Grifols practices to improve stormwater compliance:

- Consolidated five environmental response plans into one
- Expanded annual training
- Changed semi-annual testing of all stormwater outfalls to monthly
- Added interpretive signs to highlight specific stormwater protection features on-site

Agenda

- 700 acres
- Production of human plasma-based therapeutics
- ~1750 employees
- 24 hour at 7 day a week
Prior to 2010...

- Significant number of violations
- Violations identified primarily by environmental staff
- Employees lacked awareness of spill plan requirements
Consolidate five contingency plans into one

Integrate Contingency Plan

- Slug Control Plan (SLUG)
- Best Management Practices Plan (BMP)
- Stormwater Pollution Prevention Plan (SWPPP)
- Spill Prevention Control and Countermeasures (SPCC)
- Resource Conservation and Recovery Act Contingency Plan (RCRA)
Consolidate five contingency plans into one

INTEGRATED CONTINGENCY PLAN

1.4 SPCC PLAN
(40 CFR Part 112)

Summary
A plan is required for facilities with oil (including petroleum) storage capacities of:

a) More than 42,000 gallons, completely buried, excluding the capacity of a completely buried tank, as defined in 40 CFR 112.2 and connected underground piping, underground ancillary

1.5 RESOURCE CONSERVATION AND RECOVERY ACT (RCRA) CONTINGENCY PLAN

Summary
Hazardous waste facilities must have a contingency plan that identifies how the facility minimizes hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.

Status
The plan is required. The Grifols facility is classified as a Large Quantity Generator of hazardous waste, stores hazardous waste for up to 90 days, and is required to have a contingency plan.

Status
The plan is required. The Grifols facility is subject to 40 CFR Part 112 based on the reasonable potential to discharge oil into or upon navigable waters of the United States or adjoining shorelines. The reasonable potential is based upon the geographical and physical aspects of the facility (such as storm water drainage) and excludes consideration of manmade features such as dikes, equipment or other structures which may serve to restrain, contain, or otherwise prevent a discharge of oil into or upon navigable waters of the United States or adjoining shorelines.

Additionally, the Grifols facility is subject to the requirements of 40 CFR Part 112 on the basis that there is currently an aggregate aboveground storage capacity of more than 1,320 gallons of oil. In accordance with 40 CFR Part 112.1(d)(2)(ii), only containers of oil with a capacity of 55 gallons or greater are counted towards the aggregate aboveground storage capacity.
Consolidate five contingency plans into one

Integrated Contingency Plan

<table>
<thead>
<tr>
<th></th>
<th>Slug</th>
<th>SWPPP</th>
<th>SPCC Plan</th>
<th>RCRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trainees</td>
<td>WWTP Operators</td>
<td>Personnel involved in any of the facility’s operations that have the potential to contaminate storm water runoff</td>
<td>Oil-handling personnel</td>
<td>Personnel involved in responding to incidents</td>
</tr>
<tr>
<td>Focus</td>
<td>Protection from accidental and slug discharges of prohibited materials and other substances</td>
<td>Proper spill response and cleanup procedures and preventative maintenance activities, and the contents of the SWPPP Plan</td>
<td>Operation and maintenance of equipment to prevent discharges; discharge procedure protocols, applicable pollution control laws, rules, and regulations; general facility operations; and the contents of the SPCC Plan. See Appendix B, page B-9 for more information regarding SPCC training.</td>
<td>Proper incident response and cleanup procedures and the contents of the RCRA Contingency Plan</td>
</tr>
<tr>
<td>Instructor</td>
<td>WWTP Manager, or designated representative</td>
<td>ESS Department, or designated representative</td>
<td>The Utilities Operations Manager, or designated representative</td>
<td>ESS Department, or designated representative</td>
</tr>
<tr>
<td>Frequency</td>
<td>When necessary</td>
<td>Annually</td>
<td>Annually</td>
<td>Annually</td>
</tr>
</tbody>
</table>

Grifols Therapeutics LLC
Clayton, North Carolina

GRIFOLS

Training for ~350 personnel

January 2020
Consolidate five contingency plans into one

INTEGRATED CONTINGENCY PLAN

Stormwater Concerns 2017

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Cause</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/16/2017</td>
<td>Wastewater spill from FS20</td>
<td>Valve failure caused more wastewater to flow to FS20 than the pumps in FS20 could pump. An estimated 50 gallons spilled from the building before it could be stopped. Of the 96 gallons, less than 1 gallon entered the storm sewer.</td>
<td>Shop vacs were used to clean up the spilled wastewater. Faulty valve was replaced.</td>
</tr>
<tr>
<td>9/8/2017</td>
<td>Wastewater spill from ES50</td>
<td>Delta V controller stopped controlling, so the lift pump after primary neutralization stopped running and no alarms were sent to the control room.</td>
<td>Replaced the Delta V controller and added a redundant controller.</td>
</tr>
<tr>
<td>2/21/2017</td>
<td>Gasoline leak from shoemobile</td>
<td>Saddle tank used to power the Shoemobile generator was dripping gasoline.</td>
<td>Absorbent pads and a bucket were used until the tank could be emptied.</td>
</tr>
<tr>
<td>4/3/2017</td>
<td>Spill containment</td>
<td>Frac tank drain valve was not completely closed and allowed spillage.</td>
<td>Spill stopped and cleaned up before it reached the storm drain.</td>
</tr>
</tbody>
</table>

Grifols Therapeutics LLC
Clayton, North Carolina

Training for ~350 personnel

January 2020
Consolidate five contingency plans into one

INTEGRATED CONTINGENCY PLAN

Grifols Therapeutics LLC
Clayton, North Carolina

Gasoline spill

February 21, 2017
Where: Road south of B300
What: Gasoline
How much: Approximately 0.1 gallons
Why: Leak from shoemobile’s saddle tank
Fix: Contained leak until tank could be emptied. Required vendor to repair leak before returning to site.

GRIFOLS

Training for ~350 personnel

January 2020
Monthly Inspections of Outfalls

1. Only stormwater may go down a storm drain.
2. No other discharge to the storm drain is allowed (except for potable water and HVAC condensate).

Testing location –

Required - semi-annually

Conducted - monthly
Interpretive signs

30 signs throughout 10 miles of trails.
Interpretive Signs for Stormwater

Stormwater Protection Measures

The Grifols Retention Basin #2
A retention basin is used to manage stormwater runoff to prevent flooding and downstream erosion, and improve water quality in an adjacent river, stream, lake or bay. Sometimes called a wet pond or wet detention basin, it is an artificial lake with vegetation around the perimeter, and includes a permanent pool of water in its design. It is distinguished from a detention basin, sometimes called a “dry pond,” which temporarily stores water after a storm, but eventually empties out at a controlled rate to a downstream waterbody. It also differs from an infiltration basin which is designed to direct stormwater to groundwater through permeable soils. Wet ponds are frequently used for water quality improvement, groundwater recharge, flood protection, aesthetic improvement or any combination of these. Sometimes they act as a replacement for the natural absorption of a forest or other natural process that is lost when an area is developed. As such, these structures are designed to blend into neighborhoods and viewed as an amenity. The Grifols retention pond in front of you collects water from a 40-acre drainage area before releasing it slowly to the Neuse River.

The Grifols Level Spreader for Basin #3
A level spreader is an erosion control device designed to reduce water pollution by mitigating the impact of high-velocity stormwater surface runoff. It is used both on construction sites and for permanent applications such as drainage for roads and highways. The device reduces the energy level in high-velocity flow by converting it into sheet flow, and disperses the discharged water so that it may infiltrate into the soil. Level spreaders are used in conjunction with runoff infiltration devices such as bioretention systems, infiltration basins and percolation trenches.

Why these plants?
In order to develop a healthy wetland area, Grifols planted over 1,000 wetland plants in the basin. Wetlands are natural buffers between uplands and waterways. By trapping sediment, removing nutrients and detoxifying chemicals, wetlands act as efficient and cost-effective filtration systems. When runoff enters a wetland, many of the harmful components are removed before the water enters a stream.

Native Water Plants Around Pond: Ditch, Forebay, Inlet, Stormwater Flow

Grifols Retention Basin No. 2 - Section View

Wetland Plants:
- Blue Flag - Iris virginica
- Sweet Flag - Acorus calamus
- Jersey Anemone - Pellionia urticae
- Three-Square Bulrush - Scirpus tripus
- Swamp Milkweed - Asclepias incarnata
- Joe Pye Weed - Eupatorium cannabinum
History of Compliance

Prior to 2010…

• Significant number of violations
• Violations identified primarily by environmental staff
• Employees lacked awareness of spill plan requirements

Now…

• Concerns are insignificant
• Employees report findings
• Employees are aware of the plans