Composting Industrial and Commercial Organics

Waste Reduction Partners
Quarterly Meeting
April 20, 2000

Craig Coker
Community & Business Assistance Section/DPPEA
What is Compost?

- Humus manufactured by the controlled biological decomposition of organic matter
- Sanitized by the generation of heat
- Stabilized to benefit plant growth
- Improves physical, chemical and biological characteristics of soils
- Benefits to soil - -
 - 25 lbs/ton Nitrogen
 - 13 lbs/ton Phosphorus
 - 7 lbs/ton Potassium
 - Trace Elements
How is Compost Manufactured?

- Produced through activity of aerobic microorganisms
- Nitrogen-containing wastes are mixed with carbon-containing bulking agents (i.e. wood chips)
- Natural decomposition process heats up compost pile to kill pathogens
- Material is cured to finish biological decomposition
- Finished compost may be screened (depending on bulking agents used and
Suitable Materials for Composting

- Biodegradable waste streams from manufacturing
 - Wood wastes, textile wastes, food processing wastes
- Food wastes and paper from on-site cafeterias
- Food wastes and paper from grocery stores and restaurants
- Waxed-coated cardboard from packaging
- Sludge from wastewater treatment
- Off-spec product (biodegradable)
- Animal manures
Feedstock and Compost Quality

- Feedstocks must pass TCLP
- Compost must meet metals and pathogen limits:
 - Arsenic 41 mg/kg
 - Cadmium 39 mg/kg
 - Copper 1500 mg/kg
 - Lead 300 mg/kg
 - Mercury 17 mg/kg
 - Nickel 420 mg/kg
 - Selenium 36 mg/kg
 - Zinc 2800 mg/kg
 - Total Coliform <1000 MPN/gm
 - Manmade Inerts < 1” in size
Composting Essential Elements

- **Nutrients**
 - Carbon/Nitrogen (C/N) – 20:1 to 35:1
 - Carbon/Phosphorus (C/P) – 100:1 to 150:1
- **Moisture Content** – 50 to 60 percent (wet basis)
- **Particle Size** – 1/2” to 1” optimum
- **Porosity** – 35 to 50 percent
- **pH** – 6.5 to 8.0
- **Oxygen concentration** – greater than 5 percent
- **Temperature** – 130° F. to 150° F.
- **Time** – one to four months
Composting Technologies

- Technology in Composting:
 - Materials Handling
 - Biological Process Optimization
 - Odor Control

- Capital Cost
 - Increases with technology

- Operational Costs
 - Decrease with technology (less labor intensive)

- Footprint (Area Required)
 - Decreases with technology (usually)
Composting Systems

- **Low - Tech**
 - Windrow

- **Mid - Tech**
 - Aerated Static Pile
 - Aerated Compost Bins

- **High - Tech (In-Vessel)**
 - Rotary Drum Composters
 - Box/Tunnel Composting Systems
 - Mechanical Compost Bins
Windrow Composting

- Long, narrow piles agitated/turned regularly
- Aeration by natural/passive air movement
- Better suited to larger volumes
- Composting Time: 3 - 6 Months
Aerated Compost Bins

- Aeration Through Porous Floor Plates/Channels
- Composting Time: 2 - 3 Weeks
- Curing Time: 2 Months
- Durable Materials of Construction
- Equipment Needed: Front End Loader
- Vector/Vermin Control Needed With Food Wastes (cover with compost)
- Capacities: 3 - 4 Days Waste & Bulking Agent Per Bin
Aerated Static Pile

- Aeration Provided By Mechanical Blowers
- Can Shorten Composting time to 3 - 5 Weeks (followed by 30 days curing)
- Better suited to biosolids and sludges
In-Vessel Systems
Rotary Drum Composters
Rotary Drum Composters

- Rotation Mixes, Aerates Compost Mix
- Second - Stage Curing/Composting Needed
- Waste Grinding and Mixing With Bulking Agent Needed Prior to Feeding Drum
- Recipe For Drum Composting (by volume):
 - Food waste: 2 Parts Wood Chips, 1 Part Sawdust, 2 Parts Food Waste
 - Seafood waste: 3 Parts Wood Waste, 1 Part Seafood waste
Box/Tunnel Composting Systems
Mechanical Compost Bins

- Green Mountain Technologies “Earth Tub”
- Modular Design, Batch Operation
- Capacity: 200 lbs/day
- Composting Time: 4 Weeks; Curing: 1 Month
- Footprint: 1 Parking Space
- Cost: $6,000
- Labor: 1 Operator
GMT “Earth Tub” Installations

- UNC – Asheville
- UNC – Charlotte
- UNC - Greensboro
- Univ. of Georgia
- Hyatt Regency, Chicago
- Univ. of South Carolina
- Connecticut DEP
- Flushing Hospital, NY
- Texas A&M University
Composters in WNC

- East Coast Compost, Asheville (828-628-4340)
 - Food wastes from grocery store; animal manures
- Mountain Organic Materials, Asheville (828-665-9899)
 - Wood wastes from sawmill and pallet manufacturing; animal manures
- Jennings Trout Farm, Canton (828-648-3010)
 - Aquaculture wastes and mortalities
- East Fork Growers, Brevard (828-862-4070)
 - Aquaculture wastes; food wastes; yard wastes
On-Site Composting in NC

- Jeld-Wen Fibers, Marion
 - Urea formaldehyde wood wastes
- Gaia Herbs, Asheville
 - Process wastes
- Mattamuskeet Seafood, New Holland
 - Seafood processing wastes
- Hoover Aquatic Farms, Brevard*
 - Trout farm mortalities
- Bayboro Dehydrating, Bayboro*
 - Crab processing wastes
- National Fruit Co., Lincolnton*
 - Apple culls

*Not currently operating
Grocery Store Food Wastes Diversion

- Food Lion: Fairview
- Winn-Dixie: 2 stores in Sanford, one in Clayton
- Lowe’s Foods: 5 stores in Orange and Chatham Counties
- IGA: 2 stores in Johnston County
- Wellspring Groceries, Durham
- Weaver St. Market in Chapel Hill
- Fearrington Market in Fearrington Village (Chatham)
On-Site Composting Elsewhere

- Johnston Industries, Columbus, GA
 - 5K TPY cotton fiber
 - Saving over $220K annually in disposal costs

- Carrier Corp., Syracuse, NY
 - 100 TPY food waste, sawdust and landscape debris
 - Saved over $40K in 1998 in disposal costs
On-Site Composting Elsewhere, cont.

- Anheuser-Busch Corp. (several plants)
 - Beechwood chips, agricultural wastes, animal wastes (from theme parks)
- Greif Bros. Papermill, Lynchburg, VA
 - 1100 TPY sludge from WWTP
 - ROI estimate is 2.5 years
Other Recycling Options

- Land application
- Anaerobic digestion with methane recovery/use
- Divert to animal feed
 - Bruce Foods, Wilson
 - Goldsboro Milling
- Direct product sales
 - Miller Brewing, Eden – filter press cake sold as “Farm-On”
Questions to Consider

- Onsite Composting
 - Assess resources available
 - Capital, equipment, space, feedstocks
 - Select composting method
 - Feedstocks collection, storage, and transportation
 - Employee education
 - Program monitoring and assessment
 - ROI, Operating costs, Compost revenues
Questions to Consider

- Offsite Composting
 - Locate composting facility
 - Waste liability (who keeps/takes title?)
 - Transportation logistics
 - Feedstocks collection, storage, and transportation
 - Employee education
 - Program monitoring and assessment
 - Cost savings over current practices