Temporary and Permanent Seeding Specs

North Carolina Department of Environmental Quality
Division of Energy, Mineral and Land Resources
The Land Resources Section
TEMPORARY SEEDING

Definition
Planting rapid-growing annual grasses, small grains, or legumes to provide initial, temporary cover for erosion control on disturbed areas.

Purpose
To temporarily stabilize denuded areas that will not be brought to final grade for a period of more than 21 calendar days.

Temporary seeding controls runoff and erosion until permanent vegetation or other erosion control measures can be established. In addition, it provides residue for soil protection and seedbed preparation, and reduces problems of mud and dust production from bare soil surfaces during construction.

Conditions Where Practice Applies
On any cleared, unvegetated, or sparsely vegetated soil surface where vegetative cover is needed for less than 1 year. Applications of this practice include diversions, dams, temporary sediment basins, temporary road banks, and topsoil stockpiles.

Planning Considerations
Annual plants, which sprout and grow rapidly and survive for only one season, are suitable for establishing initial or temporary vegetative cover. Temporary seeding preserves the integrity of earthen sediment control structures such as dikes, diversions, and the banks of dams and sediment basins. It can also reduce the amount of maintenance associated with these devices. For example, the frequency of sediment basin cleanouts will be reduced if watershed areas, outside the active construction zone, are stabilized.

Proper seedbed preparation, selection of appropriate species, and use of quality seed are as important in this Practice as in Practice 6.11, Permanent Seeding. Failure to follow established guidelines and recommendations carefully may result in an inadequate or short-lived stand of vegetation that will not control erosion.

Temporary seeding provides protection for no more than 1 year, during which time permanent stabilization should be initiated.

Specifications
Complete grading before preparing seedbeds, and install all necessary erosion control practices such as, dikes, waterways, and basins. Minimize steep slopes because they make seedbed preparation difficult and increase the erosion hazard. If soils become compacted during grading, loosen them to a depth of 6-8 inches using a ripper, harrow, or chisel plow.

SEEDBED PREPARATION
Good seedbed preparation is essential to successful plant establishment. A good seedbed is well-pulverized, loose, and uniform. Where hydroseeding methods are used, the surface may be left with a more irregular surface of large clods and stones.

Liming—Apply lime according to soil test recommendations. If the pH (acidity) of the soil is not known, an application of ground agricultural limestone at the...
rate of 1 to 1 1/2 tons/acre on coarse-textured soils and 2-3 tons/acre on fine-
textured soils is usually sufficient. Apply limestone uniformly and incorporate
into the top 4-6 inches of soil. Soils with a pH of 6 or higher need not be
limed.

Fertilizer—Base application rates on soil tests. When these are not possible,
apply a 10-10-10 grade fertilizer at 700-1,000 lb/acre. Both fertilizer and lime
should be incorporated into the top 4-6 inches of soil. If a hydraulic seeder is
used, do not mix seed and fertilizer more than 30 minutes before application.

Surface roughening—If recent tillage operations have resulted in a loose
surface, additional roughening may not be required, except to break up large
cloths. If rainfall causes the surface to become sealed or crusted, loosen it
just prior to seeding by diskings, raking, harrowing, or other suitable methods.
Groove or furrow slopes steeper than 3:1 on the contour before seeding
(Practice 6.03, *Surface Roughening*).

PLANT SELECTION
Select an appropriate species or species mixture from Table 6.10a for seeding
in late winter and early spring, Table 6.10b for summer, and Table 6.10c for
fall.

In the Mountains, December and January seedings have poor chances of
success. When it is necessary to plant at these times, use recommendations
for fall and a securely tacked mulch.

SEEDING
Evenly apply seed using a cyclone seeder (broadcast), drill, cultipacker seeder,
or hydroseeder. Use seeding rates given in Tables 6.10a-6.10c. Broadcast
seeding and hydroseeding are appropriate for steep slopes where equipment
cannot be driven. Hand broadcasting is not recommended because of the
difficulty in achieving a uniform distribution.

Small grains should be planted no more than 1 inch deep, and grasses and
legumes no more than 1/2 inch. Broadcast seed must be covered by raking
or chain dragging, and then lightly firmed with a roller or cultipacker.
Hydroseeded mixtures should include a wood fiber (cellulose) mulch.

MULCHING
The use of an appropriate mulch will help ensure establishment under normal
conditions, and is essential to seeding success under harsh site conditions
(Practice 6.14, *Mulching*). Harsh site conditions include:
- seeding in fall for winter cover (wood fiber mulches are not considered
 adequate for this use),
- slopes steeper than 3:1,
- excessively hot or dry weather,
- adverse soils (shallow, rocky, or high in clay or sand), and
- areas receiving concentrated flow.

If the area to be mulched is subject to concentrated waterflow, as in channels,
anchor mulch with netting (Practice 6.14, *Mulching*)
Maintenance Reseed and mulch areas where seedling emergence is poor, or where erosion occurs, as soon as possible. Do not mow. Protect from traffic as much as possible.

References

Site Preparation
6.03, Surface Roughening
6.04, Topsoiling

Surface Stabilization
6.11, Permanent Seeding
6.14, Mulching

Appendix
8.02, Vegetation Tables
Table 6.10a
Temporary Seeding Recommendations for Late Winter and Early Spring

<table>
<thead>
<tr>
<th>Species</th>
<th>Rate (lb/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rye (grain)</td>
<td>120</td>
</tr>
<tr>
<td>Annual lespedeza (Kobe in Piedmont and Coastal Plain, Korean in Mountains)</td>
<td>50</td>
</tr>
</tbody>
</table>

Omit annual lespedeza when duration of temporary cover is not to extend beyond June.

Seeding dates
Mountains—Above 2500 feet: Feb. 15 - May 15
Below 2500 feet: Feb. 1 - May 1
Piedmont—Jan. 1 - May 1
Coastal Plain—Dec. 1 - Apr. 15

Soil amendments
Follow recommendations of soil tests or apply 2,000 lb/acre ground agricultural limestone and 750 lb/acre 10-10-10 fertilizer.

Mulch
Apply 4,000 lb/acre straw. Anchor straw by tacking with asphalt, netting, or a mulch anchoring tool. A disk with blades set nearly straight can be used as a mulch anchoring tool.

Maintenance
Refertilize if growth is not fully adequate. Reseed, refertilize and mulch immediately following erosion or other damage.
Table 6.10b
Temporary Seeding Recommendations for Summer

<table>
<thead>
<tr>
<th>Species</th>
<th>Rate (lb/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>German millet</td>
<td>40</td>
</tr>
</tbody>
</table>

In the Piedmont and Mountains, a small-stemmed Sudangrass may be substituted at a rate of 50 lb/acre.

Seeding dates
Mountains—May 15 - Aug. 15
Piedmont—May 1 - Aug. 15
Coastal Plain—Apr. 15 - Aug. 15

Soil amendments
Follow recommendations of soil tests or apply 2,000 lb/acre ground agricultural limestone and 750 lb/acre 10-10-10 fertilizer.

Mulch
Apply 4,000 lb/acre straw. Anchor straw by tacking with asphalt, netting, or a mulch anchoring tool. A disk with blades set nearly straight can be used as a mulch anchoring tool.

Maintenance
Refertilize if growth is not fully adequate. Reseed, refertilize and mulch immediately following erosion or other damage.
Table 6.10c

Temporary Seeding Recommendations for Fall

<table>
<thead>
<tr>
<th>Seeding mixture</th>
<th>Species</th>
<th>Rate (lb/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rye (grain)</td>
<td>120</td>
</tr>
</tbody>
</table>

Seeding dates
- Mountains—Aug. 15 - Dec. 15
- Coastal Plain and Piedmont—Aug. 15 - Dec. 30

Soil amendments
Follow soil tests or apply 2,000 lb/acre ground agricultural limestone and 1,000 lb/acre 10-10-10 fertilizer.

Mulch
Apply 4,000 lb/acre straw. Anchor straw by tacking with asphalt, netting, or a mulch anchoring tool. A disk with blades set nearly straight can be used as a mulch anchoring tool.

Maintenance
Repair and refertilize damaged areas immediately. Topdress with 50 lb/acre of nitrogen in March. If it is necessary to extend temporary cover beyond June 15, overseed with 50 lb/acre Kobe (Piedmont and Coastal Plain) or Korean (Mountains) iespedeza in late February or early March.
Definition
Controlling runoff and erosion on disturbed areas by establishing perennial vegetative cover with seed.

Purpose
To reduce erosion and decrease sediment yield from disturbed areas, to permanently stabilize such areas in a manner that is economical, adapts to site conditions, and allows selection of the most appropriate plant materials.

Conditions Where Practice Applies
Fine-graded areas on which permanent, long-lived vegetative cover is the most practical or most effective method of stabilizing the soil. Permanent seeding may also be used on rough-graded areas that will not be brought to final grade for a year or more.

Areas to be stabilized with permanent vegetation must be seeded or planted within 15 working days or 90 calendar days after final grade is reached, unless temporary stabilization is applied.

Introduction
During the initial phase of all land disturbing projects, the protective layer, either natural or man-made, is removed from the earth’s surface. As the protective layer is removed, the resulting bare areas are exposed to the natural forces of rainfall, freezing, thawing, and wind. The result is soil erosion that leads to sediment pollution of North Carolina streams, rivers, lakes, and estuaries.

This design manual presents many alternative strategies for preventing erosion and reducing sediment loss during the construction process. Establishment of protective vegetative cover during the construction project, however, is the crucial step in achieving soil stabilization, controlling soil erosion, and preventing sedimentation of waterways. Without a sufficient amount of root mat and leaf cover to protect and hold the soil in place, large volumes of soil will be lost and waterways will be degraded long after projects are considered complete.

Sections of this practice standard address many of these various situations and set forth selection criteria for the appropriate cover based on purpose and adaptability. Some sediment and erosion control practices recommended in earlier editions of the manual may no longer be applicable. For example, many popular and commonly used seed and plant varieties have been identified as invasive. Invasive plants are defined as species that aggressively compete with, and displace, locally adapted native plant communities. In select cases where no practical alternative is available, these plants may be considered on a limited basis for soil stabilization, understanding that the goal is to eliminate the use of all invasive plants in favor of non-invasive native and/or introduced species that will provide an equally acceptable vegetative cover. Where there is no alternative to the use of invasive species, measures need to be incorporated in the installation and maintenance of these plants to limit their impacts.
It is imperative that disturbed soils be totally protected from erosion and sediment loss during construction and before a project is considered complete and acceptable. Installing appropriate vegetation in an immediate and timely fashion is the optimal means of achieving this stabilization. Vegetative specifications for most exposed soil conditions across North Carolina are provided in this section of the manual. It should be noted however, that no two sites in the State are exactly alike; therefore the protective vegetative cover for individual sites should be carefully selected. Each requires its own investigation, analysis, design and vegetative prescription as set forth in this section of the manual.

This practice standard describes three stages of vegetative cover; immediate, primary and long term. Effective and acceptable stabilization can be provided only when the optimum combination of immediate, primary, and long term vegetative practices are applied.

The vegetative measures presented in this chapter include application of seed, sod and sprigs. Use of field and container grown plants are not addressed in this manual. Planting of these types of vegetation is typically at spacing and intervals that will not provide the required protective cover. However, the design professional is encouraged to utilize these larger plants to compliment the required protective cover, particularly where these types of plants will provide seed for continued long term cover and wildlife habitat.

PLANNING CONSIDERATIONS

SOILS

Test and analyze the type(s) and quality of the existing soils on a site, their pH ranges, and their nutrient levels. Taking soil samples from the different areas of the project site and having them tested at a state or independent lab will provide a baseline for determining the pH modifiers and additional nutrients required for the selected plant varieties.

Disturbed conditions on a site may produce a variety of soil communities. Nutrient and pH levels in deeply cut soils will be quite different from those soils found on the original surface. When sites are highly disturbed through mechanical means such as grading, the soils become mixed together in many different ratios. These areas should be identified and tested.

Results from soil tests will usually include recommended application rates of soil modifiers such as lime and fertilizer for the selected plant species in the particular soils. Application rates will be itemized in the report.

The texture of the soil on a site, which is the proportion of sand, silt, and clay in the soil, is an important physical indicator of the site’s ability to support vegetation. In heavy clay soils amendments may be necessary to provide an adequately drained planting medium. Conversely, in extremely sandy soils, amendments may be required to provide for moisture and nutrient retention.
Soil tests will indicate the texture of the given soil but will not provide recommendations for amendments that will improve the soil texture. Generally, the addition of organic materials will improve the porosity of heavy clay soils and improve the water holding capacity of extremely sandy soils. On sites where these different soil conditions exist, it is recommended that a design professional with experience in soil modification be employed to recommend the proper amendments.

For more information visit the NCDA Agronomic Services Soil Testing web page http://www.agr.state.nc.us/agronomic/sthome.htm

SOIL PREPARATION

Proper soil preparation is necessary for successful seed germination and root establishment. It is also necessary for establishment of rooted sprigs, sod and woody plants. Heavily compacted soils prevent air, nutrients and moisture from reaching roots thereby retarding or preventing plant growth. The success of site stabilization and reduction of future maintenance are dependent on an adequately prepared soil bed. Following are the requirements for preparation of areas to be vegetated by grassing, sprigging, sodding, and/or planting of woody plants:

General Requirements:

- Preparation for primary/permanent stabilization shall not begin until all construction and utility work within the preparation area is complete. However, it may be necessary to prepare for nurse crops prior to completion of construction and installation of utilities.

- A North Carolina Department of Agriculture Soils Test (or equal) shall be obtained for all areas to be seeded, sprigged, sodded or planted. Recommended fertilizer and pH adjusting products shall be incorporated into the prepared areas and backfill material per the test.

- All areas to be seeded or planted shall be tilled or ripped to a depth specified on the approved plans, construction sequence and/or construction bid list. Ripping consists of creating fissures in a criss-cross pattern over the entire surface area, utilizing an implement that will not glaze the side walls of the fissures. Site preparation that does not comply with these documents shall not be acceptable. The depth of soil preparation may be established as a range based on the approval of the reviewing state or local agency. Once tilled or ripped according to the approved plan, all areas are to be returned to the approved final grade. pH modifiers and/or other soil amendments specified in the soil tests can be added during the soil preparation procedure or as described below.

- All stones larger than three (3) inches on any side, sticks, roots, and other extraneous materials that surface during the bed preparation shall be removed.
Areas to be Seeded:

- Till or disc the prepared areas to be seeded to a minimum depth of four (4) inches. Remove stones larger than three (3) inches on any side, sticks, roots and other extraneous materials that surface. If not incorporated during the soil preparation process, add pH modifier and fertilizers at the rate specified in the soil test report.

- Re-compact the area utilizing a cultipacker roller. The finished grade shall be a smooth even soil surface with a loose, uniformly fine texture. All ridges and depressions shall be removed and filled to provide the approved surface drainage. Seeding of graded areas is to be done immediately after finished grades are obtained and seedbed preparation is completed.

Areas to be Sprigged, Sodded, and/or Planted:

- At the time of planting till or disc the prepared areas to a depth of four (4) to six (6) inches below the approved finished grade. Remove all stones larger than three (3) inches on any side, sticks, roots and other extraneous materials that surface. If not incorporated in the ripping process, add pH modifier, fertilizer, and other recommended soil amendments.

- Re-compact the area utilizing a cultipacker roller and prepare final grades as described above. Install sprigs, sod and plants as directed immediately after fine grading is complete. Mulch, mat and/or tack as specified.

VEGETATION

Availability of seed and plant materials is an important consideration of any construction stabilization effort. Throughout North Carolina, climate, economics, construction schedule delays and accelerations, and other factors present difficult challenges in specifying the different vegetation needed for site stabilization. To help resolve this issue, vegetative stabilization requires consideration in three categories:

- Immediate Stabilization – nurse crop varieties (Note: temporary mulching may be utilized for immediate stabilization if outlined on the approved plans and construction sequence.)

- Primary Stabilization – plant varieties providing cover up to 3 years with a specified maintenance program

- Long Term Stabilization – plant varieties providing protective cover with maintenance levels selected by the owner

An adequate job in one of these areas does not guarantee success in the later phases. Horticultural maintenance must be included in the plans.

Immediate vegetative cover will always require additional fertilization, soil amendments, soil tests, overseeding and/or other horticultural maintenance until primary vegetative cover is established.
Where provisions are made for regular maintenance, primary vegetative cover may be the end result. An example of primary vegetative cover being acceptable as an end use would be lawns in residential and commercial developments that are established, monitored and complimented with regular and approved horticultural maintenance practices. (See Example 6.11.a.)

In projects where continual maintenance will not be provided or scheduled following the primary stabilization of a project, long-term stabilization will be necessary. Maintenance of initial and long-term stabilization can cease only after the long-term cover has established and hardened to local climatic conditions. Maintenance of long-term vegetation must be included in the project construction sequence and on the approved plans. Examples of areas suitable for long term vegetation include roadsides, reforestation areas, restored flood plains, restored riparian areas, phased closing of landfills, and mining reclamations.

Complete stabilization requires using at least two, and most times, all three vegetative phases. The design professional must clearly communicate this point in their specifications, construction sequence, and in direct communications to owners and installers. The charts in tables 6.11.a through 6.11.d provide information to assist the design professional in this task. The tables are not inclusive and are presented only as alternatives. The professional is expected and required to provide design and specifications that combine the information in the manual with knowledge of the particular sites and their constraints.

pH AND NUTRIENT AMENDMENTS

Determining the nutrients that enable seed and container plants to grow, flourish, and become established after planting are critical elements of the design and stabilization process. The soils tests previously described will provide a recipe for amendments based on particular plants and particular soils. The test results will recommend the amounts of base elements (nitrogen, phosphorous, potassium), pH modifiers and other trace elements that should to be added to the soil for selected species of seeds and plants.

The acid/base characteristic of the soil is a primary component of soil fertility. If the soil acidity is not in the proper range, other nutrients will be ineffective, resulting in less productive plant growth. Most plants grow best in a pH range of 6.5 – 7.0 (slightly acidic to neutral). The soil tests will recommend the specific amendments and application rates required to achieve this range. These amendments must be incorporated into the soil (not applied on the surface) to be effective. (See the General Requirements for soil preparation specifications and timing for incorporation of soil amendments.)

The base elements are easily found in bulk quantities. Lime can also be obtained in large quantities. They all must be thoroughly incorporated into the soil through appropriate mechanical means. Ground surface applications without proper soil mixing will result in poor results.

In addition to the base fertilizers, other trace elements are needed to produce healthy and vigorous growth. These include but may not be limited to sulfur, manganese, zinc, boron, chlorine and molybdenum. If not already included with bulk mixes of the base elements, they can be obtained from commercial suppliers.
Provisions for soils test during and/or after initial grading is complete shall be included on the approved plan, in the approved construction sequence, and on the bid item list utilized for the project. *If you did not obtain a soil test:* Follow these recommendations for all grasses except centipedegrass.

1. Apply 75 pounds of ground limestone per 1,000 sq. ft.
2. Apply a starter type fertilizer (one that is high in phosphorus) based on the type of grass and planting method. Fertilizer bags have a three-number system indicating the primary nutrients, such as 8-8-8 or 5-10-10. These numbers denote the N-P-K ratio—the percentage of each nutrient in a fertilizer. The percentages are always noted in the following order:
 N Nitrogen for green color and growth.
 P₂O₅ Phosphorus for good establishment and rooting.
 K₂O Potassium to enhance pest and environmental stress tolerance.

Some common examples of starter type fertilizers required for a 1,000 sq. ft. area include 40 pounds of 5-10-10, 20 pounds of 10-20-20, or 16 pounds of 18-24-6. For sandy soils, typical to coastal plain and sandhills of North Carolina, fertilizer rates should be increased by 20 percent.

Where available, it is recommended that the design professional specify organic compounds that meet the fertilization requirements, pH and other element requirements. Initial studies have indicated that these compounds have a more positive effect on the environment than some of the synthetic compounds used to manufacture inorganic fertilizers. These materials are readily available in the commercial trade as well as found in recycled yard waste debris, sewerage sludge, lime-stabilized sludge and animal manures. Materials proposed for use must be industry certified and/or privately tested and certified to be acceptable for proposed areas of use and application prior to approval.

MULCHES AND TACKING AGENTS

Mulches and tacking agents may be required or necessary to protect a seedbed’s disturbed surface until the seed can germinate and provide the required protection from erosion. Selection of the materials used in this application should be based on their ability to hold moisture in the soil, as well as protect exposed soil from rainfall, storm water runoff, and wind. The availability of the selected material and the means to apply it are critical factors to consider when planning for the stabilization of any disturbed area. The mulch must cover a minimum of eighty (80) percent of the soil surface and must be secured by a tacking agent, crimping, or protective biodegradable netting. Netting that incorporates plastic mesh and/or plastic twine should not be used in wetlands, riparian buffers or floodplains due to the potential of small animal mortality. See Section 6.14 for detailed specifications and product applications.

SOIL BLANKETS

Soil blankets can be an acceptable and effective method of temporary sediment and erosion control in lieu of nurse crops. See Section 6.17 of the manual for descriptions of this product and how it can be used in conjunction with this section. In absence of mulches and tracking agents other means of protection may be necessary and required.
PROTECTIVE MATTING

Protective matting consists of an impervious cover secured to the soil surface in lieu of vegetative cover. It is used to protect and stabilize the surface where the process of seeding or planting forms of vegetation may cause more erosion and off-site sedimentation than application of the mat. It is also used where a disturbed area is intended to lay fallow for a period of time before additional construction or land disturbance takes place. If a pervious matting is selected, a combination of vegetation and matting is required. Seeds can be applied prior to installation of the matting only after proper seedbed preparation has been provided. Also, live stakes, dormant sprigs, and other vegetation forms can be inserted in the pervious matting once it has been installed. Pre-seeded pervious matting may be used for quicker root establishment and stabilization only if certified dating and germination guarantees are provided. The reviewing agency must approve all pre-seeded matting on site prior to installation. Matting that incorporates plastic mesh and/or plastic twine should not be used in wetlands, riparian buffers or floodplains due to the potential of small animal mortality. See Section 6.17 for detailed specifications and recommended product applications.

STABILIZATION IN WETLANDS, RIPARIAN BUFFERS, AND FLOODPLAINS

Land disturbing activity involving streams, wetlands or other waterbodies may also require permitting by the U.S. Army Corps of Engineers or the N.C. Division of Water Quality. Approval of an erosion and sedimentation control plan is conditioned upon the applicant’s compliance with federal and State water quality laws, regulations, and rules. Additionally, a draft plan should be disapproved if implementation of the plan would result in a violation of rules adopted by the Environmental Management Commission to protect riparian buffers along surface waters. Care should be taken in selecting vegetative stabilization of wetlands and riparian buffers to comply with permitting requirements of other agencies, as well as provide adequate ground cover.

Planning Considerations for Land Disturbing Activities Within Wetland, Riparian, and Floodplain Areas

Wetlands, riparian areas, floodplains, and/or terrestrial areas between streams and uplands, serve to buffer surface water and provide habitat for aquatic and terrestrial flora and fauna. When cleared and disturbed, these sensitive areas are difficult to protect. Because of their proximity to water courses, relatively high ground water tables, and flooding potential, detailed analysis and design is necessary to determine the appropriate erosion control measures during construction. Determining the appropriate and most expeditious means of permanent vegetative stabilization in these areas requires equally detailed analysis and design. The following considerations for erosion control and stabilization should be taken into account during the design phase of the land disturbing project where sensitive areas are involved:

- Obtain soil tests to determine the soil type, pH, texture and available nutrients.
- Based on the soil tests provide a schedule of nutrients and other soil amendments that will be required.
• Select a seeding mix of non-invasive species that will provide immediate stabilization (a short-term environment that will support and compliment permanent vegetative stabilization) and include a selective native species mix that will eventually provide a permanent cover (a long-term environment that, with minimal maintenance, will provide adequate root and leaf cover).

• Invasive species are to be avoided. If native species and introduced non-invasive seed sources are not available, protective matting that will hold and foster the development of native cover from adjacent seed sources should be used. Continuous maintenance must be employed until the selected species have matured and are no longer susceptible to competition from invasive plants. If no alternative to the use of invasive seeds and plants is available, invasives approved on the plans may be utilized only with strict containment measures outlined in detail on the plans, in the construction sequence and in the maintenance specifications.

• A quickly germinating nurse crop of non-invasive, non-competitive annual grass species can be used along with native seeding and/or matting. These temporary systems should be planted at minimal density so that they do not inhibit the growth and establishment of the permanent, native species. (See the plant chart in Table 6.11.a for recommended native and nurse crop species.)

• Seed bed preparation is key to successful establishment of seeds. Particular care should be taken, however, when working in wetlands, riparian areas, or floodplains due to their sensitive nature. Careful consideration should be given to the types and placement of large equipment working in these areas. This process must be outlined in detail on the plan’s construction sequence.

• Installation techniques vary and should be planned for accordingly.

• A maintenance plan must be established for optimal plant establishment, submitted with the plans and included in the bid list for the project.

Like all construction sites, wetlands, riparian areas, and floodplains will vary widely in physical makeup across North Carolina. Different conditions will dictate specific treatment, design and plant selection within the Mountains, Piedmont, and Coastal Plain regions. Soil tests, seedbed preparation, mulching, matting, and maintenance will be critical for successful vegetative establishment and long-term protection of these environmentally sensitive areas. Unavoidable impacts to these areas during land disturbing activities need to be addressed in detail on the plan sheets and construction sequence.
Native Seed and Plant Selection for Stabilization of Wetlands, Riparian Areas, and Floodplains

Upon the completion of the land disturbing activity, vegetative cover must be established on all areas not stabilized by other means. If work in these areas stops for more than 15 working days, temporary vegetative cover and/or matting must be applied to all disturbed areas. The goal is to protect these areas from erosion and to prevent sedimentation of adjacent streams, wetlands, lakes, and other water bodies.

Planning considerations for wetlands, riparian areas and floodplains will require additional research, detail and specifications. Native grasses are usually required as a condition of a 401 Water Quality Certification or a trout buffer variance.

Native vegetative species are plant species that naturally occur in the region in which they evolved. These plants are adapted to local soil types and climatic variations. Because most native species do not germinate and establish as readily as some introduced species, it is necessary to provide a non-native nurse crop or matting to stabilize the soil until the native crop can become established as the dominant cover. Once established, the native plants will produce an extensive root structure that, if properly maintained, will stabilize soils and reduce erosive forces of rainfall and overland stormwater flow. Many of these plants also possess characteristics that, when established, allow them not only to survive, but also to thrive under local conditions.

Seeding a mixture of perennial native grasses, rushes, and sedges is a way to establish permanent ground cover within wetlands, riparian areas and floodplains. The use of propagated plants is another method of reestablishing natives in these environments. Selecting a seed mixture and/or propagated plants of different species with complimentary characteristics will provide vegetation to fill select niches on sites with varying physical conditions. The design professional should note that because most native species do not germinate and establish as readily as some introduced species, it is necessary to provide a non-native nurse crop or matting to stabilize the soil until the native crop can become established as the dominant cover. For additional information about acceptable nurse crop varieties, consult the planting list in Appendix 8.02, local seed and plant suppliers, the North Carolina Cooperative Extension Service or a qualified design professional to assure the proper selection and plant mix.
Permanent native seed species within the seed mixture should be selected based on natural occurrence of each species in the project site area. Climate, soils, topography, and aspect are major factors affecting the suitability of plants for a particular site and these factors vary widely across North Carolina, with the most significant contrasts occurring among the three major physiographic regions of the state – Mountains, Piedmont, and Coastal Plain. Sub-regions of the state should also be considered. For example, the Triassic Basin in the Piedmont region may have characteristics that call for special soil treatment, limited plant selection, and special maintenance. Even within the riparian area, there may be need for different species depending on site conditions (i.e., dry sandy alluvial floodplains with wet pockets). Therefore, thoughtful planning is required when selecting species for individual sites in order to maximize successful vegetation establishment.

Native seed and plant species are included on the plant list in Appendix 8.02 of this manual.

The design professional should note that regardless of the benefits and advantages of native seeds and plants, there are potential issues if proper planning, installation and maintenance do not occur. These may include:

- Potential for erosion or washout during the establishment stage;
- Seasonal limitation on suitable seeding dates and availability of seed and plants;
- Adaptability of species at specific sites;
- Availability of water and appropriate temperatures during germination and early growth; and
- Lack of maintenance to control invasive plants and undesirable competition.

PLANTING

- **Seed** – Prepare the seed bed as described above in soil preparation. Apply seed at rates specified on the plans, and/or as recommended in Tables 6.11a-c of this manual, with a cyclone seeder, prop type spreader, drill, or hydroseeder on and/or into the prepared bed. Incorporate the seed into the seed bed as specified. Provide finished grades as specified on the approved plan and carefully culti-pack the seedbed as terrain allows. If terrain does not allow for the use of a cultipacker, the approved plans and construction sequence must provide an alternative method of lightly compacting the soil. Mulch immediately.

- **Sprigs and Sod** – Install onto the prepared seed bed per the most current guidance in Carolina Lawns, NCSU Extension Bulletin AG-69, or Practice 6.12 Sodding.
• **Woody plants (liners, container, B&B)** – These materials are typically used to complement an herbaceous protective cover. They eventually are major components of long-term, permanent stabilization and should be chosen and planned in conjunction with immediate and long-term maintenance. The plants should be selected and specified by the design professional for each individual project. See Practice 6.13 *Trees, Shrubs, Vines, and Ground Covers.*

MAINTENANCE

The absence of or an incomplete landscape management specification and/or complete maintenance schedule shall constitute grounds for disapproval of the plans. Proper maintenance is critical for the continued stabilization once vegetative cover is established. Although maintenance strategies for different sites may be similar, no two construction sites in North Carolina have been or will be able to be controlled or protected in identical ways. Variations in climate, topography, soils, available moisture, size and many other conditions will dictate the maintenance methodology to be used. A detailed schedule of maintenance will be required on the plans. This schedule will illustrate how the initial planting will be maintained to assure immediate, short term and permanent protection. The schedule will address topics such as appropriate irrigation of plants during the early establishment phase, drought conditions, excessive rainfall, mulch replacement, supplemental seeding, supplemental soils tests, application of nutrients and amendments, control of competitive and invasive species, disease and insect control, and corrective maintenance, measures to address failure of vegetation to become established. Contractual responsibility for maintenance after initial establishment of vegetative cover will be provided on the plans, in the construction sequence and on the bid list for the project. Maintenance bonds and/or warranty guarantee may be required of the responsible party, especially for areas in or adjacent to environmentally sensitive sites such as wetlands, riparian buffers, floodplains, and waters of the State. See Example 6.11a for a sample maintenance specification and a minimum maintenance check list that shall be provided on all plans.

RECOMMENDED BID LIST

(These items should be itemized on documents utilized to obtain pricing for planting pertaining to vegetative stabilization of land disturbing projects in North Carolina.)

- Soil test prior to grading (price per each test).
- Soil test during grading operations (price per each test).
- Soil test at completion of grading and/or prior to seeding, sprigging, sodding and application of fertilizer, lime, and other soil amendments (price per each test).
- Ripping/subsoiling to a depth of six (6) inches. (Provide an alternate for ripping to a depth greater than six (6) inches.) (price per acre)
- Tilling/discing ripped area to a depth of four (4) inches and re-compacting with a cultipacker roller (include in seeding price).
• Seeding (price per square foot).
• Mulching (price per square foot).
• Repair seeding (price per square foot).
• Repair mulching (price per square foot).
• Matting (price per square yard).
• Watering (price per thousand gallons).
• Mowing (price per square foot).

SEEDING RECOMMENDATIONS

The following tables list herbaceous plants recommended for use as nurse crops for immediate stabilization and primary crops for initial and long-term stabilization. Nurse crops are expected to develop in two to five weeks and, with adequate maintenance, be an effective method of soil stabilization for a period of six months to one year. Nurse crops are not effective as primary long-term cover, however if properly maintained they can be an adequate cover and protection for the development of primary crops.

The goal for a primary crop is for it to develop over a three-week to one-year period and be effective up to three years with a well-defined maintenance program. The long-term goal for a primary crop is the initial step toward a sustainable protective cover without the need of maintenance. Where the primary crop is intended for a managed lawn and landscape aesthetics, the effective period can be extended by a more intense maintenance program. Where native species are utilized and become established during the planned maintenance program, a permanent cover that will support future succession species should exist and require little or no additional maintenance or management.

In uses of both nurse and primary crops, the development periods listed on the tables are optimal based on normal climatic conditions for the planting dates listed. The sediment and erosion control maintenance program must recognize that optimum temperatures and rainfall are the exception rather than the rule. The design professional needs to provide flexibility in the stabilization plan to address the potential ranges of temperature and moisture conditions we experience in North Carolina.
Information is provided for seeding rates, optimum planting dates in the state’s three regions, sun and shade tolerance, invasive characteristics, compatibility in wetlands and riparian buffers, and installation maintenance considerations. By going through the lists the design professional can select the nurse and primary seed varieties and maintenance characteristics they feel are best suited for their site conditions, vegetation management expertise and maintenance capabilities.

To use the information in the seeding charts the plan preparer must:

• Determine what nurse crop best fits their site, soil conditions, and permanent seed mix.
• Obtain soil tests for all areas to be seeded.
• Know the site’s region: mountains, piedmont, or coastal plain.
• Know if the areas to be seeded are sunny, part shade, or full shade.
• Know if the areas are well or poorly drained.
• Know if wetlands or riparian buffers are included in the areas to be seeded.
• Know if a chosen crop is invasive and if so, what potential impacts it will have on the site and adjacent properties.

With this knowledge the plan preparation may proceed utilizing the charts provided to provide the several seed mixes that will be applicable to the different areas requiring stabilization.
HERBACEOUS PLANTS - Seeding recommendations for immediate stabilization/nurse crops

(2 to 5 weeks for development; effectiveness goal: 6 months to 1 year stabilization)

NURSE CROP SPECIES

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Botanical Name</th>
<th>Native/Introduced</th>
<th>Seeding Rates lb/acre</th>
<th>Fertilization/ Limestone lb/acre</th>
<th>Mountains</th>
<th>Piedmont</th>
<th>Coastal Plains</th>
<th>Sun/Shade tolerant</th>
<th>Riparian Buffers</th>
<th>Invasive Yes or No</th>
<th>Installation/Maintenance Considerations</th>
<th>Other Information, Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rye Grain</td>
<td>Secale cereale</td>
<td>I</td>
<td>40</td>
<td>By soil test</td>
<td>11/1 - 4/30</td>
<td>5/15 - 6/15</td>
<td>9/15 - 10/15</td>
<td>Sun</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Must be mown to reduce permanent or long term vegetation</td>
</tr>
<tr>
<td>Wheat</td>
<td>Triticum aestivum</td>
<td>I</td>
<td>30</td>
<td>By soil test</td>
<td>11/1 - 4/30</td>
<td>5/15 - 6/15</td>
<td>9/15 - 10/15</td>
<td>Sun</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Must be mown to reduce competitiveness with vegetation</td>
</tr>
<tr>
<td>German Millet</td>
<td>Setaria italica</td>
<td>I</td>
<td>10</td>
<td>By soil test</td>
<td>5/11 - 9/30</td>
<td>5/15 - 6/15</td>
<td>4/15 - 8/15</td>
<td>Sun</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Crop should be cut / disc Not water tolerant. May be used prior to planting primary or in wetlands that are not continuously saturated.</td>
</tr>
<tr>
<td>Brownsp Millet</td>
<td>Urochloa ramosa</td>
<td>I</td>
<td>10</td>
<td>By soil test</td>
<td>5/11 - 9/30</td>
<td>5/15 - 6/15</td>
<td>4/15 - 8/15</td>
<td>Sun</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Crop should be cut / disc Not water tolerant. May be used prior to planting primary or in wetlands that are not continuously saturated.</td>
</tr>
<tr>
<td>Sudan grass (hybrids)</td>
<td>Sorghum saccharatum</td>
<td>I</td>
<td>15</td>
<td>By soil test</td>
<td>NR</td>
<td>NR</td>
<td>4/15 - 8/15</td>
<td>Sun</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Crop should be cut / disc Use only where plants and seed prior to planting primary or can be contained and controlled.</td>
</tr>
<tr>
<td>Kobe Lespedeza</td>
<td>Kummerowia striata v. kobe</td>
<td>I</td>
<td>10</td>
<td>By soil test</td>
<td>5/1 - 9/1</td>
<td>5/1 - 9/1</td>
<td>5/1 - 9/1</td>
<td>Sun</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Consult qualified Use in Coastal Plain horticulturalist or extension agent for over-seeding with primary cover</td>
</tr>
<tr>
<td>Korean Lespedeza</td>
<td>Kummerowia stipulacea</td>
<td>I</td>
<td>10</td>
<td>By soil test</td>
<td>5/1 - 9/1</td>
<td>5/1 - 9/1</td>
<td>5/1 - 9/1</td>
<td>Sun</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Consult qualified Use in Piedmont and horticulturalist or extension Mountains. May become agent for over-seeding invasive with primary cover</td>
</tr>
</tbody>
</table>

NOTES:

1. Seeding rates are for hulled seed unless otherwise noted.
2. Fertilizer & Limestone - rates to be applied in absence of soils tests. Recommended application rate assumes significantly disturbed site soils with little or no residual value.
3. NR means Species not recommended for this region or application area.
5. Sprigging is not recommended for immediate stabilization unless terrain is flat heavy mulch is applied and no other immediate stabilization method is practical.
HERBACEOUS PLANTS-Seeding recommendations for primary stabilization

Successful development depends on planting date (effectiveness goal: 6 mo. - 3 yrs. without an ongoing maintenance program)

NON-NATIVE SPECIES

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Botanical Name / Cultivar</th>
<th>Native / Introduced</th>
<th>Broadcast Seeding Rates/Time</th>
<th>Fertilization/ Irrigation/ Lbs/acre</th>
<th>Mountains</th>
<th>Piedmont</th>
<th>Coastal Plains</th>
<th>Sun/Shade tolerant</th>
<th>Wetlands</th>
<th>Riparian Buffers</th>
<th>Invasive Yes or No</th>
<th>Installation / Maintenance Considerations</th>
<th>Other information, commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sercicea Lespedeza</td>
<td>Lespedeza currante "Dunrort"</td>
<td>I</td>
<td>15 lbs.</td>
<td>By soil test 9/1 - 6/1</td>
<td>9/1 - 5/1</td>
<td>10/1 - 6/1</td>
<td>Sun</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Responds well to controlled burns</td>
<td>Severe Threat</td>
<td></td>
</tr>
<tr>
<td>Centipede Grass</td>
<td>Eremochloa ophiurost</td>
<td>I</td>
<td>5 lbs.</td>
<td>By soil test 10/5-4/30</td>
<td>NR</td>
<td>Eastern</td>
<td>9/1 - 5/1</td>
<td>Sun</td>
<td>NR</td>
<td>No</td>
<td>Significant maintenance, does not tolerate high traffic</td>
<td>Acceptable for sodding</td>
<td></td>
</tr>
<tr>
<td>KY 31 Tall Fescue</td>
<td>Schodorus phoenix "Stipa"</td>
<td>I</td>
<td>100 lbs.</td>
<td>By soil test 8/15-5/1</td>
<td>9/1-4/15</td>
<td>9/30 - 3/15</td>
<td>Sun / mod, Shade</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
<td>If utilized, it is imperative, prefers neutral soils</td>
<td>Acceptable for sodding</td>
<td></td>
</tr>
<tr>
<td>KY Blue Grass</td>
<td>Poa pratensis</td>
<td>I</td>
<td>15 lbs.</td>
<td>By soil test 8/15-5/1</td>
<td>NR</td>
<td>NR</td>
<td>Sun</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>If utilized, it is imperative, prefers neutral soils</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Fescue</td>
<td>Festuca virepta "Stipa"</td>
<td>I</td>
<td>15 lbs.</td>
<td>By soil test 8/1 - 6/1</td>
<td>NR</td>
<td>Shade</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>No</td>
<td>Not recommended for low growing, bunch grass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bermuda Grass</td>
<td>Cynodon dastylon "Stipa"</td>
<td>I</td>
<td>25 lbs.</td>
<td>By soil test 4/15-6/30</td>
<td>4/15-6/30</td>
<td>Sun</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Extremely aggressive, not recommended and should be avoided unless an acceptable alternative</td>
<td>May be sodded or sprigged</td>
<td></td>
</tr>
</tbody>
</table>

Practice Standards and Specifications

Table 6.11.b
HERBACEOUS PLANTS - Seeding recommendations for primary stabilization

Successfull development depends on planting date (effectiveness goal: 6 mo. - 3 yrs. without an ongoing maintenance program)

NATIVE SPECIES

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Botanical Name / Cultivar</th>
<th>Native / Introduced</th>
<th>See Table 6.11.d for variety seedling rates</th>
<th>Fertilization / limestone / limestones</th>
<th>Mountains</th>
<th>Piedmont</th>
<th>Coastal Plains</th>
<th>Sun / Shade tolerant</th>
<th>Wetlands</th>
<th>Riparian Buffers</th>
<th>Invasive Yes or No</th>
<th>Installation / Maintenance Considerations</th>
<th>Other information, commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchgrass</td>
<td>Panicum virgatum /</td>
<td>N / A</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>NR</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Cave-in-Rock</td>
<td></td>
</tr>
<tr>
<td>Switchgrass</td>
<td>Panicum virgatum /</td>
<td>N / A</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>NR</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Blackwell</td>
<td></td>
</tr>
<tr>
<td>Switchgrass</td>
<td>Panicum virgatum /</td>
<td>N / A</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>NR</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Shelter</td>
<td></td>
</tr>
<tr>
<td>Switchgrass</td>
<td>Panicum virgatum /</td>
<td>N / A</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Cudhage</td>
<td></td>
</tr>
<tr>
<td>Switchgrass</td>
<td>Panicum virgatum /</td>
<td>N / A</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>No</td>
<td>Poorly</td>
<td>No</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Kanlow</td>
<td></td>
</tr>
<tr>
<td>Switchgrass</td>
<td>Panicum virgatum /</td>
<td>N / A</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>No</td>
<td>Poorly</td>
<td>No</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Alamo</td>
<td></td>
</tr>
<tr>
<td>Indiangrass</td>
<td>Sorghastrum nutans /</td>
<td>N / B</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>NR</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Rumsey</td>
<td></td>
</tr>
<tr>
<td>Indiangrass</td>
<td>Sorghastrum nutans /</td>
<td>N / B</td>
<td>12/1 - 4/15</td>
<td>12/1 - 4/1</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>NR</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Responds well to</td>
<td>controlled burns. Mix with</td>
<td>3 to 5 other seed varieties</td>
</tr>
<tr>
<td>Osage</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.11.c (con’t)

Native Species

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Botanical Name / Cultivar</th>
<th>Native / Introduced</th>
<th>See Table 6.11.d for variety seeding rates</th>
<th>Fertilization / Lime Size</th>
<th>Meadows</th>
<th>Mountains</th>
<th>Piedmont</th>
<th>Coastal Plains</th>
<th>Sun/Shade Tolerant</th>
<th>Wetlands</th>
<th>Riparian Buffers</th>
<th>Invasive</th>
<th>Yes or No</th>
<th>Installation / Maintenance Considerations</th>
<th>Other Information, Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indiangrass</td>
<td>Sorghastrum nutans / N</td>
<td>B</td>
<td>By soil test</td>
<td>5/1-4/15</td>
<td>Sun</td>
<td>NR</td>
<td>Well</td>
<td>No</td>
<td>Responds well to controlled burns</td>
<td>Indiangrass adaptable to drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cheyenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Western coastal plain only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiangrass</td>
<td>Sorghastrum nutans / N</td>
<td>B</td>
<td>By soil test</td>
<td>5/1 - 4/1</td>
<td>Sun</td>
<td>NR</td>
<td>Well</td>
<td>No</td>
<td>Responds well to Only Indiangrass adaptable to Eastern coastal plain (Zone 8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lomenda</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Deer Tongue</td>
<td>Dichanthelium / Tioga</td>
<td>C</td>
<td>By soil test</td>
<td>5/1-4/15</td>
<td>Sun</td>
<td>NR</td>
<td>Yes</td>
<td>No</td>
<td>Responds well to controlled burns</td>
<td>Mix with 3 to 5 other seed varieties that have similar soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Big Bluestem</td>
<td>Andropogon gerardii / N</td>
<td>D</td>
<td>By soil test</td>
<td>12/1-4/15</td>
<td>Sun</td>
<td>NR</td>
<td>Well</td>
<td>No</td>
<td>Responds well to Warm season grass</td>
<td>3 to 5 other seed varieties that have similar soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rountree</td>
<td></td>
</tr>
<tr>
<td>Big Bluestem</td>
<td>Andropogon gerardii / N</td>
<td>D</td>
<td>By soil test</td>
<td>12/1 - 4/1</td>
<td>Sun</td>
<td>NR</td>
<td>Well</td>
<td>No</td>
<td>Responds well to Warm season grass</td>
<td>3 to 5 other seed varieties that have similar soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kaw</td>
<td></td>
</tr>
<tr>
<td>Big Bluestem</td>
<td>Andropogon gerardii / N</td>
<td>D</td>
<td>By soil test</td>
<td>12/1-4/15</td>
<td>Sun</td>
<td>NR</td>
<td>Well</td>
<td>No</td>
<td>Responds well to Warm season grass</td>
<td>3 to 5 other seed varieties that have similar soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Earl</td>
<td></td>
</tr>
<tr>
<td>Little Bluestem</td>
<td>Schizachyrium / Aditus</td>
<td>E</td>
<td>By soil test</td>
<td>12/1-4/15</td>
<td>Sun</td>
<td>NR</td>
<td>Well</td>
<td>No</td>
<td>Responds well to Warm season grass</td>
<td>3 to 5 other seed varieties that have similar soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>scoparium / Alditus</td>
<td></td>
</tr>
<tr>
<td>Little Bluestem</td>
<td>Schizachyrium / Cimmaron</td>
<td>N</td>
<td>By soil test</td>
<td>12/1-4/15</td>
<td>Sun</td>
<td>NR</td>
<td>Well</td>
<td>No</td>
<td>Responds well to Warm season grass</td>
<td>3 to 5 other seed varieties that have similar soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>scoparium / Cimmaron</td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Botanical Name / Cultivar</td>
<td>Native / Introduced</td>
<td>See Table 6.11.d for variety seeding rates</td>
<td>Fertilization/ limestone/limestone</td>
<td>Mountains</td>
<td>Redpent</td>
<td>Coastal Plains</td>
<td>Sun/Shade tolerant</td>
<td>Wetlands</td>
<td>Riparian Buffers</td>
<td>Invasive Yes or No</td>
<td>Installation / Maintenance Considerations</td>
<td>Other information, commentary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Bluestem</td>
<td>Schizachyrium scoparium / Common</td>
<td>N E</td>
<td>By soil test</td>
<td>NR</td>
<td>NR</td>
<td>12/1-4/1</td>
<td>Sun & NR</td>
<td>well drained</td>
<td>No</td>
<td>Mix with 3 to 5 other seed varieties</td>
<td>Warm season grass</td>
<td>Responds well to controlled burns. Mix with soil drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweet Woodreed</td>
<td>Cinna arundinacea</td>
<td>N F</td>
<td>By soil test</td>
<td>12/1-4/15</td>
<td>12/1-4/1</td>
<td>Sun & NR</td>
<td>mod. Shade</td>
<td>Poorly to well drained</td>
<td>No</td>
<td>Mix with 3 to 5 other seed varieties</td>
<td>Warm season grass</td>
<td>soil drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice Cutgrass</td>
<td>Leersia oryzoides</td>
<td>N G</td>
<td>By soil test</td>
<td>12/1-4/15</td>
<td>12/1-4/1</td>
<td>Sun</td>
<td>Yes</td>
<td>Poorly</td>
<td>No</td>
<td>Mix with 3 to 5 other seed varieties</td>
<td>Warm season grass</td>
<td>soil drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Bottlebrush</td>
<td>Elymus hystrix</td>
<td>N J</td>
<td>By soil test</td>
<td>3/1 - 5/15</td>
<td>2/15-4/1</td>
<td>Sun & NR</td>
<td>NR</td>
<td>NR</td>
<td>Well</td>
<td>Mix with 3 to 5 other seed varieties</td>
<td>Cool season grass</td>
<td>soil drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soft Rush</td>
<td>Juncus effusus</td>
<td>N K</td>
<td>By soil test</td>
<td>12/1 - 5/15</td>
<td>12/1-4/15</td>
<td>9/1-11/1</td>
<td>Sun & NR</td>
<td>Yes</td>
<td>Poorly</td>
<td>Mix with 3 to 5 other seed varieties</td>
<td>Cool season grass</td>
<td>soil drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shallow Sedge</td>
<td>Carex Jutida</td>
<td>N L</td>
<td>By soil test</td>
<td>12/1 - 5/15</td>
<td>12/1-4/15</td>
<td>9/1-11/1</td>
<td>Sun</td>
<td>Yes</td>
<td>Poorly</td>
<td>Mix with 3 to 5 other seed varieties</td>
<td>Cool season grass</td>
<td>soil drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fox Sedge</td>
<td>Carex octopoda</td>
<td>N L</td>
<td>By soil test</td>
<td>12/1 - 5/15</td>
<td>12/1-4/15</td>
<td>9/1-11/1</td>
<td>Sun</td>
<td>Yes</td>
<td>Poorly</td>
<td>Mix with 3 to 5 other seed varieties</td>
<td>Cool season grass</td>
<td>soil drainage adaptations.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. Seeding rates are for hulled seed unless otherwise noted.
2. Fertilizer & Lime - rates to be applied in absence of soil tests. Recommended application rate assumes significantly disturbed site soils with little or no residual value.
3. NR means Species not recommended for this region or application area.
4. Native, warm season grasses require six or more months to germinate under optimum conditions. If they are planted in the summer, then a whole year will have to pass before they germinate.
6. Sprigging is not recommended for immediate stabilization unless terrain is flat, heavy mulch is applied and no other immediate stabilization method is practical.
7. Sodding for immediate stabilization - see primary stabilization charts (other information column) and Section 6.12.
8. Long term stabilization can only be accomplished with an adequate, immediate, and primary stabilization program. To achieve long term protective cover with the species listed in this chart, the approved plan, construction sequence and maintenance schedule must include sufficient detail to assure vegetation will be established and maintained. To assure the long term protective cover will be established, the reviewing and approving governing body may require a performance/maintenance bond.
Table 6.11.d

Seed Mixes for Native Species (lbs/ac)

When Mixed with 3, 4, or 5 Other Native Species

(See Table 6.11.a for nurse crop species to be added to these mixes)

<table>
<thead>
<tr>
<th></th>
<th>3 Other (total 4 species)</th>
<th>4 Other (total 5 species)</th>
<th>5 Other (total 6 species)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch Grasses (A)</td>
<td>3.5 lbs.</td>
<td>3.0 lbs.</td>
<td>2.5 lbs.</td>
</tr>
<tr>
<td>Indian Grasses (B)</td>
<td>7.0 lbs.</td>
<td>6.0 lbs.</td>
<td>5.0 lbs.</td>
</tr>
<tr>
<td>Deertongue (C)</td>
<td>6.0 lbs.</td>
<td>5.0 lbs.</td>
<td>4.0 lbs.</td>
</tr>
<tr>
<td>Big Bluestem (D)</td>
<td>7.0 lbs.</td>
<td>6.0 lbs.</td>
<td>5.0 lbs.</td>
</tr>
<tr>
<td>Little Bluestem (E)</td>
<td>7.0 lbs.</td>
<td>6.0 lbs.</td>
<td>5.0 lbs.</td>
</tr>
<tr>
<td>Sweet Woodreed (F)</td>
<td>2.5 lbs.</td>
<td>2.0 lbs.</td>
<td>1.5 lbs.</td>
</tr>
<tr>
<td>Rice Cutgrass (G)</td>
<td>6.0 lbs.</td>
<td>5.0 lbs.</td>
<td>4.0 lbs.</td>
</tr>
<tr>
<td>Indian Woodoats (H)</td>
<td>2.5 lbs.</td>
<td>2.0 lbs.</td>
<td>1.5 lbs.</td>
</tr>
<tr>
<td>Virginia Wild Rye (I)</td>
<td>6.0 lbs.</td>
<td>5.0 lbs.</td>
<td>4.0 lbs.</td>
</tr>
<tr>
<td>Eastern Bottlebrush Grass (J)</td>
<td>2.5 lbs.</td>
<td>2.0 lbs.</td>
<td>1.5 lbs.</td>
</tr>
<tr>
<td>Soft Rush (K)</td>
<td>2.5 lbs.</td>
<td>2.0 lbs.</td>
<td>1.5 lbs.</td>
</tr>
<tr>
<td>Sedges (L)</td>
<td>2.5 lbs.</td>
<td>2.0 lbs.</td>
<td>1.5 lbs.</td>
</tr>
</tbody>
</table>

NOTE:

With the native varieties, the seed mix should be in the range of 15 pounds per acre. Depending on availability of native seeds adaptable to North Carolina, the percentage of a particular variety used may be reduced or increased accordingly. Although diversity is desirable, it is imperative that the primary crop develop and become an effective protective cover. In addition to the native species mix, additional nurse crop species must be included to provide immediate stabilization and an adequate ground cover.
Following is an outline that demonstrates what should be included in specifications that will insure the long term stabilization of disturbed sites in North Carolina. As noted before in this manual, each construction site in the state is unique and has features that will require special provisions for revegetation and stabilization. The outline provided below cannot address these individual sites. It is the responsibility of the design professional and the financially responsible party to see that the specifications are edited to fit their site and to assure that permanent stabilization is achieved.

General Provisions

A. Intent:

1. These specifications are prepared with the intent of promoting outstanding performance in long-term stabilization. They are to be used as guidelines in establishing sediment control and vegetative standards for the sites. Final technical decisions such as herbicides, fertilizer ratios, times of application and schedules are to be determined by the Contractor, who has the responsibility to obtain soil test and to manage the vegetation to achieve the desired results. The maintenance specifications must address maintenance for sediment and erosion control vegetation during construction and for permanent/long-term stabilization.

B. Description of Work:

1. Perform all work necessary and required for the (insert period of contract) maintenance of the project as indicated on the drawings, in the project manual, and specified herein.

2. Licensing:

 a) Contractor shall provide verification of current, applicable pesticide applicator licensing for each applicator that will handle pesticides on the contracted sites.

3. Contract Administration

 a) Staffing: The Contractor shall provide adequate staffing, with the appropriate expertise, to perform all required work.

 b) Monthly Site Review meetings will be held. Attendees will include the Contractor’s Project Manager and Site Foreman and the property manager or other representative designated by the financially responsible party. Result of site reviews will be documented and circulated to the attendees and the owner by the contractor.

 c) The Contractor will communicate with the proper person on a monthly basis to summarize work performed and immediately notify the project manager of any failure of the site to remain stabilized.

II. Materials

A. Soil Additives: Additives are to be applied per soils test taken prior to, during and after construction. (Use this section to provide the types and quantities of fertilizers, lime, and other soil amendments called for in the soils report. Include all soils test reports in the specifications document. This narrative or list should include quantities, rates, mixes, organic information, manufacturer, sources, and other information suggested in the soils test.)
Practice Standards and Specifications

A. Pesticides:

1. Establish an Integrated Pest Management (IPM) program for the site that relies on targeted insect and disease control coupled with sound stabilization management and water management practices.

2. These specifications do not include pesticide treatments for infestations of Southern Pine Beetle, Gypsy Moth, or Fire Ants. The contractor shall notify the Owner if these pests are observed on site.

3. All pesticides shall be applied by a North Carolina licensed applicator in accordance with all State and Federal regulations and per manufacturer’s recommendations.

B. Mulches: Mulch for areas not subject to erosion and over wash by storm water should be called out in this section addressing its maintenance, replacement, removal and conversion to other uses. Those subject to erosion and over wash by storm water must be addressed on the plans and in the calculations.

III. Execution

A. General:

1. Good long term stabilization is based on the proper maintenance, management and balance of nutrients, soil moisture and general cultural practices. It is recognized that fewer fungicide and pesticide treatments as well as lower fertility rates are required with a well managed, balanced landscape. The following section is meant to promote this balance and therefore do not highlight specific quantitative standards. (Quantitative standards should be addressed as site specific by the design professional in conjunction with the owner and contractor.) Calendar references are general and are to be used only as a guide. Weather and soil conditions that are most appropriate for a given process, procedure and/or area of the state shall be the determining factor in scheduling work.

B. Soil Tests:

1. After the soil test prior to stabilization, tests shall be made yearly in the fall to determine the required soil additives for all stabilized areas. If known nitrogen requirements are not specified by previous test, they need to be determined by the subsequent soils test and the proper applications made. Fertilizer ratios may be determined through analysis of the soil tests coupled with the contractor’s experience and knowledge of the site.

C. Mowing

1. Mowing for maintained turf/lawns
 a. Mow areas intended for “groomed appearance” on a schedule during the growing season and as required throughout the year to provide the desired appearance. (Establish a mowing frequency here that addresses the specific plant species used and their growing habits.) This frequency will be a minimum standard. Particular properties and their peculiar characteristics as well as individual plant species may require mowing more often than the stated minimum may be required. This should be noted in this section.
 b. The range of turf species suggested for lawns in the three growing regions of North Carolina vary as to optimum maintained height. The selected species should be maintained at a height recommended by the seed producer. Do not cut too short and do not allow the turf to attain a height that will cause the crop to decline or die. Consult individual seed producers and/or packaging for recommended mowing heights.
 c. Mow with a mulching mower to limit the amount of clippings removed, or mow and blow in such a manner that clippings are not evident and not to adversely effect the growing capacity.
and/or health of the existing vegetation turf. It is important clippings are allowed to remain spread throughout the lawn area, to the extent possible, so that they might aid in building a more productive soil profile and root zone.

2. Mowing other stabilized areas to promote continued growth. Include mowing specification here for other stabilized areas which require maintenance but not a “groomed” appearance. Also include specifications for mowing areas where it is desirable for woody native volunteer vegetation to become established. This should include attention to mowing stakes or other way of protecting the desired woody natives from the mowing operation.

D. Watering

1. Irrigation System Maintenance and Monitoring: If stabilized areas are to be irrigated the design professional should include specifications for the system, its maintenance and its operation in this section.

2. In the absence of an automatic or manual irrigation system, provisions for providing adequate water to stabilized areas should be addressed in this section.

3. (Provisions should be made in this section for adjustments to application rates of water during times of regulated droughts and/or periods of excessive rainfall.)

E. CONTROL OF INVASIVES: Competition from invasive species can be detrimental to the establishment of the permanent vegetative cover. Left unchecked, these invasives can undermine a revegetation process in a short period of time and eventually lead to unprotected soil and sediment damage. Make site observations monthly to check for the presence of such species and, if found, treat them immediately with the appropriate cultural practices and/or by the use of seasonally-appropriate and site appropriate herbicides.

F. Maintenance items including fertilization, mowing, continued soils testing, repair, mulching, matting and soil preparation are to be addressed in the approved construction sequence and on the project bid list.