolished in 1973, according to oral accounts by retired CP & L employees. The easternmost connection with the larger power generation building is a stepped, false front wall, capped with metal. Window and door openings into this section have also been modified over time.

Interior:

Brick piers and poured concrete formed the foundations of the steam turbine building. A series of horizontal floor supports are reinforced through the use of steel I-beams, which originally supported the heavy power generating machinery and boiler stacks above. Access from the basement was provided through the floor of the main room, which originally contained the power generators. A series of other large brick foundations are also present in the basement, and note the location of supports for the larger generators and other power generating equipment. Concrete floors throughout the entire building have been left unfinished.

The structure of the (former) power house which contained the turbines was supported by a grid of steel vertical and horizontal members (see Attachment #3). To support the gable ends of each major building section, framing was erected using a queen post truss system. Running the width of each major building section were six other steel trusses. Each of these trusses was supported by a centrally placed post; each of two centrally located gusset plates, in turn, secured three radiating purlins that supported each major rafter. For additional reinforcement, a series of square lattice posts (six in number) were also used to support the roof trusses.

Little remains on the upper floors of the steam building or the original power generating equipment. Company records show that this machinery was removed prior to 1970. A crane hoist (one ton rating manufactured by Budget) and track rails suspended from the ceiling remains in the generating building.

Integrity Statement:

Like most twentieth-century industrial facilities, the power house has undergone numerous exterior and interior modifications that are typical for industrial buildings
National Register of Historic Places
Continuation Sheet

Section number 7 Page 4

designed to be functional and adapt with changing requirements. Although a files storage building was constructed on top of the foundation of the original boiler room, the original brick rear facade refaced with modern concrete block and corrugated sheet metal; and the fenestration has been somewhat altered; the exterior remains sufficient integrity to convey its original use as an electric powerhouse. Similarly, the interior has been modified with the insertion of a floor to create office space on the first floor, a dropped ceiling with large attic space for additional storage, and partitions to create lavatories and controlled access storage areas. In the files storage building original partitions were removed to create a single open space, and a ceiling was inserted that now blocks off access to the gable window. Although these interior modifications have occurred over the past eighty years, the integrity of the original structure remains intact.
Summary:

Constructed ca 1910, the (former) Raleigh Electric Company Power House is locally significant under criterion A as an extremely rare surviving example of an early twentieth-century industrial facility which provided electrical power to the capital city of Raleigh, North Carolina. The history of the Raleigh Electric Company power plant very nearly parallels the rise of the electric power industry in Raleigh, beginning with electric-powered streetcars placed in service in 1891. As the street railway expanded service areas and reliability, managers of the street railway sought additional customers for electrical service. When the Raleigh Street Railway was forced into receivership in 1894, the company assets, titles, and franchises transferred to the Raleigh Electric Company and later the Electric Bond & Share Company. In 1908, the Cape Fear Company, Consumers Light and Power of Sanford-Jonesboro, and the Raleigh Electric Company combined to form Carolina Power & Light (CP & L). The Power House with coal-fired, steam-driven turbines was constructed in ca 1910 to power Raleigh's electric street car system, as well as to augment power supplies during periods of low flow from hydropower operations at the Buckhorn Falls plant. The Power House is significant on the local level to both CP & L and to the residents of Raleigh for the reliable and continuous provision of electric power, as well as for ushering in the modern, electrically based industrial era.

The Power House is typical of other industrial buildings of the era in its design and siting. Architecturally, its triparte arrangement with a gable-front roof and structural steel framing system faced with common bond brick reflects typical industrial design of the era. Its siting also reflects the commonly held principles of the day regarding steam plant location theories and steam generation requirements.

Its useful life as a steam plant likely ended in 1930 when the boiler house was replaced with a file storage area. As the boiler house would have been necessary to generate steam to drive the turbines, the removal of the boilers signals an end to power generation at the plant. Also around this time, a gradual replacement of the electric trolley system was initiated with gasoline-powered buses, reducing the need to generate electricity for the streetcar system. The power equipment was removed and the building was converted into its present use as storage and office space for CP & L personnel.

Historic Industry Context:

The Raleigh Electric Company Power House attests to the importance of power generation in the development of Raleigh as North Carolina's capital city. The site of the present Power House was used first as an electrical generating facility to power electric
streetcars, and later the lighting and conveniences that became necessities for twentieth-century Americans. With that fact in mind, Riley observes that "...The steam railway had gone into operation in a decade when electricity principally served transportation. Lighting was secondary, but along with population gains and economic improvements, demands for lighting gained." (Riley: 27)

As the capital city of North Carolina, Raleigh expanded in the late nineteenth and early twentieth centuries; electrification and transportation became linked. Public transportation in the form of mule-drawn streetcars began in 1886, with electrified streetcars following in 1891. Proximity to the Raleigh Electric Company Power House, the source of the city's electric power, dictated the streetcar routes and pedestrian connections to the Seaboard Air Lines Railroad passenger and freight depot that existed at 518 W. Jones Street.

The historic context of the Power House is principally derived by comparing the development of the electric power industry of Raleigh with other major North Carolina cities around the same time period. As in other "New South" cities such as Winston-Salem, Asheville, and Greensboro, the first electrical power attempts were linked primarily to transportation, with application to lighting as a secondary consideration. Additionally, new railroad lines, tobacco factories, neighborhoods, and new wealth all contributed to the rapid growth of Raleigh and the other North Carolina cities in the late nineteenth century and the first years of the twentieth century. The genesis of the electric power industry in the region occurred during this period of great industrial and population growth.

The city of Winston (now Winston-Salem) was no exception. The arrival of electrical power began relatively early for the city of Winston, as electric streetlights were turned on for the first time in August, 1887, by the Winston Electric Light and Motive Power Company. In that year the largest new enterprise was the construction of a dam across the Yadkin River, and the erection of a plant for the purpose of supplying both the cities of Winston and Salem with electric power. This electric power took the place of much of the steam power then in use and furnished power to new industries. Winston’s new electric streetcar lines, just opened in 1890, were soon expanded to service the resort area of the West End, as well as opening up development to the south of Winston and Salem. With paved streets, electric lights, and (electric) streetcar connections, these areas attracted both residential and commercial development (Taylor: 37-38).
The arrival of electrical power also coincided with population and industrial expansion in the city of Asheville in Buncombe County. In this North Carolina city, the first electrical power plant was incorporated in 1886 to provide electricity for street lights and new electric streetcars. Power was first delivered in 1888, and in 1891, the Asheville Street Railway and its fleet of electric streetcars began to service the city. As with other “New South” cities, the arrival of electrical power and transportation needs related to growth were inexorably linked (City of Asheville: 39-40).

In Charlotte, North Carolina, Edward Dilworth Latta and the Charlotte Consolidated Construction Company formed the Charlotte Railway Company to manage the city’s first electric streetcar system which would connect growing suburbs with the city. The first electric streetcar departed from the town square at 3:00 pm on May 18, 1891. At the outset, the railway company operated three trolleys on the run to the Dilworth suburb and one on a crosstown line (Morrill: 293).

Raleigh received electrical service around the same time as the neighboring city of Greensboro. In this “New South” city, population increases from 1880 to 1900, accompanied its growth as a major retail and wholesale distribution center, necessitated urban electrification for its streetcars. By June 11, 1902, a third major component of the city’s transportation network, the electric streetcar, joined the rail lines and roads which interlaced the growing city. The system’s charter, granted to the Greensboro Electric Company, brought electric powered streetlights and waterworks to the city, along with the streetcars. Expansion continued to grow in the early twentieth century, especially in the industrial sector, with the White Oak Cotton Mills becoming the largest denim mill in the world. As with Meyer’s assertion regarding the siting of power-generating facilities, the necessities of light, power, and fire resistance dictated the form of the majority of the White Oak Mills buildings in Greensboro (Brown: 28).

According to the North Carolina Historical Review, in the era from the late nineteenth century to the early twentieth century, the “New South” had a great deal of civic pride and the desire to modernize, where, “southern cities were acquiring parks, electricity, sewerage, pure water, electric street cars, and paved streets.” The city of Raleigh, along with many other North Carolina cities, was swept up in this era of expansion and improvement, and electric power generation along with the electric streetcar were integral parts of this (Lemmon: 282).

The historical context of the Raleigh Electric Company Power House can also be understood when viewed as an early electrical generation facility built with an understanding of the principles of steam generation. The Engineering Record Series
publication, *Steam Power Plants: Their Design and Construction* (Third Edition) by Henry C. Meyer, Jr., M.E., identifies several factors in deciding plant location, including: the locations of the demand, the cost of delivering coal and removing waste ash created by the coal fired boilers, and the availability of water supply for condensing purposes.

Meyer advises that where the load on the power plant is practically constant throughout the working day, it is preferable to locate the power house, "close to the line of shafting without the use of gearing, quarter-turn belts, etc." Construction of the power house and car barn in close proximity on the same land parcel created such an efficiency. Although Meyer identifies the need for water, CP & L records and inspection personnel have not identified a well on the property and conclude that the water supply came from municipal sources (Hicks: interview).

Meyer also recommended that power houses be equipped with coal handing machinery, such as the coal bunker shown on the 1909 Sanborn Insurance Map for the power house parcel.

> "If a plant is not to be provided with coal handling machinery, it is well, if convenient, to provide a trestle so that cars may be run over and sump into a bunker opposite the furnace doors in order that the coal may fall by gravity through holes in the wall separating the bunker from the boiler room, onto the floor of the latter, in front of the furnace doors." (Meyer: 4).

The form and materials of the original two-bay generating building are consistent with engineering technology of the time as described by Meyer. The site configuration adjacent to a rail supply for coal and indications that earlier structures included a coal trestle and storage area are also consistent with engineering practices of the period.

Historical Background:

The sequence of events which brought electric power to the businesses and citizens of Raleigh, North Carolina began well before the ca 1910 construction of the Raleigh Electric Power Company steam generating facility at the intersection of W. Jones and N. West Street in the northwest section of downtown Raleigh. According to Riley, "The Capital City traces its electric service to the Raleigh Gas Light Company, chartered in 1858, and to the Raleigh Street Railway company chartered on March 11, 1881." (Riley: 17). For a very short while on December 3, 1885, electric illumination was supplied to the State Capitol and the surrounding downtown commercial area.
The illumination was short-lived due to a failure of the generator and was not repeated until 1890. The first demonstration of the rail transportation system was the debut of four mule-drawn streetcars on Christmas Day, 1886 (Riley: 19). By 1890, Raleigh city aldermen granted the street railway company a franchise for freight operation within the city service area. The aldermen decided on six miles of track with overhead wires, which was an extension of two miles more than already existed for the horse-drawn trolleys. The cars were to run on a seven-minute schedule. The final contract was signed with Edison Electric of New York for ten miles of track, and the first electric street cars ran on Hillsboro Street on September 1, 1891 (Lemmon: 283).

The power house for the new electric streetcars was located on the corner of Jones and West Street in the northwestern quadrant of Raleigh. The land parcel which later contained the generating facilities and car barn was sold in 1880 to Ellington, Royster & Company for use as a timber planing mill. The land transaction is recorded in the Wake County Deed Book 60:502. The northwest area of Raleigh became known as “Smoky Hollow” due to the clouds of train smoke hovering in the air. Smoky Hollow became a vibrant mixed-use residential area for working class African-Americans, who were mostly employees of the nearby railyards, the planing mill, and furniture manufacturers. The Smokey Hollow area was razed in the 1960s, although St. Paul’s A.M.E. church (NR 1987) remains on the corner of West Edenton and North Harrington Streets as a reminder of the lost neighborhood.

Original plans, drawings or engineering records for the original generating structures are not available. A fire on New Years Eve in 1896-1897 destroyed the power house, light plant and car shed according to news accounts in the Raleigh News and Observer. CP & L, the present owner of the property, maintains plans for the existing power house which are dated 1907. No architect or engineer of record appear on those plans; only the words “Electric Bond and Share Company.” Although the plans are dated 1907, the Power House was not actually constructed until approximately three years later, in ca 1910. Modifications to the site configuration following the 1896-1897 fire appear on the 1909 Sanborn Fire Insurance shown by Figure 1. The footprint of the present configuration of generating and boiler facilities does not appear on the Sanborn Fire Insurance Maps until 1914 (see sketch plan shown in Figure 2). The construction date of the power house has been estimated as 1910, as Jack Riley, CP & L historian, noted that. “Raleigh’s power house tripled in capacity in 1910 in order to keep up with rapidly expanding service areas, resulting in power generation capacity of 1,500 kW.” Initially, the rated capacity of the Power House had been 500 kilowatt (kW) per unit.
As operations managers for the Raleigh Electric Company Power House solicited additional customers, businesses were offered, "current from the railway circuit to run stationary motors." Electrical service was extended for seventeen hours per day as compared to ten hours per day as previously available (Riley: 27).

At about the time the Raleigh Power House was placed in operation by the Raleigh Electric Company, the corporation had consolidated two other electric providers to become CP & L. CP &L has held this property since ca 1910 and it has been in continuous use as either a generating facility or active storage and office facility.

The westernmost addition dates from 1930 when the boiler room was replaced with a brick storage room directly on the foundation of the former structure. Although it cannot be determined with absolute accuracy, it is likely that the steam plant’s useful life ended around this time. As the boiler house would have been necessary to generate steam to run the turbines, the removal of the boilers signals an end to power generation at the plant. Also around this time, the electric trolley system was replaced with gasoline-powered buses, reducing the need to generate electricity for the streetcar system, as this was the building’s primary reason for existence. The power equipment was removed (date unknown) and the building was converted into its present use as storage and office space for CP & L personnel.
National Register of Historic Places
Continuation Sheet

Section number 9 Page 1

Bibliography

Geographic Data

Verbal Boundary Description:

The boundary includes only the building footprint of the (former) Raleigh Electric Company Power House with an additional five foot setback surrounding all sides of the building. On the north-facing side the boundary extends to the edge of the sidewalk (approximately three feet from the building).

Verbal Boundary Justification:

The boundary is that portion of the lot that excludes later, non-contributing resources and is appropriate to the historical industrial setting.