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Executive Summary: 2015 Science Panel Update to 2010 Report and 
2012 Addendum 

Charge: This report has been written by the members of the Science Panel as a public service in 
response to a charge from the Coastal Resources Commission (CRC) and the N.C. General Assembly 
Session Law 2012-202. The CRC charge specified that sea level rise projections be developed for a 30-
year timeframe. 

Background: The Science Panel, along with six additional contributors, issued a report in March 2010 
titled “North Carolina Sea Level Rise Assessment Report.” In response to a series of questions by the 
CRC, in April 2012 the panel issued a follow up Addendum to the report. As stated in these documents, 
the Science Panel recommendation was for re-assessments to be completed every five years. The 
present document serves as the 2015 update of the 2010 report. 

Approach: It is critical to the Science Panel that our process be transparent. Therefore all numerical 
values used in this report, as well as the corresponding sources, are presented. In addition, 
mathematical calculations and formulas employed are described in detail. 

What’s New: This document expands on the 2010 report and 2012 addendum in a number of important 
ways, including the following: 

• Inclusion of scenario based global sea level rise predictions from the most recent Intergovernmental 
Panel on Climate Change (IPCC) Report (AR5). 

• Emphasis on the spatial variation of relative sea level rise rates as evidenced by the analysis of data 
collected by NOAA tide gauges along the North Carolina coast. 

• Additional discussion of the expected spatial variability in relative sea level rise rates along the North 
Carolina coast due to geologic factors.  

• Review of recent research indicating that ocean dynamics effects may be a significant source of 
spatial variability in existing relative sea level rise rates along the North Carolina coast. 

• Discussion of recent research into the impacts of sea level rise on the frequency of relatively minor 
coastal flooding not necessarily associated with storms (nuisance flooding). 

• Examination of dredging effects on tide range and sea level signal. 
• Consideration of a 30-year time frame for sea level rise projections as requested by the CRC. 
• Development of a range of predictions at each of the long-term tide gauges along the North Carolina 

coast based on a combination of local vertical land motion information and the IPCC scenarios. 

Summary: Sea level is rising across the coast of North Carolina. The rate of local sea level rise varies, 
depending on location (spatially) and the time frame for analysis (temporally). Two main factors affect 
the spatial variation of rates of sea level rise along the North Carolina coast: (1) vertical movement of 
the Earth’s surface, and (2) effects of water movement in the oceans (including the shifting position and 
changing speed of the Gulf Stream). There is evidence from both geological data and tide gauges that 
there is more land subsidence north of Cape Lookout than south of Cape Lookout. This contributes to 
higher measured rates of sea level rise along the northeastern N.C. coast. Oceanographic research 
reveals a strong link between speed and position of the Gulf Stream and sea level. This effect has been 
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observed to increase sea level primarily north of Cape Hatteras. The differences in the rates of relative 
sea level rise (meaning, the rate of sea level rise at a specific location including local effects, and distinct 
from the global average rate of sea level rise) at different locations along the North Carolina coast are 
evident in the sea level trends reported by the National Oceanic and Atmospheric Administration 
(NOAA) at tide gauge stations along the North Carolina coast. Five tide gauges along the state’s coast 
have collected water level data for long enough to have reported sea level trends. Two are located in 
Dare County: one of those at the U.S. Army Corps of Engineers’ Field Research Facility in Duck and 
another at the Oregon Inlet Marina. A third is located in Carteret County at the Duke University Marine 
Lab dock in Beaufort. The fourth station is located in Wilmington, at the U.S. Army Corps of Engineers’ 
maintenance yard and docks at Eagle Island. This location is in New Hanover County, immediately 
adjacent to Brunswick County. These stations still continue to record water level data. The fifth station 
was located at the Southport Fishing Pier, but is no longer active.  

NOAA makes available these data and an analysis of rate based on linear regression. Data span the time 
period from the initial installation of the gauge through December 2013 for the gauges at Duck, Oregon 
Inlet Marina, Beaufort and Wilmington and through 2008 for the gauge at Southport. NOAA reports a 
high, a low, and a mean value for the rate of relative sea level rise using a 95% confidence interval for 
each gauge. The Science Panel worked closely with Dr. Chris Zervas (e.g., Zervas 2001, Zervas 2009, 
Zervas et al. 2013) at the NOAA National Ocean Service Center for Operational Oceanographic Products 
and Services, who provided additional analyses of tide gauge data for this report. The existing published 
rate of sea level rise is converted to a future elevation by multiplying the rate plus or minus the 95% 
confidence interval (for the high/low estimates respectively) by 30 years – the time frame specified by 
the CRC for the projections in this update.  

Since tide gauges only measure past sea levels, the Science Panel used the most recent report of the 
Intergovernmental Panel on Climate Change (AR5) to provide scenario-based global sea level rise 
projections. The scenarios chosen to model sea level rise over the next 30 years are the IPCC’s low 
greenhouse gas emissions scenario (RCP 2.6) and the high greenhouse gas emissions scenario (RCP 8.5), 
as all other scenario projections fall within the range of these two. These values were combined with 
rates of vertical land movement (subsidence) determined by the analysis of tide gauge records and 
provided by NOAA (Zervas et al. 2013; Zervas, pers. comm. 2014) to develop a range of values across the 
North Carolina coast. 

Table ES1 summarizes the results. Using existing gauge rates, sea level rise across North Carolina by 
2045 would vary from a low estimate of 2.4 inches (with a range between 1.9 and 2.8 inches) at 
Southport to a high estimate of 5.4 inches (with a range between 4.4 and 6.4 inches) at Duck. 
Considering the IPCC scenario RCP 2.6 combined with vertical land movement, sea level rise would vary 
from a low estimate of 5.8 inches (with a range between 3.5 and 8.0 inches) at Wilmington to a high 
estimate at Duck of 7.1 inches (with a range between 4.8 and 9.4 inches). Considering IPCC scenario RCP 
8.5 with vertical land movement, sea level rise would vary from a low estimate of 6.8 inches (with a 
range between 4.3 and 9.3 inches) at Wilmington to a high estimate at Duck of 8.1 inches (with a range 
between 5.5 and 10.6 inches). 
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Table ES1. Three relative sea level rise (RSLR) scenarios by 2045 using published tide gauge rates (NOAA 
2014a), and IPCC scenario projections RCP 2.6 and RCP 8.5 (Church et al. 2013) representing the lowest and 
highest greenhouse gas emission scenarios, combined with local vertical land movement (VLM) at each tide 
gauge.* 

Station 

Tide Gauge 
Projections IPCC RCP 2.6 + VLM IPCC RCP 8.5 + VLM 

RSLR in 30 years 
(inches) 

RSLR in 30 years 
(inches) 

RSLR in 30 years 
(inches) 

Mean Range Mean Range Mean Range 

Duck 5.4 4.4-6.4 7.1 4.8-9.4 8.1 5.5-10.6 

Oregon Inlet 4.3 2.7-5.9 6.3 3.9-8.7 7.3 4.7-9.9 

Beaufort 3.2 2.8-3.6 6.5 4.2-8.7 7.5 5.0-10.0 

Wilmington 2.4 2.0-2.8 5.8 3.5-8.0 6.8 4.3-9.3 
Southport 2.4 1.9-2.8 5.9 3.7-8.2 6.9 4.4-9.4 

*Note: Projections were rounded to the nearest tenth of an inch. 

 

Using the Projections: The range of sea level values (from 1.9 to 10.6 inches) reported in Table ES1 
reflects both the uncertainty in the predictions and the spatially varying nature of sea level in North 
Carolina. Economic, social and environmental sustainability in the coastal region of North Carolina will, 
in part, be dependent on how this information is used. Agency groups should work in an open and 
informed manner with the scientific community, local landowners and political bodies, and other 
affected stakeholders to consider acceptable levels of risk. Planning objectives that span longer time 
frames (greater than 30 years) will require looking at the IPCC results directly as the IPCC scenarios begin 
to differ significantly beyond 30 years.  

Table ES1 reflects change in mean sea level. Recent research into the frequency of coastal flooding has 
shown that, regardless of the rate of rise, as the mean sea level increases, North Carolinians should 
expect more frequent flooding of low-lying areas. 

Future Data Collection, Data Analysis and Reporting: Recommendations are made to: 

• continue to monitor oceanographic research with regards to the effect of ocean-atmospheric 
oscillations and regional ocean currents (e.g., the Gulf Stream) on sea level, 

• sustain existing water level recording stations and land movement measurements and establish 
additional gauges to provide more complete spatial coverage, 

• review updated satellite sea level data as the record is extended and consider use of these data 
in the future, 

• consider additional analysis of the tide gauge data to standardize the time period covered using 
the NOAA analysis of rate procedures, and 

• update the assessment every five years to include the rapidly changing science of projecting sea 
level rise.  
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1. Introduction 

In 1954, Hurricane Hazel made landfall at the border of North Carolina and South Carolina as a 
category 4 hurricane arriving at spring high tide and packing 140 mph winds (Smith 2014). Her 
winds, waves and 18-ft storm surge swept across the barrier islands causing wide-spread 
destruction along the coast. In North Carolina, 19 people died; on Long Beach only five of 357 
homes survived. Hurricane Hazel was one of the most damaging storms in North Carolina 
history. Because of the sea level change that has occurred since, a storm of similar intensity 
today, 60 years later, would have a storm surge approximately 5 inches higher (~10 inches 
higher north of Cape Hatteras). In low lying areas of the coast, a few inches may be the 
difference between the ground floor of a house staying dry or being underwater. Sea Level 
change is not a new coastal hazard, but over time it “exacerbates existing coastal hazards such 
as flooding from rain or tide, erosion, and storm surge” (Ruppert 2014). Over time, rising water 
levels also increase the occurrence of nuisance flooding (flooding events not necessarily 
associated with storms) during more frequent events (like monthly spring tides) (Sweet et al. 
2014, Sweet and Park 2014, Ezer and Atkinson 2014).  

Because of the potential impact of future sea levels to coastal North Carolina, in 2009 the 
Coastal Resources Commission (CRC) asked the Science Panel on Coastal Hazards to develop an 
assessment of future sea levels for NC. The first assessment was published in March 2010 (NC 
Science Panel 2010). Because climate and sea level science is advancing rapidly, the 2010 report 
recommended an update every five years. In 2013 the CRC, responding to Session Law 2012-
202 from the N.C. General Assembly, requested the first 5-year update using the latest science 
to estimate future sea levels. The CRC requested that the update consider only the next 30 
years, from 2015 to 2045 (see Appendix A for the charge from the CRC and Appendix B for S.L. 
2012-202) rather than the 90-year timeframe used in the original report.  

Since our original report, there have been significant advances in climate science and the 
publication of several major reports, including the 2013 report of Working Group I (WG1) to the 
Fifth Assessment (AR5) of the Intergovernmental Panel on Climate Change (IPCC 2013b, 2013c). 
That report is a thorough and updated analysis of climate and sea level prediction. It represents 
a 5-year effort by 250 authors and their conclusions were based on 9,200 published papers and 
were finalized after fielding 50,000 comments.  

Because the IPCC report is based on peer-reviewed research and is itself peer-reviewed science, 
it is the most widely used and vetted climate document. We make use of their projections in 
the present report. The AR5 scenarios are currently also being used in recent efforts by New 
York State (New York State Energy Research and Development Authority 2014) and the 
Canadian coast (Zhai et al. 2014). 
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Also published since our 2010 report are the 2014 update to the United States National Climate 
Assessment, which includes sea level predictions (Melillo et al. 2014) and a series of studies of 
sea level along the Atlantic coast which are relevant to North Carolina and are discussed in this 
report.  

In this update, we: 

1) Introduce the concept of sea level and the variables that control sea level change; 

2) Provide and explain how sea level change varies across coastal North Carolina and the 
factors that control that variation; 

3) Present a range of sea level values appropriate for different areas of North Carolina, 
which may occur by 2045 based on the IPCC scenarios as well as local geologic and 
oceanographic variations; 

4) Provide guidance as to how to interpret and make use of these values. 

2. Sea Level Change: What influences ocean water levels? 

The sea level at any location and time is known at the Relative Sea Level or RSL, which is the 
combination of three primary factors including the Global Sea Level (GSL), Vertical Land 
Movement (VLM) and Oceanographic Effects (OE). GSL and RSL are discussed in this section; 
VLM and OE are discussed in Section 3. These parameters are usually discussed in terms of their 
rates of temporal change, commonly expressed in mm/year. 

2.1 Historical Sea Level Change 

Over the scale of 10,000s to 100,000s of years, climate has oscillated between extensive 
periods of cold and warm phases, triggering the uptake of seawater in glacial ice during cold 
stages of global climate and the release of this water during warm episodes (Wright 1989). 
Periods of glaciation and interglaciation, and the corresponding fall and rise of sea level 
respectively have been well documented in the geologic record using an array of indicators 
[e.g., oxygen isotopes in calcium carbonate fossils, coral reef terraces, marsh peat elevation and 
geochemistry, paleo-shorelines, etc. (Cohen and Gibbard 2011; Blanchon and Shaw 2005; NOAA 
2014b)]. The cyclicity of the “Ice Ages” has been used to signify the Quaternary geologic period, 
which includes both the Pleistocene and Holocene Epochs. 

As depicted in Figure 1 (Imbrie et al. 1984) the most recent previous interglacial (warm) period 
was approximately 125,000 years ago when sea level was ~16 to 20 feet above present, which 
was subsequently followed by a period of glaciation that reached a maximum at ~20,000 years 
ago when sea level was ~425 feet below present. Currently, we are in a warm phase that was 
first marked by rapid de-glaciation and rising sea level, which also represents the demarcation 
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of the Pleistocene/Holocene boundary (Figure 2, Donoghue 2011; Fairbanks 1989; Peltier and 
Fairbanks 2006; Bard et al. 2010). Climate and sea level have relatively plateaued over the past 
5,000 years and sea level is estimated to have risen on the order of 3 feet during this timeframe 
(Figures 2 and 3; Kemp et al. 2011).  

 

 

Figure 1. Global sea level curve over the scale of 100,000s of years developed from the marine delta 18O 
record, which also depicts the last interglacial highstand and glacial maximum. (Modified from Imbrie et al. 
1984) 

 

 

Figure 2. Global sea level curve over the scale of the past 10,000s of years based on radiocarbon-dated reef 
corals and paleoshoreline indicators constraining sea level movement since the last glacial maximum. 
(Adapted from Donoghue 2011). 
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Figure 3. Sea level curve over the scale of the past decades or centuries of years based on N.C. salt marsh 
records, presented along with the N.C. and S.C. tide gauge records superimposed upon the latter portion of 
the salt marsh data. The rate of sea level rise has ranged from approximately 0–2 mm/year during the 
timeframe shown. (Adapted from Kemp et al. 2009) 

 

2.2 Global or Eustatic Sea Level (GSL) 

Sea level movement attributable to changes in the volume of water in the world’s ocean basins, 
in general responding to cooling and warming, is referred to as eustatic or Global Sea Level 
(GSL) change. There are many forces driving changes in water volume (Table 1, Church et al. 
2013) and future GSL is anticipated to be controlled predominantly by the thermal expansion of 
ocean water and mass loss from glaciers, ice caps, and ice sheets on the Earth’s surface.  

 

Table 1. Major factors contributing to Global Sea Level (GSL), representing the volume change of water in the 
world’s ocean basins; and their respective inputs to the present rate of GSL change. (Adapted from Church 
et al. 2013.) 

FACTORS CONTRIBUTING TO GLOBAL SEA LEVEL (GSL)  
FROM 1993-2010 

Thermal Expansion (+) or Contraction (-) 39% 
Glaciers (non Greenland and Antarctica) 27% 

Greenland and Antarctic ice sheets 21% 

Land water storage 13% 
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2.3 Relative Sea Level (RSL) 

Relative sea level is the measurement of the sea surface elevation relative to a local datum 
incorporating both the global rate of rise and other dynamics affecting land and/or sea 
movement such as tectonic uplift, land subsidence, glacial isostatic adjustment (GIA), ocean-
atmospheric oscillations, and other non-climatic local oceanographic effects (Table 2, Church et 
al. 2013). Importantly, tide gauges and satellites record relative sea level changes at particular 
locations. For instance, in areas where mountain building is occurring, the land may be rising at 
a rate close to that of GSL. Therefore, the measured rate of sea level rise would be close to 
zero. Conversely, in areas where land is subsiding (sinking), sea level measurements will record 
sea level rise at a higher rate than global sea level rise because GSL is rising and the land is 
sinking, producing an additive effect.  

 

Table 2. Major factors contributing to positive and negative changes to the surface of the Earth and sea. 
These changes affect Relative Sea Level (RSL). (Adapted from Church et al. 2013.) 

FACTORS CONTRIBUTING TO CHANGES IN THE EARTH & SEA SURFACES 

LAND SEA 

Plate Tectonics Ocean-Atmospheric Oscillations 
  Faults    El Niño Southern Oscillation 

  Volcanic-isostasy 
Earthquakes   

Atlantic Multi-decadal Oscillation 
Pacific Decadal Oscillation 

Glacial Isostatic Adjustment   
Oceanographic effects on western 
boundary currents like the Gulf Stream 

Subsidence  River run-off/floods 
  Structural deformation Astronomical Tides  
  Compaction Wind driven pile up  
  Loss of interstitial fluids  Sea Surface Topography  
    (hydrocarbon and/or water)    (changes in water density & currents) 

 

3. Relative Sea Level Change: What causes variation across North 
Carolina? 

Along the North Carolina coast, sea level is rising. The rate of rise varies depending on the 
location. There are two primary reasons for this variation: vertical land motion (VLM) and the 
effects of ocean dynamics. These are discussed in this section. 
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3.1 Vertical Land Motion (VLM) 

Two primary regional elements impact vertical land motion that have long-term overprints on 
North Carolina’s relative sea level record – structural deformation of the bedrock underlying 
the coastal plain (Grow and Sheridan 1988; Klitgord and Hutchinson 1988; N.C. Geological 
Survey 1991; Snyder et al. 1993) and glacial isostatic adjustment in response to the retreat of 
glacial ice sheets in North America (Horton et al. 2009; Peltier 2004). These factors segregate 
the North Carolina Coastal Plain into different zones of relative sea level change. 

Tectonic Structural Deformation Resulting in Subsidence and Uplift 

The rifting of the supercontinent Pangea and formation of the Atlantic Ocean that began 180 
million years ago had (and continues to have) a pronounced impact on the spatial geometry 
and physical dynamics of the N.C. Coastal Plain and Continental Shelf (Dillon and Popenoe 1988; 
Gohn 1988; Klitgord and Hutchinson 1988; Riggs et al. 2011). The resulting deformation of the 
crystalline rock (bedrock) created structural lows providing basins for subsequent deposition of 
thick sequences of sediment/rock, and structural highs that limited the amount of 
sediment/rock accumulation. The rates of modern subsidence and uplift are related to the 
processes still at work that created the highs and lows of the bedrock surface and determined 
the thickness of sediment/rock accumulation, as well as the subsequent erosion and loss of 
sediments/rocks. In general, there is a greater amount of subsidence associated with the 
structural lows that correspond to areas of thick sediment/rock accumulation and conversely, 
less subsidence, or a greater likelihood of uplift associated with the structural highs and areas 
of low sediment/rock accumulation areas. This produces the fundamental differences between 
the southeastern and northeastern North Carolina coastal systems, which are characterized by 
stability to slight uplift and subsidence, respectively (Riggs 1984; Poponoe 1990; Riggs and 
Belknap 1988; Schlee et al. 1988; Riggs et al. 1990, 1995; Snyder et al. 1990).  

Glacial Isostatic Adjustment (GIA) 

GIA describes the Earth’s rebound, both positively and negatively, from the melting of 
kilometers-thick ice sheets that covered much of North America and Europe during the last 
glacial maximum approximately 20,000 years ago (Peltier 2004). Accumulation and subsequent 
melting of vast ice masses caused the depression and release, respectively, of the Earth’s 
surface beneath the ice sheet and developed fore-bulges of the surface out in front of the ice 
sheet. The ongoing rates of GIA rebound are measured directly in the northern portions of the 
U.S., but are primarily estimated based upon model studies within the southern portions of the 
country, including North Carolina. More specifically, models for the northeastern North 
Carolina coastal system demonstrate the region was part of a fore-bulge that lifted the Earth’s 
surface upward during the last glacial maximum, but which has been collapsing (subsiding) 
since and continues today (Engelhart et al. 2009, 2011; Horton et al. 2009). This phenomenon 
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also causes some ocean basins to be subsiding as mantle material moves from under the 
oceans into previously glaciated regions on land.  

Other Factors Influencing Vertical Land Motion 

The extraction of fluids such as water and fossil fuels from subsurface sediments by extensive 
pumping is also known to increase regional land subsidence as evidenced in southern 
Chesapeake Bay, Va.; Houston, TX; etc. (Eggleston and Pope 2013; Coplin and Galloway 1999). 
However no studies have been conducted citing fluid extraction as a factor in eastern North 
Carolina, even in the coast’s major water Capacity Use Areas where high levels of fresh-water 
aquifer pumping occurs; specifically the Central Coastal Plain Capacity Use Area or in the 
Capacity Use Area #1 region near the Aurora phosphate mine and Pamlico River Estuary (NC 
Department of Environment and Natural Resources 2014). 

Geological Zonation of the North Carolina Coastal Plain  

Studies demonstrate there is a regional effect of uplift and subsidence on RSL rise in North 
Carolina (Engelhart et al. 2009, 2011; Kemp et al. 2009, 2011; van de Plassche et al. 2014). 
However on the basis of existing data, it is extremely difficult to separate the effects of 
structural deformation from GIA processes. Consequently, the Science Panel assumes for the 
purpose of this analysis that both processes are ongoing and differentially impact the North 
Carolina coastal system. Because no data are available to constrain the precise inputs of the 
two processes, they are considered together as a net influence on vertical land motion. Regions 
with substantial variations in the rate of vertical land motion have been delineated for coastal 
North Carolina and are described below and graphically depicted in Figure 4. The figure was 
developed by members of the Science Panel and it is important to note the lines represent the 
general location of divisions in geologic characteristics and are not to be interpreted as 
delineation for policy implementation. 

Zone 1: Carolina Platform: Old crystalline basement rocks form a high platform within 
this zone that is capped by a relatively thin layer of younger marine sediment units. This 
results in higher land topography; a broad, shallow, rock-floored continental shelf; and a 
coastal system of narrow barrier islands and estuaries (Riggs et al. 1995, 2011). This 
zone is characterized by a relative rate of uplift of 0.24 mm/yr ±0.15 mm (van de 
Plassche et al. 2014).  

Zone 2: Albemarle Embayment: The old crystalline basement rocks slope downward to 
the north forming a deep basin which has been buried through time with a very thick 
layer of younger marine sediments (Mallinson et al. 2009). This results in very low land 
topography; a narrow and deep sediment-floored continental shelf; and a coastal 
system dominated by broad, embayed estuaries and high wave energy barrier islands 
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(Riggs et al. 1995, 2011). This zone is characterized by a high rate of relative subsidence 
of 1.00 ± 0.10 mm/yr (Engelhart et al. 2009, 2011; Kemp et al. 2009, 2011). 

Zone 3: Cape Lookout Transition Zone: This intermediate zone occurs in the region 
where the crystalline basement rocks of the Carolina Platform (Zone 1) dip gradually 
into the deeper basin of the Albemarle Embayment (Zone 2) (Snyder et al. 1990, 1993). 
The resulting coastal system contains sediment rich barrier islands with extensive beach 
ridges, dune fields, and moderate sized shore-parallel estuaries (Riggs et al. 1995, 2011). 
Since there is a general northward slope of both the basement rocks and the younger 
sequence of marine deposits between the uplift of Zone 1 and the subsidence of Zone 2, 
the vertical land movement in this area likely falls in a range between those two zones. 

Zone 4: Inner Estuarine Hinge Zone: This is an intermediate zone that generally 
constitutes the central Coastal Plain in northeastern NC. It represents the transition 
from the upper Coastal Plain to the west and the lower Coastal Plain to the east which is 
dominated by the Albemarle Embayment (Zone 2) (Brown et al. 1972; Riggs 1984). The 
crystalline bedrock occurs at intermediate depths and is covered by a moderately thick 
sequence of older marine sediments. The coastal system within this hinge zone consists 
of the inner or western portions of the drowned river estuaries that grade westward 
and upslope into the riverine systems of the stable upper Coastal Plain (Riggs et al. 
1995, 2011). Since the Inner Estuarine Hinge Zone occurs between the stable region of 
the upper Coastal Plain to the west and the subsiding Albemarle Embayment (Zone 2) to 
the east, subsidence is estimated to have an approximate value between zero and 1 
mm/yr (as measured in Zone 2). 

The information presented for Zones 1 through 4 is intended to be utilized as estimates of the 
VLM contribution characterizing the difference between the GSL and the different RSL values 
observed along the North Carolina coast. This assumption is predicated by the following: (1) the 
geographic area of each zone is large and therefore the underlying geology is spatially 
heterogeneous, resulting in different rates of VLM within each zone; (2) similarly, the collapse 
of the deglaciation fore-bulge is also not uniform across the northern provenance of the state 
and subsidence rates across Zones 2 and 4 most notably will be different; (3) the VLM numbers 
were obtained from sediment studies at two discrete locations in two of the four zones—the 
VLM calculation therefore is applicable to only the specific sampling location(s) and again may 
not represent the entire zone; and (4) no exact VLM numbers are provided for Zones 3 and 4, 
rather, the values are expected to be in a range between known values in adjacent zones. 
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Figure 4. Zones of uplift and subsidence across coastal North Carolina based on major differences in 
structure, composition, and thickness of the underlying geologic framework. 

 

3.2 Oceanographic Effects 

Data observed from tide gauges (NOAA 2014a) show sea level rise rates along the mid-Atlantic 
coast of more than twice the global sea level rise average rate from 1900 to 2009 of 1.7 mm/yr 
determined by Church and White (2011). Some of that difference is attributed to vertical land 
movement, discussed in the previous section, and the remainder to short and longer term 
oceanographic effects (see Table 2). Examples relevant to the N.C. coast include sea level 
response to the Atlantic Multi-decadal Oscillation (AMO), North Atlantic Oscillation (NAO), and 
velocity changes and position shifting of the Gulf Stream (Ezer et al. 2013). The signature of 
these is imprinted in the sea level record (both satellite and tide gauge measurements) and 
considerable recent research has looked at separating out temporal, local, and global effects. 

Sallenger et al. (2012) identified a “hotspot” approximately 600 miles north of Cape Hatteras 
where the sea level rise rate increase was 3 to 4 times the global rate, while south of Cape 
Hatteras there was no increase. Houston and Dean (2013) examined the tide gauge analysis of 
Sallenger et al. (2012) and pointed out that because of long-term quasi-periodic variations in 
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the record up to 60 years (see Chambers et al. 2012), the records used for computing 
acceleration were too short. Most studies use a linear (or quadratic) regression analysis to 
compute the sea level trend and acceleration which is sensitive to both record length and the 
variation included in the period of coverage. Ezer (2013), and Ezer and Corlett (2012) used an 
Empirical Mode Decomposition/Hilbert-Huang Transformation (EMD/HHT) to remove the 
quasi-periodic variations from the trend, thereby allowing the direct computation of the 
acceleration in the record. They found similar findings to those of Sallenger et al. (2012) and 
Boon (2012) with marked differences north and south of Cape Hatteras. There is evidence that 
the Atlantic Ocean circulation is slowing down (Smeed et al. 2014), resulting in a weakening of 
the Gulf Stream. Ezer et al. (2013) and Ezer (2013) hypothesize that variations in the Gulf 
Stream location and strength change the sea surface height gradient, raising sea level along the 
U.S. East Coast north of Cape Hatteras and lowering sea level in the open ocean southeast of 
the Gulf Stream. They correlate observational data to Gulf Stream changes in support of this 
hypothesis. 

Kopp (2013) examined the findings in the mid-Atlantic of Boon (2012), Sallenger et al. (2012), 
and Ezer and Corlett (2012) using a different technique, a Gaussian Process model. He 
confirmed a recent shift toward higher than global sea level rise rates in the mid-Atlantic, but 
noted that the rates were not unprecedented within the available record and would need to 
continue for two more decades before they would exceed the range of past variability. Yin and 
Goddard (2013) and Calafat and Chambers (2013) also examine the relationship between 
variation in oceanographic observations and sea level change along the Atlantic coast and 
obtained similar patterns as in Ezer (2013). 

Along with these studies of the change in RSL along the Atlantic coast are new studies into the 
increased frequency of minor flooding. Flooding occurs when sea level, typically during a storm 
or during high tide, exceeds land elevation. Sweet et al. (2014), Sweet and Park (2014) and Ezer 
and Atkinson (2014) show that water level exceedance above an elevation threshold for 
“minor” (meaning, not necessarily associated with a storm event) coastal flooding, established 
by the local NOAA National Weather Service forecast offices, has increased over time, and that 
minor, nuisance flooding event frequencies are accelerating at many East and Gulf Coast 
gauges. They found that some of the increased frequency of flooding resulted both from high 
rates of VLM at locations like Duck, N.C. and from natural oceanographic variation. These 
factors were less important at Wilmington, N.C. but the frequency of nuisance flooding has also 
increased there because of the low elevation threshold established by the local forecast office. 
Ezer and Atkinson (2014) and Boon (2012) have both examined nuisance flooding using 
available tide station data. All of these studies strongly indicate that, as mean sea level rises, 
the frequencies of flooding will increase at all locations. 

The studies discussed above, all published in just the past two years, represent the interest and 
focus on the mid-Atlantic and the challenge of separating naturally varying ocean dynamics 
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from GSL changes. Relevant to North Carolina is the growing evidence that sea level change is 
currently greater north of Cape Hatteras (after the Gulf Stream separates from the coast) than 
it is to the south and that oceanographic effects at times can greatly influence RSL along the 
coast. At this stage, it is unknown whether oceanographic effects on RSL will persist into the 
future; however, this is an important area of current oceanographic research which should be 
followed closely in future sea level rise assessment reports.  

The variability of relative sea level change along the North Carolina coast is examined further in 
the following section, using data measured at tide gauges.  

4. Tide Gauge Data in North Carolina 

In North Carolina there are five NOAA tide gauges with published rates of sea level change. The 
measured rates vary along the coastline, with the highest in Dare County in the northeast and 
the lowest along New Hanover and Brunswick counties to the south. The Science Panel worked 
closely with Dr. Chris Zervas (e.g., Zervas 2001, Zervas 2009, Zervas et al. 2013) at the NOAA 
National Ocean Service Center for Operational Oceanographic Products and Services, who 
provided additional analyses of the tide gauge data for this report. 

4.1 Measured Historical Local Sea Level Rise in North Carolina 

In order to accurately determine historical sea level change trends nationwide, Zervas (2001, 
2009) used National Water Level Observation Network stations with a minimum of a 30-year 
record, because trends computed with shorter data ranges have wide error bars and in some 
cases differ noticeably from longer-term stations nearby. The data analyzed are monthly mean 
sea levels, which are the arithmetic average of all of the hourly data for each complete calendar 
month. The monthly data are characterized as an autoregressive time series of order 1 and 
processed such that the monthly seasonal trend is identified and removed and a linear long-
term trend is determined (Zervas 2001, 2009). This method accounts for the fact that 
consecutive monthly mean water levels are not independent variables, and it provides an 
estimate of the uncertainty associated with the long-term trend. 

Published sea level trends are available (NOAA 2014a) through calendar year 2013 for five 
stations along the North Carolina coast (see Figure 5). These long term trends are presented in 
Table 3. In general, the sea level trends from the stations north of Cape Hatteras (Duck, Oregon 
Inlet) are substantially higher than those from the stations south of Cape Hatteras, with the 
highest sea level rise in North Carolina measured at Duck. 
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Figure 5. Location of NOAA tide gauges with published sea level trends in North Carolina. 

 
 

Table 3. Long Term Sea Level Change Trends in North Carolina (NOAA 2014a). 

Station 
(North to South) 

Sea Level Change 
Trend, mm/yr 
(NOAA 2014a) 

Coverage Dates Time Span of the 
Data (years) 

Duck 4.57 ± 0.84 1978-2013 36 
Oregon Inlet 3.65 ± 1.36 1977-2013 37 

Beaufort 2.71 ± 0.37 1953-2013 61 
Wilmington 2.02 ± 0.35 1935-2013 79 
Southport 2.00 ± 0.41 1933-2008 76 

 

The monthly mean sea level trend plots from NOAA for each location are shown for reference 
in Figure 6. It is noted that the Oregon Inlet and Southport gauges have some discontinuity in 
their records. Zervas (2001, 2009) notes that at some locations where sea level trends were 
determined, there are long data gaps. However, it is stated that the existing discontinuous data 
can still provide good estimates of linear mean sea level trends because the vertical datums 
have been carefully maintained through periodic leveling to stable benchmarks with respect to 
the adjacent landmass (Zervas 2001, 2009).  



 

13 
Draft 3/31/2015 

 

 

 

 

 

Figure 6. Monthly mean sea levels with seasonal trends removed, for each station with published sea level 
trends. The long-term linear trend is also shown, including its 95% confidence interval. (NOAA 2014a) 
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The 2010 Sea Level Rise Assessment Report based its projections on the Duck gauge, the only 
ocean gauge with a long-term record. The other gauges were not used due to concern that 
dredging could have altered the tide range and the sea level trend. On the Cape Fear River, 
mean high water, as recorded by the Wilmington tide gauge, had been found to have risen 
significantly after the deepened channel efficiently circulated more water (Hackney and 
Yelverton 1990). Dredging events and corresponding depths of the Cape Fear channel are 
shown in Table 4. The impact of increasing the tide range on sea level depends on how mean 
low water is altered relative to mean high water. If mean low water goes down the same 
amount that mean high water goes up, the change is symmetrical and the sea level record is 
not altered by the dredging. 

Dredging impacts have since been analyzed using two methods — numerical modeling and 
more detailed analysis of the water level records. The North Carolina Flood Mapping Program is 
upgrading the coastal flood maps using a storm surge model that is initially verified by modeling 
the daily tides. The present Wilmington and Beaufort tides were compared to the results 
obtained using the shallower channel depths in place at the beginning of the tidal record (R. 
Luettich, pers. comm. 2013). The modeling found no significant dredging impacts for the 
Beaufort gauge. However, the modeling found an increase in the Wilmington tide range of 15 
cm since the tide gauge was installed in 1935. Because the model resets mean sea level for 
each channel condition, assessment of the impact of the tide range changes on sea level 
measurements was inconclusive. 

Table 4. Cape Fear River Channel Deepening Progression. The Wilmington tide gauge was installed in 1935. 

Dredging Completion Date River Channel Depth (feet) 
1829-1889 16 

1907 20 
1913 26 
1930 30 
1949 32 
1958 34 
1970 38 
2002 42 

 

Zervas (pers. comm., Oct. 16, 2014) updated the tidal analysis for Wilmington including the 
relative changes in mean high water and mean low water for the 1935 to 2013 period. While 
changes in the tide range have been observed, there do not appear to be obvious shifts in the 
monthly mean water levels following the dredging events detailed in Table 4 (refer to Figure 6). 
For these reasons, dredging impacts on mean sea level are not considered to substantially 
affect sea level changes measured at the Wilmington tide gauge.  
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4.2 Vertical Land Movement Estimated from Tide Gauge Data 

Because local sea level change measurements include the vertical land movement (subsidence 
and/or uplift), tide gauge data can be used to assess the magnitude of this movement. Zervas et 
al. (2013) used tide gauge records to estimate vertical land movement at stations across the 
U.S. coasts. Long-term gauge records were analyzed with linear mean sea level trends through 
2006 as presented in Zervas (2009). Seasonal and regional oceanographic signals were removed 
as well as an approximated global (eustatic) sea level trend. A linear trend was then fit to the 
resultant data to estimate vertical land movement at the gauge station. Results were reported 
in Zervas et al. (2013) for gauges at Oregon Inlet Marina, Beaufort, Wilmington, and Southport. 
These published results were computed through 2006 for consistency with previously published 
sea level trends in Zervas (2009). The Science Panel contacted Zervas, who at our request 
updated the vertical land movement trends through 2013 and included an analysis of the 
vertical land movement at the Duck gauge. These results (Zervas, pers. comm. Oct. 21, 2014) 
are presented in Table 5. From this analysis, the highest rates of subsidence were found at Duck 
and the lowest at Wilmington. While the numbers in Table 5 are not exactly the same as those 
reported in Section 3, the trends are the same as those determined from geologic evidence. It 
is noted that geological data indicate a small amount of uplift in the Wilmington/Southport 
area, and tide gauge determined land motion shows a small amount of subsidence. Similar to 
the published values reported for vertical land motion in Section 3, these values are also 
obtained at discrete locations along the coast, which differ from those precise locations where 
the geologic data were obtained. This likely explains some of the differences in the exact 
numerical values. Most important is the fact that both data sources indicate that subsidence 
has more influence on relative sea level rise in the northeastern portion of North Carolina than 
in the southeastern counties. 

Table 5. Vertical Land Movement Trends Determined from Tide Gauge Data in North Carolina. 

Station 
(North to South) 

Vertical Land 
Movement Trend*, 

(mm/yr) 
Coverage Dates Time Span of the 

Data (years) 

Duck -1.49 ± 0.39 1978-2013 36 
Oregon Inlet -0.84 ± 0.65 1977-2013 37 

Beaufort -0.99 ± 0.17 1953-2013 61 
Wilmington -0.39 ± 0.19 1935-2013 79 
Southport -0.51 ± 0.15 1933-2008 76 

*Zervas pers. comm. Oct. 21, 2014 

 



 

16 
Draft 3/31/2015 

5. Future Sea Level in North Carolina 

The Science Panel considered three scenarios for future sea level in North Carolina: (1) sea level 
rise will continue at existing rates as measured at tide gauges, (2) sea level rise will decelerate, 
and (3) sea level rise will increase in response to changes in the climate. These scenarios are 
discussed in this section for the 2015-2045 timeframe (30 years, specified by the N.C. Coastal 
Resources Commission’s charge for this report).  

5.1 Existing Rates of Sea Level Rise 

Table 6 presents the amount of future sea level rise that would occur over 30 years at the tide 
gauges along the N.C. coast using the published sea level rise (SLR) rates given in Table 3 (NOAA 
2014a). As shown, if existing conditions continue for the next 30 years, sea level would be 
expected to rise between approximately 2 and 6 inches across the North Carolina coast, with 
the highest sea levels expected north of Cape Hatteras. This computation assumes that the 
trends at each gauge will remain the same as historical trends over the 30-year time frame.  

 

Table 6. Relative sea level rise over 30 years at existing published rates (NOAA 2014a) of sea level rise. 
Magnitude of rise was determined by multiplying the rate ± the confidence interval (for the high/low 
estimates respectively) by 30 years.*  

Station 

Tide Gauge Projections 

RSLR in 30 years, inches 

Mean Low High 

Duck 5.4 4.4 6.4 

Oregon Inlet 4.3 2.7 5.9 

Beaufort 3.2 2.8 3.6 

Wilmington 2.4 2.0 2.8 
Southport 2.4 1.9 2.8 

*Note: Sea level rise over 30 years was rounded to the nearest tenth of an inch. 

 

5.2 Potential Decrease in Sea Level Rise 

The Science Panel examined the scientific research regarding deceleration of sea level rise, 
meaning a rate lower than existing published global rates of sea level rise, over the next 30 
years. There have been many efforts to detect acceleration or deceleration in the past sea level 
record. AR5 (Rhein et al. 2013) discusses these studies and concludes, as have others (Houston 
and Dean 2011, 2013; Houston 2013, Chambers et al. 2012), that strong multi-decadal 
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variations in the tide gauge record make it difficult to detect whether there is a long-term 
acceleration or deceleration using record lengths less than 60 years (see also Section 3.2). 
While researchers using both tide data and altimetry data have reported analyses that observe 
deceleration in sea level records (e.g., Houston and Dean 2011, 2013; Ezer 2013), the signal is 
small and indicative of cyclic or multi-decadal variations. Houston (2013) summarizes the 
existing studies and concludes that the range of acceleration in the existing record is from -0.01 
to 0.01 mm/yr2, or just ±0.18 inches over 30 years, so not a significant factor. There is therefore 
no justification to apply a global deceleration factor to existing gauge rate projections for the 
next 30 years. 

 

5.3 Potential Increase in Sea Level Rise 

Global Mean Sea Level through 2045 

The IPCC is the leading international body for the assessment of climate change and for 
predicting future global sea level. It operates under the auspices of the United Nations (UN), 
and reviews and assesses the most recent scientific, technical and socio-economic information 
produced worldwide relevant to the understanding of climate change. Thousands of scientists 
from all over the world contribute to the work of the IPCC on a voluntary basis (IPCC 2013c). 
Multiple stages of review are an essential part of the IPCC process to ensure a comprehensive, 
objective, and transparent assessment of the current state of knowledge of the science related 
to climate change. The review process includes wide participation, with hundreds of reviewers 
critiquing the accuracy and completeness of the scientific assessment contained in the drafts 
(IPCC 2013d). The IPCC’s most recent publication is the Fifth Assessment Report (AR5, Church et 
al. 2013), which was released in draft form on Sept. 30, 2013, and published in final form in 
March 2014. For the 30-year time frame requested by the CRC, the panel considers the IPCC 
scenarios to be the most scientifically vetted predictions to use for global sea level rise. 

Future climate predictions require assumptions about activities that may alter the climate. 
Accordingly the IPCC has developed a series of scenarios or Representative Concentration 
Pathways (RCPs), each defined by a specific mix of emissions, concentrations and land use. RCP 
2.6 is the “best case” scenario in which greenhouse gases are lowest in concentration, and RCP 
8.5 is the “worst case” with the highest concentration. 

AR5 states that it is very likely that the rate of global mean sea level rise during the 21st century 
will exceed that observed in the 20th, in response to increased ocean warming and loss of mass 
from glaciers and ice sheets. Table 7 presents the range of sea level rise predictions through the 
year 2050 from a variety of process-based model scenarios (Church et al. 2013). This table was 
developed by converting the original table in the IPCC report (Table AII.7.7) from meters to 
inches, rounded to the nearest tenth of an inch.  
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Table 7. Global mean sea level rise projections with respect to 1986-2005 at Jan. 1 on the years indicated, 
with uncertainty ranges for the four IPCC Representative Concentration Pathways (modified from Table 
AII.7.7, IPCC 2013a).* 

Year RCP 2.6 (inches) RCP 4.5 (inches) RCP 6.0 (inches) RCP 8.5 (inches) 

2010 1.6 [1.2 to 2.0] 1.6 [1.2 to 2.0] 1.6 [1.2 to 2.0] 1.6 [1.2 to 2.0] 
2020 3.1 [2.4 to 3.9] 3.1 [2.4 to 3.9] 3.1 [2.4 to 3.9] 3.1 [2.4 to 4.3] 
2030 5.1 [3.5 to 6.3] 5.1 [3.5 to 6.3] 4.7 [3.5 to 6.3] 5.1 [3.9 to 6.7] 
2040 6.7 [5.1 to 8.7] 6.7 [5.1 to 8.7] 6.7 [4.7 to 8.3] 7.5 [5.5 to 9.4] 
2050 8.7 [6.3 to 11.0] 9.1 [6.7 to 11.4] 8.7 [6.3 to 11.0] 9.8 [7.5 to 12.6] 

*Note: Projections were rounded to the nearest tenth of an inch. 

 
In addition to the process-based models, the IPCC (Church et al. 2013) also reviewed other 
approaches to sea level projections including semi-empirical models, paleo-records of sea level 
change, and ice sheet dynamics. They state that of the approaches examined, they have greater 
confidence in the process-based projections, and that the global mean sea level rise during the 
21st century is likely to lie within the 5-95% uncertainty ranges given by the process-based 
projections and shown in Table 7 (Church et al. 2013). For completeness, all scenarios are 
presented in Table 7. However, to provide a range of potential effects across the North Carolina 
coast, the low greenhouse gases (RCP 2.6) and high greenhouse gases (RCP 8.5) model 
scenarios are presented as upper and lower bounds of the potential range of future sea level 
rise. The endpoints of the range of global sea level rise scenarios for this report were computed 
as follows: 

1) Use linear interpolation of Table 7 values to estimate sea level and its uncertainty range 
in 2015 and 2045. 

2) Subtract each 2015 value from the corresponding 2045 value to obtain magnitude of the 
projected rise over the 30-year time frame. 

When values with quantified uncertainties are added and subtracted, the uncertainties 
associated with those values are added in quadrature (i.e., added as the square root of the sum 
of squares). The uncertainties in Table 8 have been added in quadrature to obtain the 
uncertainty of the change in SLR from 2015 to 2045. This provides a better estimate of the 
confidence interval than simply adding or subtracting the uncertainty values. In the case of 
Table 8 where there are uneven confidence intervals, the larger of the two was used to obtain 
the quadrature uncertainty. 
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Table 8. Global sea level rise from 2015 to 2045 as predicted by IPCC Scenarios.* 

Predicted Amount of Sea Level 
Rise by Year 

Scenario RCP 2.6 
(inches) 

Scenario RCP 8.5 
(inches) 

2015 2.4 [1.8 to 3.0] 2.4 [1.8 to 3.1] 
2045 7.7 [5.7 to 9.8] 8.7 [6.5 to 11.0] 

Change in SLR (2015 to 2045) 5.3 [3.1 to 7.6] 6.3 [3.8 to 8.8] 
*Note: Projections were rounded to the nearest tenth of an inch. 

 

Note that the range of values for the two scenarios overlap and differ only by approximately 1 
inch, reflecting the fact that these scenarios are similar initially and begin to differ significantly 
after 2045. 

 

Linking Global Sea Level Rise Projections to Local RSL 

In order to consider the relationship of global sea level rise projections to those in North 
Carolina, factors causing variability in sea level trends across the state must be quantified. As 
discussed in Section 4.2, vertical land movement has been quantified using tide gauge data; 
additional information on vertical land movement is presented in Section 3.1 based on geologic 
studies. The VLM trends are dependent upon long-term geologic factors; therefore they are 
considered to be likely to persist into the future.  

While considerable study has been devoted to identifying oceanographic effects on relative sea 
level rise (Section 3.2), it is unknown whether these effects will persist in the 30-year time 
period considered for sea level rise projections in this report. Therefore, for the present report, 
no quantification of oceanographic effects has been included in the sea level projections. 
Should continued research suggest that these effects may be persisting, future reports may 
incorporate these factors. 

In order to make the global sea level rise values from Table 8 relevant for North Carolina, VLM 
was used as a proxy for local effects. This was done by adding 30-year VLM projections (30 
years times the values presented in Table 4) to the global sea level projections in Table 8. As 
discussed previously, the confidence intervals on the VLM and global projections were added in 
quadrature to assess uncertainty associated with the projections.  

To provide a range of potential increase scenarios, the 30-year projection values were 
computed for the low and high values of the projected sea level rise from 2015 to 2045 using 
scenarios RCP 2.6 and RCP 8.5. For comparison with Table 6, values were rounded to the 
nearest tenth of an inch. Results, including the 95% confidence intervals, are presented in 
Tables 9 and 10. The low value in each table is the 95% confidence interval subtracted from the 
mean, and the high is the mean plus the confidence interval. 
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Table 9. Relative sea level rise by 2045 considering potential increased rates of sea level rise (RCP 2.6 which 
is the lowest greenhouse gas emission scenario, combined with vertical land movement at each tide gauge).* 

Station 

RCP 2.6 + VLM 

RSLR in 30 years, inches 

Mean Low High 95% CI 

Duck 7.1 4.8 9.4 2.3 

Oregon Inlet 6.3 3.9 8.7 2.4 

Beaufort 6.5 4.2 8.7 2.3 

Wilmington 5.8 3.5 8.0 2.3 
Southport 5.9 3.7 8.2 2.3 

*Note: Projections were rounded to the nearest tenth of an inch. 

  

Table 10. Relative sea level rise by 2045 considering potential increased rates of sea level rise (RCP 8.5 
which is the highest greenhouse gas emission scenario, combined with vertical land movement at each tide 
gauge). 

Station 

RCP 8.5 + VLM 

RSLR in 30 years, inches 

Mean Low High 95% CI 

Duck 8.1 5.5 10.6 2.5 

Oregon Inlet 7.3 4.7 9.9 2.6 

Beaufort 7.5 5.0 10.0 2.5 

Wilmington 6.8 4.3 9.3 2.5 
Southport 6.9 4.4 9.4 2.5 

*Note: Projections were rounded to the nearest tenth of an inch. 

 

As shown, under alternative rates of increase in sea level rise as a function of varying emissions 
scenarios, sea level could rise from a low estimate of 3.5 inches to high of 10.6 inches by 2045, 
depending on location. Locations with higher rates of subsidence have correspondingly higher 
relative sea level rise projections.  
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5.4 Future Sea Level Rise across North Carolina 

Preparing a map depicting varying sea level rise estimates across the state of North Carolina is 
difficult, because the local effects are quantified only at the tide gauge locations. The four 
geologic regions presented in Figure 4 indicate areas within which effects driven by local 
vertical land movement are expected to be similar based on the geologic data. Further, Session 
Law 2012-202 (Appendix B), specifies that the Coastal Resources Commission consider the four 
regions presented in the N.C. Dept. of Environment and Natural Resources’ April 2011 report 
entitled "North Carolina Beach and Inlet Management Plan" (BIMP) in making geographically 
variable sea level rise assessments. Therefore the following discussion to address similarities 
and differences of the regions provided in the geologic map in Figure 4 compared with the 
BIMP map (shown in Figure 7) is provided.  

 

Figure 7. Beach and Inlet Management Plan (BIMP) Regions referenced in S.L. 2012-202. 

 

Region 1 (Carolina Platform) in Figure 4 corresponds roughly to Regions 1 and 2a, plus part of 
Region 2b, as drawn in the BIMP (Figure 7). The gauges in that part of North Carolina are the 
Wilmington and Southport gauges, which are very similar in characteristics, with similar future 
increased sea level rise predictions. Region 2 (Albemarle Embayment) in Figure 4 encompasses 
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Regions 3b, 4a, 4b, and 4c, as well as a portion of Region 3a as drawn in the BIMP (Figure 7). 
Both the Oregon Inlet and Duck tide gauges are located in this area. The Duck gauge has the 
highest expected sea level rise by 2045 across the state, with the projections at Oregon Inlet 
slightly lower. Region 3 in Figure 4 (Cape Lookout Transition) corresponds approximately to 
BIMP Region 2c, with parts of Region 2b and 3a included as well. This region contains the 
Beaufort tide gauge, which has an expected sea level rise by 2045 similar to the Oregon Inlet 
gauge. Region 4 (Inner Estuarine Hinge) in Figure 4 does not correspond to any of the BIMP 
regions, and contains no tide gauges. 

For any management decisions, the CRC will have to evaluate the potential division of the state 
by region. Additional monitoring and data will facilitate this type of decision. 

6. Making Sense of the Predictions 

The report presents a range of sea level values that may occur by 2045 across the North 
Carolina coast. Providing a range of values reflects both the uncertainty in the predictions with 
regards to future climate and the varying nature of sea level. From a planning perspective, the 
risk of flooding decreases by selecting a higher elevation within the expected range of sea 
levels. The goal in planning is to match the selected elevation with a level of acceptable risk for 
a particular project (road, bridge, hospital, etc.) based on the expected range of water levels. 
The U.S. Army Corps of Engineers (USACE 2014) has adopted a planning process similar to this, 
requiring that every coastal project be evaluated using three sea level scenarios. Doing so 
allows the project planner to estimate the risk of any impacts of sea level rise, and if the 
potential impact is found to not be acceptable, require a change to the project design. The 
adoption of this planning guidance by the USACE is relevant to North Carolina as it is required 
on every federal coastal project.  

We also note that the difference between the highest (Table 10) and lowest (Table 6) potential 
increase in mean sea level varies from just 2.7 inches at Duck to 4.5 inches at Southport. This 
small change reflects the short 30-year time span of the projection. This small amount adds to, 
but is inconsequential relative to, the extreme water levels experienced in a storm surge and is 
small relative to the twice daily excursion of the tide. But since it is cumulative and rising, areas 
of N.C. will be impacted. Recent research into the frequency of coastal flooding has shown that, 
regardless of the rate of rise, as sea level increases North Carolinians should expect more 
frequent flooding of low-lying areas. These impacts are already being observed in North 
Carolina (Sweet et al. 2014; Sweet and Park 2014; Ezer and Atkinson 2014).  

The short 30-year period also allows increased confidence in the forecast, relative to a 60- or 
100-year forecast during which more rapid climate change is expected. One of the major 
sources of uncertainty in estimates of sea level rise is the behavior of ice sheets. However, the 
IPCC states that only the collapse of marine-based sectors of the Antarctic ice sheet, if initiated, 
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could cause global mean sea level to rise substantially above the likely predicted range during 
the 21st century (Church et al. 2013). As research evolves with more data and our 
understanding of these phenomena improves, forecasts will be updated. This is one of the 
many reasons that the panel recommends updating this report every five years. 

Because our focus is on the next 30 years, people whose planning requirements extend beyond 
that should consult other reports on sea level such as the IPCC (2013b) or the USACE guidance 
(2014) and their online sea level calculator (http://www.corpsclimate.us/ccaceslcurves.cfm). 

7. Recommendations for Improved Sea Level Rise Monitoring in 
North Carolina 

Tide gauges provide a critical and permanent record of sea level in North Carolina. 
Consequently, as we recommended in our 2010 report, it is important to sustain the long-term 
tidal observations. At a minimum, continued monitoring at the recently established gauge 
(2010) at Cape Hatteras and establishment of long-term tidal monitoring in the Albemarle 
Sound and at a location in the Pamlico Sound near the entrance to the Neuse River as well as on 
the innermost portion of the drowned river estuaries (e.g., New Bern, Washington, and 
Edenton) would start to fill gaps in knowledge of not only local sea level changes but also the 
magnitude of tidal surge and wind set-up during storms of differing intensity and track across 
the North Carolina coast. Ongoing efforts by the North Carolina Division of Emergency 
Management include maintenance of seven new gauges in the Albemarle and Pamlico Sounds. 
These gauges should also be maintained long-term to augment the sea level record in North 
Carolina. 

The state should also consider augmenting existing Continuously Operating Reference Stations 
(CORS) to provide coverage in all the regional zones in order to quantify and refine land 
subsidence and uplift on the coastal plain. Since 2007 the N.C. Geodetic Survey has been 
installing CORS which are used to improve the accuracy and ease of surveying using Global 
Position Survey (GPS) techniques. These stations use the GPS satellites to determine the exact 
location and elevation of the station as frequently as once a second. Thirty-three stations are 
presently installed in or near the four zones in Figure 4. With time these stations will provide 
detailed measurement of land elevation changes that can be used to put water level records in 
perspective. The collection and analysis of additional sediment cores is also desirable to 
compliment the CORS stations. To be useful, all new CORS and tide gauge locations will need to 
be sustained for decades, so the sooner they are deployed, the better. 

  

http://www.corpsclimate.us/ccaceslcurves.cfm
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8. Recommendations for Updating the Report 

Predicting future sea level rise in North Carolina will continue to be an important topic of 
interest. As we have seen over the past five years, knowledge in climate science and forecast 
models is rapidly advancing — improving predictions and reducing uncertainty. Continued 
monitoring of global and regional sea levels using satellite data will improve as the record 
length is extended, and these data should be reviewed for consideration in future reports. The 
panel again recommends a general reassessment of sea level rise in North Carolina every five 
years. Information from future analyses of CORS GPS stations and from additional geologic 
research (e.g., expanded regional salt marsh studies) should be considered to provide 
additional information on vertical land movement across the state. Continuing research on 
oceanographic impacts on sea level rise should be followed closely. Detailed analyses of tide 
gauge data and potential dredging impacts are areas of research that the CRC may wish to 
pursue on a contract basis with researchers in those fields.  

9. Summary 

Sea level is rising across the entire coast of North Carolina. This report discusses the variation in 
sea level rise across the state’s coastline and provides projections of future sea level. The 
following points summarize the results of this report: 

• The rate of sea level rise varies within NC, depending on location. Two main factors 
affect the local rate of sea level rise: (1) vertical movement of the Earth’s surface, and 
(2) effects of ocean dynamics (oceanographic influences). 

• There is evidence from both geological data and tide gauges that there is more 
subsidence north of Cape Lookout than south of Cape Lookout. This contributes to 
higher measured rates of sea level rise along the northeastern N.C. coast. 

• Oceanographic research points to a link between speed and position of the Gulf Stream 
and local sea level. This effect has been reported primarily north of Cape Hatteras. 

• At existing rates of sea level rise, over a 30-year time frame, sea level rise across the 
North Carolina coast would vary from a low estimate of 2.4 inches (with a range 
between 1.9 and 2.8 inches) at Southport to a high estimate of 5.4 inches (with a range 
between 4.4 and 6.4 inches) at Duck. 

• In a scenario with low greenhouse gas emissions, projected potential sea level rise over 
a 30-year time frame would vary from a low estimate of 5.8 inches (with a range 
between 3.5 and 8.0 inches) at Wilmington to a high estimate at Duck of 7.1 inches 
(with a range between 4.8 and 9.4 inches). 

• In a scenario with high greenhouse gas emissions, projected potential sea level rise over 
a 30-year time frame would vary from a low estimate of 6.8 inches (with a range 
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between 4.3 and 9.3 inches) at Wilmington to a high estimate at Duck of 8.1 inches 
(with a range between 5.5 and 10.6 inches). 

• Recent research into the frequency of coastal flooding has shown that, regardless of the 
rate of rise, as sea level increases North Carolinians should expect more frequent 
flooding of low-lying areas.  

Because the science is changing rapidly, it is recommended that this assessment be updated 
every five years, and that water level monitoring and land movement measurements be 
sustained and additional gauges placed in as yet unmonitored locations where necessary. 
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Appendix A. CRC Charge to the Science Panel, June 11, 2014 
 

The CRC has determined that the issue of potential sea-level rise is of extreme importance to 
the State, its policy makers and the citizens of NC. It is further noted that the periodic updates 
of current data are vital to help formulate future policy. The CRC therefore charges the Science 
Panel to conduct a comprehensive review of scientific literature and available North Carolina 
data that addresses the full range of global, regional, and North Carolina specific sea-level 
change. The CRC further determines that the scope and time period of the study and report 
regarding sea-level rise shall be limited to a “Rolling 30-Year Time Table”. It is the intent of the 
CRC that this rolling 30-year time table will be updated every five years. The CRC further directs 
the Science Panel to report regional ranges of sea-level rise as described in S.L. 2012-202 

 

Timeline 

S.L. 2012-202 requires the Science Panel to deliver your report to the CRC no later than March 
31, 2015.  

This will be the version that will be made available for public comment, and we would like this 
version to include the review and responses as described in the technical peer review process. 
In order to complete the technical peer review process we are asking you to deliver your initial 
draft to us by December 31, 2014. The technical peer review timeline is as follows: 

1. CRC sends the initial draft report for Drs. Dean and Houston's review on January 1, 2015. 

2. Drs. Dean and Houston write a brief review with comments and suggestions as 
appropriate, and forwards to the Science Panel through CRC by January 21, 2015. 

3. Science Panel submits a response to Drs. Dean and Houston's comments by February 15, 
2015. 

4. Drs. Dean and Houston respond in writing as to whether the Science Panel has 
adequately addressed their comments, by February 28, 2015. 

All four written documents will be publicly disseminated together without change. 

Following the March 31, 2015 public release of the draft report, there will be an extended 
public comment period through December 31, 2015, as well as the preparation of an economic 
and environmental cost-benefit study. The Science Panel will not be asked to prepare the cost-
benefit study. The CRC will ask the Science Panel to finalize the report in early 2016, following 
the close of the public comment period.  
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Appendix B. General Assembly of North Carolina: Session 2011, Session 
Law 2012-202, House Bill 819 
 

SECTION 2.(a) Article 7 of Chapter 113A of the General Statutes is amended by adding a new 
section to read:  

"§ 113A-107.1. Sea-level policy.  

The General Assembly does not intend to mandate the development of sea-level policy or the 
definition of rates of sea-level change for regulatory purposes.  

No rule, policy, or planning guideline that defines a rate of sea-level change for regulatory 
purposes shall be adopted except as provided by this section.  

Nothing in this section shall be construed to prohibit a county, municipality, or other local 
government entity from defining rates of sea-level change for regulatory purposes.  

All policies, rules, regulations, or any other product of the Commission or the Division related to 
rates of sea-level change shall be subject to the requirements of Chapter 150B of the General 
Statutes.  

The Commission shall be the only State agency authorized to define rates of sea-level change 
for regulatory purposes. If the Commission defines rates of sea-level change for regulatory 
purposes, it shall do so in conjunction with the Division of Coastal Management of the 
Department. The Commission and Division may collaborate with other State agencies, boards, 
and commissions; other public entities; and other institutions when defining rates of sea-level 
change."  

SECTION 2.(b) The Coastal Resources Commission and the Division of Coastal Management of 
the Department of Environment and Natural Resources shall not define rates of sea-level 
change for regulatory purposes prior to July 1, 2016. 

SECTION 2.(c) The Coastal Resources Commission shall direct its Science Panel to deliver its 
five-year updated assessment to its March 2010 report entitled "North Carolina Sea Level Rise 
Assessment Report" to the Commission no later than March 31, 2015. The Commission shall 
direct the Science Panel to include in its five-year updated assessment a comprehensive review 
and summary of peer-reviewed scientific literature that address the full range of global, 
regional, and North Carolina-specific sea-level change data and hypotheses, including sea-level 
fall, no movement in sea level, deceleration of sea-level rise, and acceleration of sea-level rise. 
When summarizing research dealing with sea level, the Commission and the Science Panel shall 
define the assumptions and limitations of predictive modeling used to predict future sea-level 
scenarios. The Commission shall make this report available to the general public and allow for 
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submittal of public comments including a public hearing at the first regularly scheduled meeting 
after March 31, 2015. Prior to and upon receipt of this report, the Commission shall study the 
economic and environmental costs and benefits to the North Carolina coastal region of 
developing, or not developing, sea-level regulations and policies. The Commission shall also 
compare the determination of sea level based on historical calculations versus predictive 
models. The Commission shall also address the consideration of oceanfront and estuarine 
shorelines for dealing with sea-level assessment and not use one single sea-level rate for the 
entire coast. For oceanfront shorelines, the Commission shall use no fewer than the four 
regions defined in the April 2011 report entitled "North Carolina Beach and Inlet Management 
Plan" published by the Department of Environment and Natural Resources. In regions that may 
lack statistically significant data, rates from adjacent regions may be considered and modified 
using generally accepted scientific and statistical techniques to account for relevant geologic 
and hydrologic processes. The Commission shall present a draft of this report, which shall also 
include the Commission's Science Panel five-year assessment update, to the general public and 
receive comments from interested parties no later than December 31, 2015, and present these 
reports, including public comments and any policies the Commission has adopted or may be 
considering that address sea-level policies, to the General Assembly Environmental Review 
Commission no later than March 1, 2016. 
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