Table of Contents

I. Introduction ...I-1
 A. Session Law 2009-479 / House Bill 709 ...I-2
 B. Public Consultation ..I-3
 C. Selection of Study Sites ...I-5
 D. Limitations of Study ...I-8

II. Physical Assessment ..II-1
 A. Function of a Terminal Groin ..II-1
 B. Geological Framework and Physical Processes ...II-3
 1. Wave Energy and Longshore Sediment Transport ...II-3
 2. Tides and Tidal Currents ..II-3
 3. Effects of Storms at Inlets ...II-4
 4. Storm Effects on Barriers ..II-5
 5. Interpretation of Historical Data Bases ..II-5
 7. Dredging and Sediment Disposal ...II-6
 8. Sea-Level Rise ...II-7
 C. Assessment Methodology ..II-7
 1. Shoreline Change ..II-7
 2. Volumetric Changes, Beach Nourishment and Dredging EffectsII-8
 D. Assessment of Oregon Inlet Terminal Groin ...II-11
 1. Qualitative Assessment ..II-11
 2. Quantitative Assessment ..II-23
 3. Summary ...II-36
 E. Assessment of Fort Macon Terminal Groin ...II-38
 1. Qualitative Assessment ..II-38
 2. Quantitative Assessment ..II-49
 3. Summary ...II-62
 F. Assessment of Amelia Island Terminal Groin ..II-64
 1. Qualitative Assessment ..II-64
 2. Quantitative Assessment ..II-71
 3. Summary ...II-82
 G. Assessment of Captiva Island Terminal Groin ..II-83
 1. Qualitative Assessment ..II-83
 2. Quantitative Assessment ..II-89
 3. Summary ...II-100
 H. Assessment of John’s Pass Terminal Groin ...II-101
 1. Qualitative Assessment ..II-101
 2. Quantitative Assessment ..II-108
 3. Summary ...II-120
 I. Overall Findings, Comparisons, and Summary ..II-121

III. Environmental Assessment ..III-1
 1. Technical Approach of Analysis ...III-1
 2. General Environmental Effects ...III-3

March 2010
3. Federally Threatened and Endangered Species Effects.......................... III-10
4. Water Quality Effects ... III-17
5. Anthropogenic Effects (Recreation/Aesthetics/Public Access) III-18
B. Environmental Assessment of the Five Study Sites............................. III-21
1. Oregon Inlet ... III-21
2. Fort Macon, Beaufort Inlet, North Carolina .. III-46
3. Amelia Island, Nassau Sound, Florida .. III-73
4. Captiva Island ... III-94
5. John’s Pass, Florida ... III-110
C. Overall Findings and Summary of NC and FL Study Sites III-123
IV. Engineering Construction Techniques .. IV-1
A. Overview of Approach ... IV-1
B. Characteristics of the Five Study Site Structures IV-1
1. Oregon Inlet ... IV-1
2. Fort Macon ... IV-4
3. Amelia Island .. IV-6
4. Captiva Island ... IV-10
5. John’s Pass ... IV-11
6. Analysis of Existing Sites .. IV-15
C. Literature Review and Discussion of Approaches to Minimize Impacts IV-20
1. Length .. IV-20
2. Height .. IV-21
3. Permeability ... IV-22
4. Configuration .. IV-24
5. Material .. IV-25
6. Alternative Construction Techniques .. IV-30
D. Overall Findings and Summary .. IV-31
V. Economic Assessment .. V-1
A. Overview of Economic Considerations .. V-1
1. Inlets Considered .. V-1
2. 30-Year Risk Areas (30YRAs) ... V-1
3. Imminent Risk Properties (IRPs) .. V-2
4. Types of Economic Value Considered ... V-2
B. Economic Impact of Shifting Inlets .. V-5
1. Economic Value At Inlets .. V-5
C. Discussion of Other Factors That Influence Economics V-43
1. Recreation and Environmental Value ... V-43
2. Transfer of Property Values to Remaining Structures Following Erosion Losses ... V-50
D. Overall Findings and Summary .. V-52
VI. Initial Construction and Maintenance Costs VI-1
A. Overview of Costs and Key Factors .. VI-1
B. Development of Terminal Groin Unit Costs VI-1
1. Rock .. VI-3

March 2010

ii
2. Concrete and Steel ... VI-3
3. Timber .. VI-5
4. Geotextile ... VI-6
C. Cost Evaluation of Five (5) Selected Study Sites VI-6
 1. Fort Macon ... VI-6
 2. Oregon Inlet ... VI-7
 3. Amelia Island .. VI-8
 4. John’s Pass ... VI-10
 5. Captiva Island ... VI-11
D. Potential Range of Initial Construction Costs for North Carolina Terminal Groins .. VI-11
E. Potential Range of Maintenance Costs for North Carolina Terminal Groins .. VI-16
 1. Structure Maintenance Costs .. VI-16
 2. Beach Nourishment Costs ... VI-17
 3. Other Costs ... VI-17
F. Overall Findings and Summary .. VI-18
VII. Potential Locations ... VII-1
 A. Literature Review of Existing Terminal Groin Sites VII-1
 B. Siting Lessons Learned from Five Study Sites VII-4
VIII. Summary of Findings ... VIII-1
IX. References ... 1

Appendix A Committee Lists
Appendix B Session Law 2009-479 / House Bill 709
Appendix C Engineering Activity Logs
Appendix D Physical Data
Appendix E Environmental Contacts
List of Figures

Figure I-1. Overall Project Structure ... I-2
Figure I-2. Project Website .. I-4
Figure I-3. Potential Study Sites ... I-6
Figure I-4. Selected Study Sites ... I-7
Figure II-1. Terminal Groin at Saint Pete Beach, Florida II-2
Figure II-2. Inlet Geologic Features ... II-4
Figure II-3. Shoreline to Beach Volume Change Relationship II-9
Figure II-4. Analysis Procedure .. II-10
Figure II-5. Aerial Photographs of Oregon Inlet A. Looking Landward (Photograph from Ramanda, Nags Head) and B. Seaward (Photograph by D.A. Harvey) II-12
Figure II-6. Oregon Inlet Terminal Groin & Revetment II-13
Figure II-7. Comparison of 1991 and 2006 Shorelines Along Bodie and Pea Islands . II-14
Figure II-8. Bodie Island Illustrating Recurved Ridges Comprising Spit End II-15
Figure II-9. Bathymetric Changes at Oregon Inlet Showing A. Cross-sectional Changes from 1999 to 2001 and B. Erosional-depositional Changes Over the 2001 – 2003 Period (Vandever and Miller, 2003) .. II-17
Figure II-10. Historical Aerial Photographs of Oregon Inlet Illustrating Different Ebbe-tidal Delta Morphologies ... II-18
Figure II-11. Photographs of Northern Pea Island and Terminal Groin Area II-18
Figure II-12. 2001 Aerial Photograph of Oregon Inlet Showing Wave Refraction Around Ebb Delta Producing Northerly Transport Along Pea Island Feed Sand to the Fillet Region .. II-19
Figure II-13. Sequential Photographs of Oregon Inlet Depicting the Shoreline Changes Associated with Spit Accretion at Bodie Island and Southerly Migration of Oregon Inlet (Cleary, 2009) ... II-20
Figure II-14. Historical Changes of the Northern Pea Island Shoreline II-21
Figure II-15. Historic Shorelines – Oregon Inlet II-24
Figure II-16. Oregon Inlet Shoreline Change Calculation Transects II-25
Figure II-17. Shoreline Change – Bodie and Pea Islands (Intervals) II-27
Figure II-18. Shoreline Change – Bodie and Pea Islands (Total Average) II-27
Figure II-19. Beach Volume Changes – Bodie and Pea Islands (Intervals) II-30
Figure II-20. Beach Volume Changes – Bodie and Pea Islands (Cumulative) II-30
Figure II-21. Volume Changes Without Nourishment – Bodie and Pea Islands (Intervals) ... II-33
Figure II-22. Volume Changes Without Nourishment – Bodie and Pea Islands (Cumulative) ... II-33
Figure II-23. Fort Macon Terminal Groin .. II-38
Figure II-24. Fort Macon Revetment-Groin Protection (1961) II-39
Figure II-25. Historical Coastal Charts of Beaufort Inlet in 1876 and 1994 II-40
Figure II-26. Aerial Photographs Showing Shoreline Changes in the Vicinity of Fort Macon Terminal Groin. ... II-42
Figure II-27. Photographs Illustrating Progradation of the Beach West of the Groin and Along Inlet Shore. ... II-43
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>III-3</td>
<td>Coastal Classification of Habitat for Oregon Inlet, NC</td>
</tr>
<tr>
<td>III-4</td>
<td>Species Occurrence for Oregon Inlet, NC</td>
</tr>
<tr>
<td>III-5</td>
<td>Loggerhead Sea Turtle Nesting Data from PINWR</td>
</tr>
<tr>
<td>III-6</td>
<td>Seagrass Habitat for Oregon Inlet, NC</td>
</tr>
<tr>
<td>III-7</td>
<td>Shorebird Survey Data in the Vicinity of Oregon Inlet</td>
</tr>
<tr>
<td>III-8</td>
<td>1991 Oregon Inlet Aerial Photograph</td>
</tr>
<tr>
<td>III-9</td>
<td>2009 Oregon Inlet Aerial Photograph</td>
</tr>
<tr>
<td>III-10</td>
<td>Shorebird and Colonial Waterbird Nesting Activity on Sand Shoal, NC</td>
</tr>
<tr>
<td>III-11</td>
<td>Shorebird and Colonial Waterbird Nesting Activity on the Northern End of PINWR</td>
</tr>
<tr>
<td>III-12</td>
<td>Shorebird and Colonial Waterbird Nesting Activity for Oregon Inlet</td>
</tr>
<tr>
<td>III-13</td>
<td>Annual Piping Plover Observations in the Vicinity of Pea Island</td>
</tr>
<tr>
<td>III-14</td>
<td>Annual Piping Plover Observations in the Vicinity of Bodie Island Spit</td>
</tr>
<tr>
<td>III-15</td>
<td>Beaufort Inlet</td>
</tr>
<tr>
<td>III-16</td>
<td>Hard Structure Located on Western End of Shackleford Banks</td>
</tr>
<tr>
<td>III-17</td>
<td>Coastal Classification of Habitat for Beaufort Inlet, NC</td>
</tr>
<tr>
<td>III-18</td>
<td>Seabeach Amaranth Plants for the Beaufort Inlet Area</td>
</tr>
<tr>
<td>III-19</td>
<td>Seagrass Habitat for Beaufort Inlet, NC</td>
</tr>
<tr>
<td>III-20</td>
<td>Species Occurrence for Beaufort Inlet, NC</td>
</tr>
<tr>
<td>III-21</td>
<td>Sea Turtle Nesting Activity for the Beaufort Inlet Area</td>
</tr>
<tr>
<td>III-22</td>
<td>1998 Aerial Photograph of Beaufort Inlet, NC</td>
</tr>
<tr>
<td>III-23</td>
<td>Wilson’s Plover Nesting Survey Data (CALO)</td>
</tr>
<tr>
<td>III-24</td>
<td>Nesting Surveys for the Least Tern, Black Skimmer, Common Tern, and Gull-Billed Tern (Shackleford Point)</td>
</tr>
<tr>
<td>III-25</td>
<td>Annual Least Tern and Wilson’s Plover Observations (Fort Macon State Park)</td>
</tr>
<tr>
<td>III-26</td>
<td>Annual Piping Plover Observations for Fort Macon and Shackleford Banks, NC</td>
</tr>
<tr>
<td>III-27</td>
<td>Annual Piping Plover Observations for Core Banks, NC</td>
</tr>
<tr>
<td>III-28</td>
<td>Location of Hardbottom and Cultural Resource Surveys Offshore of Beaufort Inlet, Source USACE 2007</td>
</tr>
<tr>
<td>III-29</td>
<td>Amelia Island, Florida</td>
</tr>
<tr>
<td>III-30</td>
<td>Coastal Classification of Habitat for Nassau Sound, FL</td>
</tr>
<tr>
<td>III-31</td>
<td>Species Occurrence for Nassau Sound, FL</td>
</tr>
<tr>
<td>III-32</td>
<td>Sea Turtle Nesting Data from Amelia Island and Little Talbot State Park</td>
</tr>
<tr>
<td>III-33</td>
<td>Amelia Island State Park Non-Nesting Shorebird Observations</td>
</tr>
<tr>
<td>III-34</td>
<td>Amelia Island Nesting Shorebird Observations</td>
</tr>
<tr>
<td>III-35</td>
<td>Bird Islands Non-Nesting Shorebird Observations</td>
</tr>
<tr>
<td>III-36</td>
<td>Bird Islands Nesting Shorebird Observations</td>
</tr>
<tr>
<td>III-37</td>
<td>Little Talbot Island State Park Non-Nesting Shorebird Observations</td>
</tr>
<tr>
<td>III-38</td>
<td>Little Talbot Island State Park Nesting Shorebird Observations</td>
</tr>
</tbody>
</table>

March 2010

vii
Figure III-39. Piping Plover Observations for Little Talbot Island and Bird Islands, Nassau Sound

Figure III-40. Captiva Island, Florida

Figure III-41. Coastal Classification of Habitat for Redfish Pass, FL

Figure III-42. Coastal Habitats of Redfish Pass (1991)

Figure III-43. Seagrass and Mangrove Habitat for Redfish Pass, FL

Figure III-44. Species Occurrence for Redfish Pass, FL

Figure III-45. Sea Turtle Nesting Data from Captiva Island, North Captiva State Park, and Sanibel Island West

Figure III-46. John’s Pass, Florida

Figure III-47. John’s Pass, Florida

Figure III-48. Coastal Classification of Habitat for John’s Pass, FL

Figure III-49. Species Occurrence for John’s Pass, FL

Figure III-50. Sea Turtle Nesting Data for Mid and North Pinellas Beaches

Figure III-51. Seagrass and Tidal Flats for John’s Pass, FL

Figure III-52. Habitat Change for John’s Pass, FL from 1999 to 2006

Figure IV-1. Oregon Inlet Terminal Groin and Revetment

Figure IV-2. Oregon Inlet Terminal Groin Typical Cross-Section

Figure IV-3. Fort Macon Terminal Groin Typical Cross-Section

Figure IV-4. Fort Macon Terminal Groin Initial Construction (1961)

Figure IV-5. Amelia Island Terminal Groin Cross-Sections

Figure IV-6. Amelia Island Terminal Groin

Figure IV-7. 2006 Terminal Groin at Captiva Island

Figure IV-8. Captiva Island Terminal Groin

Figure IV-9. John's Pass Terminal Groin Typical Cross-Section

Figure IV-10. John's Pass Terminal Groins

Figure IV-11. Difference in Total Average Shoreline Change Rate (ft/yr)

Figure IV-12. Cumulative Difference in Volume Change Rate (cy/yr) - With Nourishment

Figure IV-13. Cumulative Difference in Volume Change Rate (cy/yr) - Without Nourishment

Figure IV-14. Interval Difference in Shoreline Change Rate (ft/yr)

Figure IV-15. Interval Difference in Volume Change Rate (cy/yr) - With Nourishment

Figure IV-16. Interval Difference in Volume Change Rate (cy/yr) - Without Nourishment

Figure IV-17. Typical Terminal Groin Profile

Figure IV-18. Permeable Groin vs. Typical Groin

Figure IV-19. Possible Groin Configurations (taken from USACE Coastal Engineering Manual, 2002)

Figure IV-20. Example of Concrete Sheet Piles

Figure IV-21. Examples of Concrete Armor Units

Figure IV-22. Example of Steel Sheet Pile Terminal Groin

Figure IV-23. Example of a Timber Groin

Figure IV-24. Example of a Geotextile Tube
Figure IV-25 Example of Notched Groins (New Jersey DEP Website)......................IV-30
Figure V-1. 30-yr Risk Line and Sandbags at Beaufort Inlet V-6
Figure V-2. 30-yr Risk Line and Sandbags at Bogue Inlet.. V-9
Figure V-3. 30-yr Risk Line and Sandbags at New River Inlet................................. V-12
Figure V-4. 30-yr Risk Line and Sandbags at New Topsail Inlet............................... V-15
Figure V-5. 30-yr Risk Line and Sandbags at Rich Inlet... V-18
Figure V-6. 30-yr Risk Line and Sandbags at Mason Inlet V-21
Figure V-7. 30-yr Risk Line and Sandbags at Masonboro Inlet............................... V-24
Figure V-8. 30-yr Risk Line and Sandbags at Carolina Beach Inlet V-27
Figure V-9. 30-yr Risk Line and Sandbags at Cape Fear Inlet.................................. V-30
Figure V-10. 30-yr Risk Line and Sandbags at Lockwood Folly Inlet........................ V-33
Figure V-11. 30-yr Risk Line and Sandbags at Shallotte Inlet.................................. V-36
Figure V-12. 30-yr Risk Line and Sandbags at Tubbs Inlet...................................... V-39
Figure VI-1. Terminal Groin Length along a Steep Slope....................................... VI-2
Figure VI-2. Terminal Groin Length along a Flat Slope VI-2
Figure VI-3. Rubble Mound Construction... VI-3
Figure VI-4. Example of Concrete Sheet Piles.. VI-4
Figure VI-5. Example of Steel Sheet Pile Terminal Groins...................................... VI-5
Figure VI-6. Example of a Timber Groin.. VI-6
Figure VI-7. Typical Cross Section for Fort Macon Terminal Groin....................... VI-7
Figure VI-8. Oregon Inlet Typical Cross-Section.. VI-8
Figure VI-9. Amelia Island Terminal Groin Typical Cross-Section......................... VI-9
Figure VI-10. Typical Cross-Section for John's Pass Terminal Groin..................... VI-10
Figure VI-11. Typical Cross Section for Short Groin Scenario............................. VI-12
Figure VI-12. Short Groin along a Flat-Sloped Beach... VI-13
Figure VI-13. Short Groin along a Steep-Sloped Beach....................................... VI-13
Figure VI-14. Typical Long Groin Scenario Cross Section.................................. VI-14
Figure VI-15. Long Groin Cross Section on a Flat-Sloped Beach.......................... VI-15
Figure VI-16. Long Groin Cross Section on a Steep-Sloped Beach........................ VI-15
Figure VII-1. Potential Study Sites... VII-1
List of Tables

Table I-1. Terminal Groin Study Meetings and Presentations .. I-3
Table I-2. Public Hearings ... I-5
Table II-1. Factors Affecting Terminal Groins ... II-3
Table II-2. Shoreline Change – Bodie Island (Intervals) ... II-26
Table II-3. Shoreline Change – Bodie Island (Total Average) ... II-26
Table II-4. Shoreline Change – Pea Island (Intervals) ... II-26
Table II-5. Shoreline Change – Pea Island (Total Average) .. II-26
Table II-6. Beach Volume Changes – Bodie Island (Intervals) ... II-29
Table II-7. Beach Volume Changes – Bodie Island (Cumulative) II-29
Table II-8. Beach Volume Changes – Pea Island (Intervals) ... II-29
Table II-9. Beach Volume Changes – Pea Island (Cumulative) II-29
Table II-10. Beach Nourishment and Nearshore Placement – Pea Island II-31
Table II-11. Beach Nourishment and Nearshore Placement – Pea Island II-31
Table II-12. Volume Changes Without Nourishment – Bodie Island (Intervals) II-32
Table II-13. Volume Changes Without Nourishment – Bodie Island (Cumulative) II-32
Table II-14. Volume Changes Without Nourishment – Pea Island (Intervals) II-32
Table II-15. Volume Changes Without Nourishment – Pea Island (Cumulative) II-32
Table II-16. Dredging Volumes – Oregon Inlet ... II-34
Table II-17. Dredging Volumes – Oregon Inlet ... II-35
Table II-18. Volume Change Scenarios Including Dredging Effects – Bodie Island (3 miles) ... II-35
Table II-19. Volume Change Scenarios Including Dredging Effects – Pea Island (6 miles) .. II-35
Table II-20. Shoreline Change – Shackleford Banks (Interval) II-52
Table II-21. Shoreline Change – Shackleford Banks (Total Average) II-52
Table II-22. Shoreline Change – Fort Macon (Interval) .. II-52
Table II-23. Shoreline Change – Fort Macon (Total Average) ... II-52
Table II-24. Beach Volume Changes – Shackleford Banks (Intervals) II-55
Table II-25. Beach Volume Changes – Shackleford Banks (Cumulative) II-55
Table II-26. Beach Volume Changes – Fort Macon (Intervals) II-55
Table II-27. Beach Volume Changes – Fort Macon (Cumulative) II-55
Table II-28. Beach Nourishment – Fort Macon ... II-57
Table II-29. Beach Nourishment – Fort Macon ... II-57
Table II-30. Volume Changes Without Nourishment – Shackleford Banks (Intervals) .. II-58
Table II-31. Volume Changes Without Nourishment – Shackleford Banks (Cumulative) .. II-58
Table II-32. Volume Changes Without Nourishment – Fort Macon (Intervals) II-58
Table II-33. Volume Changes Without Nourishment – Fort Macon (Cumulative) II-58
Table II-34. Dredging Volumes – Beaufort Inlet ... II-61
Table II-35. Dredging Volumes – Beaufort Inlet ... II-61
Table II-36. Volume Change Scenarios Without Nourishment and Dredging – Shackleford Banks (3 miles) ... II-62
Table II-37. Volume Change Scenarios Without Nourishment and Dredging – Fort Macon (3 miles) ... II-62
Table II-38. Shoreline Change – Amelia Island (Intervals) ... II-74
Table II-39. Shoreline Change – Amelia Island (Total Average) II-74
Table II-40. Shoreline Change – Little Talbot Island (Intervals) II-74
Table II-41. Shoreline Change – Little Talbot Island (Total Average) II-74
Table II-42. Beach Volume Changes – Amelia Island (Intervals) II-77
Table II-43. Beach Volume Changes – Amelia Island (Cumulative) II-77
Table II-44. Beach Volume Changes – Little Talbot Island (Intervals) II-77
Table II-45. Beach Volume Changes – Little Talbot Island (Cumulative) II-77
Table II-46. Beach Nourishment – Amelia Island ... II-79
Table II-47. Beach Nourishment – Amelia Island ... II-79
Table II-48. Volume Changes Without Nourishment – Amelia Island (Intervals) II-80
Table II-49. Volume Changes Without Nourishment – Amelia Island (Cumulative) .. II-80
Table II-50. Volume Changes Without Nourishment – Little Talbot Island (Intervals) ... II-80
Table II-51. Volume Changes Without Nourishment – Little Talbot Island (Cumulative) ... II-80
Table II-52. Shoreline Change – Captiva Island (Intervals) II-92
Table II-53. Shoreline Change – Captiva Island (Total Average) II-92
Table II-54. Shoreline Change – North Captiva Island (Intervals) II-92
Table II-55. Shoreline Change – North Captiva Island (Total Average) II-92
Table II-56. Beach Volume Changes – Captiva Island (Intervals) II-95
Table II-57. Beach Volume Changes – Captiva Island (Cumulative) II-95
Table II-58. Beach Volume Changes – North Captiva Island (Intervals) II-95
Table II-59. Beach Volume Changes – North Captiva Island (Cumulative) II-95
Table II-60. Beach Nourishment – Captiva Island ... II-97
Table II-61. Beach Nourishment – Captiva Island ... II-97
Table II-62. Volume Changes Without Nourishment – Captiva Island (Intervals) II-98
Table II-63. Volume Changes Without Nourishment – Captiva Island (Cumulative) . II-98
Table II-64. Volume Changes Without Nourishment – North Captiva Island (Intervals) ... II-98
Table II-65. Volume Changes Without Nourishment – North Captiva Island (Cumulative) ... II-98
Table II-66. Shoreline Change – Madeira Beach (Intervals) II-111
Table II-67. Shoreline Change – Madeira Beach (Total Average) II-111
Table II-68. Shoreline Change – Treasure Island (Intervals) II-111
Table II-69. Shoreline Change – Treasure Island (Total Average) II-111
Table II-70. Beach Volume Changes – Madeira Beach (Intervals) II-114
Table II-71. Beach Volume Changes – Madeira Beach (Cumulative) II-114
Table II-72. Beach Volume Changes – Treasure Island (Intervals) II-114
Table II-73. Beach Volume Changes – Treasure Island (Cumulative) II-114
Table II-74. Beach Nourishment – Treasure Island ... II-116
Table II-75. Beach Nourishment – Treasure Island ... II-116
Table II-76. Volume Changes Without Nourishment – Madeira Beach (Intervals) ... II-117
Table II-77. Volume Changes Without Nourishment – Madeira Beach (Cumulative) .. II-117
Table II-78. Volume Changes Without Nourishment – Treasure Island (Intervals) .. II-117
Table II-79. Volume Changes Without Nourishment – Treasure Island (Cumulative) .. II-117
Table II-80. Dredging Volumes – John’s Pass ... II-119
Table II-81. Dredging Volumes – John’s Pass ... II-119
Table II-82. Volume Change Scenarios Without Nourishment and Dredging – Madeira Beach.. II-120
Table II-83. Volume Change Scenarios Without Nourishment and Dredging – Treasure Island.. II-120
Table II-84. Environmental Climate of the Five Study Sites.. II-121
Table II-85. Terminal Groin Physical Characteristics .. II-121
Table II-86. Comparison of the Shoreline Change Rates ... II-124
Table II-87. Shoreline Change to Beach Volume Ratios ... II-124
Table II-88. Total Annual Beach Nourishment ... II-125
Table II-89. Volume Changes Without Nourishment .. II-125
Table II-90. Dredging Summary .. II-129
Table II-91. Volume Change Scenario Net Nourishment and Dredging – 25% Scenario ... II-129
Table II-92. Volume Change Scenario Net Nourishment and Dredging - 50% Scenario ... II-130
Table III-1. Enumerated list of representatives contacted for environmental data and/or information as it relates to terminal groins .. III-2
Table III-2. Threatened and endangered species potentially present within the selected study sites .. III-11
Table III-3. Sea turtle management zones south of Oregon Inlet III-30
Table III-4. Sea turtle management zones north of Oregon Inlet III-30
Table III-5. Piping plover counts – results of Morehead City Audubon Christmas Bird Count, for 1971 through 2008 .. III-63
Table III-6. Peak larval abundance of seven important fish species near Beaufort Inlet ... III-66
Table III-7. Shorebird species confirmed to nest in the Nassau Sound area, with known nesting locations indicated .. III-84
Table III-8. Fish species within and adjacent to the Nassau Sound III-92
Table III-9. Common bird species within the vicinity of Redfish Pass III-105
Table III-10. Number of shorebird nests on Sanibel Island in 2002 and 2003 III-106
Table III-11. Commercial values of fish species harvested in Lee County for the period between 1992 through 1998 ... III-108
Table III-12. Invertebrates within and adjacent to John’s Pass III-121
Table IV-1. Oregon Inlet Terminal Groin and Revetment Structural Information IV-3
Table IV-2. Fort Macon Terminal Groin Structural Information IV-5
Table IV-3. Amelia Island Terminal Groin Structural Information IV-7
Table IV-4. John’s Pass Terminal Groin Structural Information IV-12
Table IV-5 Groin Lengths for Five Study Sites .. IV-15
Table IV-6 Groin Height Relative to MTL for Five Study Sites
Table V-1. Economic Value at Risk Within 30-yr Risk Lines at Beaufort Inlet
Table V-2. Economic Value at Imminent Risk (Sandbags) – Beaufort Inlet
Table V-3. Economic Value at Risk Within 30-yr Risk Lines at Bogue Inlet
Table V-4. Economic Value at Imminent Risk (Sandbags) – Bogue Inlet
Table V-5. Economic Value at Risk Within 30-yr Risk Lines at New River Inlet
Table V-6. Economic Value at Imminent Risk (Sandbags) – New River Inlet
Table V-7. Economic Value at Risk Within 30-yr Risk Lines at New Topsail Inlet
Table V-8. Economic Value at Imminent Risk (Sandbags) – New Topsail Inlet
Table V-9. Economic Value at Risk Within 30-yr Risk Lines at Rich Inlet
Table V-10. Economic Value at Imminent Risk (Sandbags) – Rich Inlet
Table V-11. Economic Value at Risk Within 30-yr Risk Lines at Mason Inlet
Table V-12. Economic Value at Imminent Risk (Sandbags) – Mason Inlet
Table V-13. Economic Value at Risk Within 30-yr Risk Lines at Masonboro Inlet
Table V-14. Economic Value at Imminent Risk (Sandbags) – Masonboro Inlet
Table V-15. Economic Value at Risk Within 30-yr Risk Lines at Carolina Beach Inlet
Table V-16. Economic Value at Imminent Risk (Sandbags) – Carolina Beach Inlet
Table V-17. Economic Value at Risk Within 30-yr Risk Lines at Cape Fear Inlet
Table V-18. Economic Value at Imminent Risk (Sandbags) – Cape Fear River Inlet
Table V-19. Economic Value at Risk Within 30-yr Risk Lines at Lockwood Folly Inlet
Table V-20. Economic Value at Imminent Risk (Sandbags) – Lockwood Folly Inlet
Table V-21. Economic Value at Risk Within 30-yr Risk Lines at Shallotte Inlet
Table V-22. Economic Value at Imminent Risk (Sandbags) – Shallotte Inlet
Table V-23. Economic Value at Risk Within 30-yr Risk Lines at Tubbs Inlet
Table V-24. Economic Value at Imminent Risk (Sandbags) – Tubbs Inlet
Table VI-1. Fort Macon Terminal Groin Estimated Costs
Table VI-2. Oregon Inlet Terminal Groin Estimated Costs
Table VI-3. Amelia Island Terminal Groin Estimated Costs
Table VI-4. John's Pass Terminal Groin Estimated Costs
Table VI-5. Captiva Island Terminal Groin Estimated Costs
Table VI-6. Short Groin Scenario Unit Costs
Table VI-7. Long Groin Scenario Unit Costs
Table VI-8. Summary of Estimated Costs for 5 Selected Sites
Table VI-9. Estimated Costs for Potential North Carolina Groins
Table VI-10. Total Project Costs
Table VII-1. Potential Terminal Groin Study Site Locations
Table VII-2. Environmental Conditions at Five Selected Study Sites
Table VII-3. Dredging Summary