Little Beaver Creek Stream and Wetland Restoration Site

2008 Annual Monitoring Report- (Year 2)

Wake County EEP Project No. 221 Design Firm: Earth Tech

May 2009

Prepared for:

NCDENR/ Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619

The Catena Group 410-B Millstone Dr. Hillsborough, NC 27278 Ph: 919-732-1300 Fax: 919-732-1303

TABLE OF CONTENTS

I.	Executive Summary	1
II.	Project Background	3
Α	. Project Objectives	3
В	. Project Structure	3
С	. Location and Settings	4
D	. History and Background	6
E.	. Monitoring Plan View	8
III.	Project Condition and Monitoring Results	8
Α	. Vegetation Assessment	8
	1. Vegetation Problem Areas	. 15
	2. Vegetation Current Conditions Plan View	. 15
В	. Stream Assessment	. 15
	1. Procedural Items	. 15
	2. Stream Current Conditions Plan View	. 16
	3. Problem Areas Table Summary	. 16
	4. Fixed Station Photos	. 16
	5. Stability Assessment	. 17
	6. Quantitative Measures Summary Tables Stability Assessment	. 18
С	. Wetland Assessment	. 27
IV.	Methodology	. 28
Α	. Vegetation Methodologies	. 28
В	. Stream Methodologies	. 28
С	. Wetland Methodologies	. 28
V.	References	. 28

FIGURES

Figure 1.	Site Location Map	5
Figure 2.	Monitoring Plan View (Figures A-D) 10)

TABLES

Table I. Mitigation Structure and Objectives	4
Table II. Project Activity and Reporting History	6
Table III. Project Contact Table	7
Table IV. Project Background Table	8
Table V. Verification of Bankfull Events	. 16
Table VI will be completed in Year 5 of the monitoring period.	. 16
Table VII. Categorical Stream Feature Visual Stability Assessment	. 17
Table VIII A-C. Baseline Morphology and Hydraulic Summary	. 20
Table IX A-D. Morphology and Hydraulic Monitoring Summary	. 23
Table X. Wetland Criteria Attainment	. 27
Table A. Wettahu Chteria Attainment	. 21

Appendices

Appendix A. Vegetation

- 1. Vegetation Survey Data Tables
 - Table 1. Vegetation Metadata
 - Table 2.Vegetation Vigor by Species
 - Table 3. Vegetation Damage by Species
 - Table 4. Vegetation Damage by Plot
 - Table 5. All Stems by Plot and Species
 - Table 6. Vegetation Problem Areas
- 2. Vegetation Problem Areas Photos
- 3. Vegetation Monitoring Plot Photos
- 4. Vegetation Current Conditions Plan View (Figure Key, Figures A-D)

Appendix B. Stream

- 1. Stream Current Conditions Plan View Exhibit (Figure Key, A-G)
- 2. Stream Problem Area Table
- 3. Representative Stream Problem Area Photos
- 4. Stream Photos-Station Photos
- 5. Table B.2 Qualitative Visual Stability Assessment
- 6. Cross Section Plots
- 7. Longitudinal Profiles
- 8. Pebble Count Frequency Distribution Plots

Appendix C. Wetland

1. Data Tables for Precipitation and Hydrological Data

I. Executive Summary

The Little Beaver Creek Stream and Wetland Restoration Site consists of 3712 linear feet of stream restoration, 1,913 linear feet of stream preservation, 2.4 acres of wetland restoration, all within a 52 acre conservation easement. Little Beaver Creek is located at the end of Olive Farm Road (SR 1178) in southwest Apex, Wake County, North Carolina. Construction was conducted between July 2005 and November 2005.

The project contains a portion of Little Beaver Creek, a tributary to B. Everett Jordan Lake, which is located within the Cape Fear River Basin. The project watershed is 1.1 square miles. The North Carolina Wetland Restoration Program (NCWRP), now known as the North Carolina Ecosystem Enhancement Program (NCEEP), identified Little Beaver Creek as a potential stream and wetland mitigation site. Prior to restoration, Little Beaver Creek was incised with moderate habitat and an actively migrating unstable pattern. Sand bars were composed of erodible material that migrated frequently during small storm events. Sections of the channel that had been straightened for agricultural purposes contained mid channel bars indicating overwidening. The mid channel bars were deflecting the stream flow into the banks accelerating stream bank erosion.

The stream project is divided into three separate reaches labeled Reach 1, Reach 2, and Reach 3. Reach 1 and 2 consist of Priority 1 and 2 stream restoration. Priority 1 restoration involves the re-establishment of the bankfull stage to the historical floodplain elevation. Priority 2 involves the creation of a new floodplain and stream pattern while keeping the streambed at the present elevation. In order to accomplish this type of restoration, a combination of bedform transformation, channel dimension adjustments, pattern alterations, and the structure installation was performed. Natural meander patterns were restored and grade control rock vanes and rootwads incorporated for aquatic habitat enhancement and bed and bank stability. Tributary 1 of Reach 1, Tributary 2 of Reach 2, and Tributary 3 of Reach 3a was restored using Priority 1 restoration. Natural meander patterns were restored, the bed and banks were stabilized with woody and herbaceous plantings. , The restoration of Reach 3 below the road crossing, now referred to as Reach 3b, was abandoned due to bedrock constraints. Reach 3b is preserved within the permanent conservation easement.

Construction of the restored channel was completed in November 2005. The woody stem material that was available at the time of construction was not suitable for the site, so planting was delayed until the dormant season of 2006/2007 when suitable plant material was available. Tropical storm Alberto passed over the area June 14, 2006 and created heavy precipitation and flooding which eroded many areas and caused some bank failures. Additionally, due to bedrock constraints, no work was performed on Reach 3b downstream of the road crossing. Because of these design changes, wetland restoration potential is less than initially anticipated.

Little Beaver Creek is currently in a degraded state throughout much of the reach. The stream has down-cut in many areas since construction and some of the structures were

placed inappropriately, resulting in some bank stability issues. This is partially due to the damage caused by Tropical Storm Alberto. Pools have shifted into the riffle areas and riffles tend to be short throughout all three stream reaches. Structure type and placement have exacerbated this problem. Tributaries 1 and 2 are in generally good condition exhibiting minimal signs of down-cutting or bank stability issues

When comparing MY-01 to MY-02, the channel and banks do appear to be stabilizing in some areas marked as problems or concerns on the year one plan due to vegetation establishment. None of the streams experience further significant down cutting due to Tropical Storm Hannah in September of 2008 as observed in the comparison of the longitudinal profiles.

Little Beaver Creek was monitored according to the three reaches established for design. Reach 1 extends from the top of the restoration to the confluence with Tributary 1, a total of 991 linear feet. The pool locations are correctly located within the meander bend areas, however for the majority of the stream length, the riffles are too short. Possible riffle construction in conjunction with the existing sill structures may correct the stream profile issues.

Reach 2 extends from the confluence with Tributary 1 to station 33+00, 1,309 linear feet. The longitudinal profile in the upper reach is primarily dominated by riffles and pools that have shifted into inappropriate places within the plan form of the stream, or segments in which structures have caused submerged riffles and long pools. The lower portion of the reach is dominated by a series of structures. These sill structures have influenced the stream profile by creating a sill step followed by a scour pool formation that is not compatible with the stream type or plan form.

Little Beaver Creek Reach 3A is located from 33+00 to the end of the project, 732 linear feet. Aggradation within the longitudinal profile has occurred at the head of this reach as the riffle has extended and filled a pool area in a meander bend. This reach is dominated by riffles that have shifted into the meander bends.

Tributary 1, 381 linear feet, ties into Little Beaver Creek at station 19+25. The tributary has adjusted at the top and bottom of the reach from the year one data; however its overall stability is good. There is evidence that the abandoned roadway within the conservation easement that crosses this tributary is still being used.

Tributary 2, 206 linear feet, ties into Little Beaver Creek at station 29+50. The stream channel is very stable and is entirely covered with thick herbaceous vegetation.

Currently there are eight RDS groundwater gauges (2, 3, 4, 5, 6, 7, 8, & 9) within the conservation easement. By recommendation from EEP, these gauges were installed on June 25, 2008 to replace an older set of gauges. Data was retrievable from three (6, 7 & 9) of the old gauges (Appendix C). Four of the groundwater gauges (Gauge 6, 7, 8, and 9) in the proposed wetland restoration areas of Reach 1 are displaying jurisdictional wetland hydrology (Appendix C). One bankfull event was recorded as a result of

Tropical Storm Hannah passing over the area on September 6, 2008 which created a rain event of greater than four inches. The flooding eroded many areas which were already noted as stream problem areas in the Year 1 monitoring report. Currently there are 354 woody planted stems/acre. Invasive exotics observed throughout the conservation easement include tall fescue (*Schedonurus arundinaceus*), Japanese honeysuckle (*Lonicera japonica*), Japanese stiltgrass (*Microstegium vimineum*), multiflora rose (*Rosa multiflora*), and Chinese privet (*Ligustrum sinense*) with tall fescue and Japanese stiltgrass being the most common.

II. Project Background

A. Project Objectives

The project had the goal of accomplishing the following objectives:

- Restore 3,753 linear feet of Little Beaver Creek and 682 linear feet of unnamed tributaries to Little Beaver Creek and preserve 1,560 linear feet of Little Beaver Creek. Due to bedrock constraints, restoration efforts were abandoned in Reach 3b at the downstream end of the project between station 47+53 and 63+13.29. This area is now under preservation within the permanent conservation easement.
- 2. Provide a stable stream channel that neither aggrades or degrades while maintaining its dimension, pattern, and profile, with the capacity to transport the watersheds water and sediment loads.
- 3. Improve water quality and reduce erosion through streambank stabilization techniques.
- 4. Re-establish connectivity of the stream with its floodplain.
- 5. Improve aquatic habitat through the implementation of natural structures such as rootwads, rock vanes, woody debris, and the planting of a riparian buffer.
- 6. Provide aesthetic value, wildlife habitat, and bank stability through the creation or enhancement of a riparian zone.
- 7. Restore characteristic hydrologic regime to disturb wetlands.
- 8. Restore characteristic plant communities and wildlife habitat within disturbed wetlands.

B. Project Structure

Prior to restoration, Little Beaver Creek consisted of an incised channel with moderate habitat and an unstable pattern that was actively migrating. Stream banks were steep with areas of active erosion, particularly along the outside of meander bends. Sand bars were composed of easily erodible material that migrated frequently during small storm events. Sections of the stream that had been straightened historically had mid channel bars indicating an overwidened channel that was unable to carry the sediment load. Instead of focusing the flow along the thalweg, the mid channel bars were redirecting the flow into the banks and accelerating bank erosion.

The Catena Group

Priority 2 restoration was performed on all streams in an attempt to adjust the stream dimension, pattern, and profiles 1 and 2 to allow for adequate sediment transport. Specific Priority 2 techniques included bedform transformation, channel dimension adjustments, pattern alterations, and the installation of rock vane structures to serve as grade control. The natural meander patterns were restored and channel stabilizing structures such as rootwads and rock vanes installed to not only to serve as bank protection and grade control, but to enhance aquatic habitat. The Priority 2 restoration involved converting the impaired channels into a sinuous channel that meanders for a 3032 linear feet of stream as measured along the centerline of Little Beaver Creek and 680 linear feet of tributaries totaling 3712 linear feet. 2300 linear feet of Little Beaver Creek was preserved in the conservation easement. The conservation easement encompasses 52 acres. The riparian buffer within the permanent conservation easement was planted on January 15-February 9, 2007.

]	Little Beave	r Creek Stı	eam and We	etland Restorat	ion Site
		P	roject No. 22	1	
Project Segment/Reach I.D.	Mitigation Type	Approach	Linear Feet/Acreage	Stations	Comments
Little Beaver Creek/Reach 1 & 2	Restoration	N/A	2.4 acres	N/A	Wetland Restoration
Little Beaver Creek/Reach 1 & 2	Restoration	Priority 2	2300	10+00 to 19+91 19+91 to 33+00	Instream structures and vegetated buffers
Little Beaver Creek/Reach 3a	Restoration	Priority 2	732	33+00 to 40+32	Instream structures and vegetated buffers
Little Beaver Creek/Reach 3b	Preservation	N/A	1,913	48+00 to 63+13	Preservation of vegetated buffers within permanent conservation easement
Tributary 1	Restoration	Priority 2	381	10+00 to 13+81	Instream structures and vegetated buffers
Tributary 2	Restoration	Priority 2	206	10+00 to 12+06	Instream structures and vegetated buffers
Tributary 3	Restoration	Priority 2	93	10+00 to 10+92	Instream structures and vegetated buffers

Table I. Mitigation Structure and Objectives

C. Location and Settings

The Little Beaver Creek project site is located approximately 3.5 miles southwest of the town of Apex in southeastern Wake County, North Carolina (Figure 1). The headwaters of the project originate approximately 0.75 miles to the east of the restoration site. Little Beaver Creek flows for approximately 4.5 miles before it reaches B. Everett Jordan Lake.

The watershed is approximately 1.11 square miles (711 acres) and is oriented east to west. The project is established within a conservation easement on private lands. The creek originates west of the Humie Olive Road (SR 1142) and Old US 1 intersection. The project extents are located upstream and downstream of Olive Farm Road (SR 1178) which is a gravel road off of Humie Olive Road.

Site Directions: From Raleigh, head south on US 1 to US 64 in Apex. Take US 64 west to Kelly Road (SR 1163). Turn left onto Kelly Road and continue until it intersects with Old US 1. Turn right onto Old US 1 and go approximately one mile to turn right onto Humie Olive Road. Take Humie Olive Road approximately two miles and turn left onto Olive Farm Road. Take Olive Farm Road to the end where it crosses Little Beaver Creek.

D. History and Background

The North Carolina Wetland Restoration Program (NCWRP, now known as North Carolina Ecosystem Enhancement Program, NCEEP), identified Little Beaver Creek as having potential for stream and wetland restoration.

Little Beaver Creek enters the site as a second order stream before draining into B. Everett Jordan Lake as a third order stream. Little Beaver Creek is located within the Piedmont Physiographic Province of the Cape Fear River Basin (USGS Cataloging Unit 03030002). The watershed is located to the southwest of Apex, North Carolina. The watershed of Little Beaver Creek has an average width of 4,500 feet from the headwaters to its outlet. The topography is gentle sloping with relatively flat floodplains. Land surface elevations range from approximately 270 to 390 feet above mean sea level. Areas of hydric soils are common along the flat, narrow drainageways, however, few intact wetland communities are present due to alterations to accommodate agricultural and residential land use.

Little Beaver Creek Stream and Wetland Restoration Site-Project No. 221										
Activity or Reporting	Scheduled Completion	Data Collection Complete	Actual Completion Date							
Restoration Plan	2003	2003	March 2003							
Final Design-90%	2005	2005	2005							
Construction	2005	2005	November 2005							
Temporary S&E mix applied to entire project area	2005	2005	2005							
Permanent seed mix applied to entire project area	2005	2005	2005							
Containerized, B&B, and livestake planting	January 2007	February 2007	February 2007							
Mitigation Plan/As-built (Year 0 Monitoring-										
baseline)	July 2006	March 2006	February 2007							
Year 1 Monitoring	Fall 2006	February 2007	November 2007							

Table II. Project Activity and Reporting History

Little Beaver Creek Stream and Wetland Restoration NCEEP Project number: 221

	December	Summer/Fall	
Year 2 Monitoring	2008	2008	December 2008
Year 3 Monitoring	NA	NA	NA
Year 4 Monitoring	NA	NA	NA
Year 5 Monitoring	NA	NA	NA

Table III. Project Contact Table

d Wetland Restoration Site-Project No. 221 Earth Tech 01 Corporate Center Drive uite 475 Raleigh, NC 27607 Bill Jenkins PE (919) 854-6200 Envirocon, Inc. 51 Corporate Circle Suite 14 Golden, CO 80401 Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. Mt. Airy, NC 27030 Brain Seal (336) 786-2263
01 Corporate Center Drive uite 475 Raleigh, NC 27607 Bill Jenkins PE (919) 854-6200 Envirocon, Inc. 51 Corporate Circle Suite 14 Golden, CO 80401 Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. Mt. Airy, NC 27030
uite 475 Raleigh, NC 27607 Bill Jenkins PE (919) 854-6200 Envirocon, Inc. 51 Corporate Circle Suite 14 Golden, CO 80401 Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. It. Airy, NC 27030
Bill Jenkins PE (919) 854-6200 Envirocon, Inc. 51 Corporate Circle Suite 14 Golden, CO 80401 Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. At. Airy, NC 27030
Envirocon, Inc. 51 Corporate Circle Suite 14 Golden, CO 80401 Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. /t. Airy, NC 27030
51 Corporate Circle Suite 14 Golden, CO 80401 Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. /t. Airy, NC 27030
14 Golden, CO 80401 Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. /It. Airy, NC 27030
Verne Musser (303) 215-0187 eal Brothers 31 West Cleve St. /It. Airy, NC 27030
eal Brothers 31 West Cleve St. /It. Airy, NC 27030
31 West Cleve St. /t. Airy, NC 27030
It. Airy, NC 27030
Brain Seal (336) 786-2263
eal Brothers
31 West Cleve St.
It. Airy, NC 27030
Brain Seal (336) 786-2263
Evergreen Seeding
792 Rawls Church Rd.
uquay-Varina, NC 27526
Iellow March Farm
312 Woody Store Rd.
iler City, NC 27344
919) 742-1200
^{The} Catena Group
10-B Millstone Drive
Iillsborough, NC 27278
Vard Consulting Engineers
386 Six Forks Road, Suite 101
aleigh, North Carolina 27615-5088
The Catena Group
10-B Millstone Dr.
Hillsborough, NC 27278
he Catena Group
10-B Millstone Dr.
Hillsborough, NC 27278

Little Beaver Creek Stream and Wetla	nd Restoration Site-Project No. 221
Project County	Wake
Drainage Area	
Little Beaver Creek	1.1 sq mi
Drainage impervious surface cover estimate (%)	< 5%
Stream Order	
Little Beaver Creek	2nd
Physiographic Region	Piedmont
Ecoregion	Triassic Basin
Rosgen Classification of As-Built	C
Cowardin Classification	Riverine
	Augusta fine sandy loam, Wehadkee silt loam,
Dominant Soil Types	Worsham sandy loam
Reference Site ID	Richland Creek and Little Beaver Creek
USGS HUC for Project	3030002
	Richland Creek (03030003) and Little Beaver
USGS HUC for Reference	Creek (03030002)
NCDWQ Sub-basin for Project	030605
	Richland Creek (030610), Little Beaver Creek
NCDWQ Sub-basin for Reference Reach	(030605)
NCDWQ Classification for Project	Little Beaver Creek (WS-IV, NSW)
	Richland Creek (B), Little Beaver Creek (WS-
NCDWQ Classification for Reference	IV, NSW)
Is any portion of any project segment 303D listed?	No
Is any portion of any project segment upstream of a	
303D listed segment?	Yes
Reasons for 303D listing or stressor	Chlorophyll a
% of project easement fenced	0%

Table IV. Project Background Table

E. Monitoring Plan View

See Figure 2 for the Monitoring Plan View.

III. Project Condition and Monitoring Results

A. Vegetation Assessment

Monitoring year 1 had a total of 15 vegetation monitoring plots. These plots were not established using the new CVS protocol. By recommendation from EEP, the number of vegetation plots was reduced to eight and seven of the original plots were abandoned. Plots 2, 5, 7, 8, 9, 10, 11, and 14 have been chosen to best represent the vegetative conditions of the project and data collection will follow the new CVS protocol (Version 4.0) for the remainder of the monitoring period.

According to the US Army Corps of Engineers Stream Mitigation Guidelines, the survival of planted woody species should be at least 320 stems/acre through monitoring year (MY) 3. A mortality rate of ten percent will be allowed after MY4 (288 stems/acre), with another ten percent mortality rate allowed after MY5 requiring a minimum of 260

The Catena Group

stems/acre by the end of the five year monitoring period. Currently there are 354 planted stems/acre within the conservation easement. This density is barely greater than the monitoring year three success criteria and replanting may need to be considered if survivorship is not met during the MY 3 monitoring period. The successional species dog fennel (Eupatorium capillifolium) was ubiquitous throughout the conservation easement along with the less frequent common horseweed (Convza canadensis). Sweetgum (*Liquidambar styraciflua*) saplings were also very common along the stream buffer throughout the conservation easement. Invasive exotics observed throughout the conservation easement include tall fescue (Schedonurus arundinaceus), Japanese honeysuckle (Lonicera japonica), Japanese stiltgrass (Microstegium vimineum), multiflora rose (Rosa multiflora), and Chinese privet (Ligustrum sinense) with tall fescue and Japanese stiltgrass being the most common. According to the NC Native Plant Society (NCNPS) Chinese privet, Japanese honeysuckle, Japanese stiltgrass, and multiflora rose are Rank 1 "Severe Threat" invasive exotic species which is defined as exotic plant species that have invasive characteristics and spread readily into native plant communities, displacing native vegetation. Although these species have been given this rank, the functionality of the project is not expected to be impaired significantly. For additional information relating to vegetation see Appendix A.

1. Vegetation Problem Areas

Problem areas are defined as either lacking vegetation or containing invasive exotic species and are categorized as Bare Bank, Bare Bench, Eroding Banks, or Invasive Population. See Table 6 in Appendix A for locations of problem areas identified within the conservation easement. See section two of Appendix A for representative photos of the vegetation problem areas observed within the conservation easement of Little Beaver Creek.

2. Vegetation Current Conditions Plan View (CCPV)

The vegetation CCPV provides an overview of all the problem areas in plan view format. The problem areas are color coded to depict the severity of the area of concern and are as follows: red=severe, orange=moderate, yellow=minor (See Appendix A).

B. Stream Assessment

1. Procedural Items

a) Morphological Criteria

The restoration site was surveyed by total station in October 2008. This survey includes a profile of entire length of Little Beaver Creek Reaches 1, 2, and 3a, 3032 feet; Tributary 1, 381 feet; and Tributary 2, 206 feet; and 10 cross-sections. Pebble counts, the visual stability assessment. The problem area assessment was conducted on November 18, 2008. Photographs were taken at all permanent photo points on November 10, 2008.

The cross-sections pins were located and marked with fiberglass poles and flagging tape. Two cross-section pins could not be located and were reset by stakeout using the coordinates provided in the MY-01 monitoring report. These pins were the left pin of cross section 2 and the left pin of tributary cross section 2. The permanent cross section locations are listed below.

Cross Section 1. Little Beaver Creek, Station 11+25, riffle. Cross Section 2. Little Beaver Creek, Station 14+85, pool. Cross Section 3. Little Beaver Creek, Station 21+16, riffle. Cross Section 4. Little Beaver Creek, Station 24+40, pool. Cross Section 5. Little Beaver Creek, Station 29+86, riffle Cross Section 6. Little Beaver Creek, Station 33+28, riffle. Cross Section 7. Little Beaver Creek, Station 36+03, pool. Cross Section 8. Little Beaver Creek, Station 38+95, riffle. Cross Section 71. Tributary 1, Station 11+63, pool. Cross Section 72. Tributary 1, Station 12+89, riffle.

The Catena Group

b) Hydrological Criteria

Monitoring requirements state that at least two bankfull events are to be documented within the five year monitoring period. Currently, one crest gauge is present in Reach 1 of Little Beaver Creek. One documented bankfull event occurred on 09/07/08.

Little Beaver Creek Stream and Wetland Restoration Site Project No. 221										
Date of Data Collection	Date of Occurrence	Method	Photo #							
2006	June 14, 2006	Visual	N/A							
		Visual (i.e.								
September 18, 2008	September 7, 2008	wrack lines)	N/A							

Table V. Verification of Bankfull Events

c) Bank Stability Assessment

This section along with Table VI will be completed in Year 5 of the monitoring period.

2. Stream Current Conditions Plan View

See Appendix B1.

3. Problem Areas Table Summary

The problem areas found within the restoration primarily consists of failed structures, bank failure and erosion, channel aggradation and degradation, over-widening of the channel, and missing structures. Many of the structures, namely rootwads, which were shown on the MY-01 plan view, were not observed during this year's stream assessment; others were shown in the incorrect location. Areas of concern in Reach 1 primarily involved aggradation of the channel. Aggradation was observed at stations 10+50 to 10+60, 12+50 - 12+70, and 19+00 - 21+90. Bank erosion was also observed in this segment of the stream which totaled approximately 4% of the total bank length. The bank erosion in approximately 50% of the observations was due to scour upstream of root wads. Concerns with installed structures primarily involved two structures with either a submerged or a center gap controlling the water surface elevation instead of the top of the structure. Only one other structure at station 11+75 was a concern in that evidence of overland flow was observed around the right end, which could lead to future additional problems. The majority of the problem areas exist in Reaches 2 & 3 of the stream. The problem areas within these reaches include structure failure due to piping, riffle degradation and root wad erosion from station 27+00 to 36+10 with the majority of the bank erosion occurring from station 27+00 to 30+50. The stream has over widening from station 25+00 to 26+75 and at station 29+00. Erosion is also occurring upstream and downstream of cross section #7 from station 35+00 to 37+00. Photos of the problem areas listed in the table can be seen in Appendix B.

4. Fixed Station Photos

Stream photos from the established photo stations were taken in November 2008 and can be viewed in Appendix B.

5. Stability Assessment

A visual morphological stability assessment was conducted on November 18, 2008. This assessment was broken down into three parts; the main channel and the two tributaries. This separation was not done for the MY-01 monitoring report. Additional discrepancies were found with the as-built quantities listed versus those found in the field and based on post field work analysis, thereby making it difficult to compare the monitoring years.

The performance of the main channel was impacted chiefly by the location of the riffles and pools, which had migrated from the design locations. Riffles tended to be short in length and were found to be accumulating fine bed materials. Bed aggradation and degradation were apparent, but it was difficult to determine whether these occurred between MY-01 and MY-02 or prior to that. The channel length of aggradation and deposition was determined through comparison of the longitudinal profiles between MY-01 and MY-02 data (Appendix B2).

Bank erosion lengths based on the assessment are 103, 333, and 175 feet for Reaches 1,2, and 3a with respective reach lengths of 991, 1309, and 732 feet. When broken by reach, the visual stability assessment found that for Reach 1, 15% (2 of the 13) of the structures had failed and 5% of the banks had erosion issues. Reach 2 had 37.5 % (6 of 16) structural failure and 12.7% of the banks had erosion issues. Reach 3 had 33% (1 of 3) of the structures failures and 12.0% of the banks had erosion issues.

Little Beaver Creek Stream and Wetland Restoration Site-Project No. 221										
Reaches 1, 2, 3a: (3032 feet)										
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05				
A. Riffles	100%	65%	41%							
B. Pools	100%	65%	65%							
C. Thalweg	100%	88%	52%							
D. Meanders	100%	72%	65%							
E. Bed General	100%	98%	94%							
F. Bank Condition	NA	NA	90%							
G. Vanes/J Hooks etc.	100%	82%	73%							
H. Wads and Boulders	100%	83%	70%							
Tributary 1: (381 feet)										
A. Riffles	100%	NA	67%							
B. Pools	100%	NA	76%							
C. Thalweg	100%	NA	64%							
D. Meanders	100%	NA	53%							
E. Bed General	100%	NA	93%							
F. Bank Condition	NA	NA	86%							
G. Vanes/J Hooks etc.	100%	NA	100%							
H. Wads and Boulders	100%	NA	NA							
Tributary 2: (206 feet)										
A. Riffles	100%	NA	100%							
B. Pools	100%	NA	100%							
C. Thalweg	100%	NA	100%							

Table VII. Categorical Stream Feature Visual Stability Assessment

Little Beaver Creek Stream and Wetland Restoration NCEEP Project number: 221

D. Meanders	100%	NA	100%		
E. Bed General	100%	NA	100%		
F. Bank Condition	NA	NA	100%		
G. Vanes/J Hooks etc.	100%	NA	100%		
H. Wads and Boulders	100%	NA	NA	-	

*The tributaries were not separated from the main channel in the MY-01 monitoring report.

6. Quantitative Measures Summary Tables Stability Assessment

As stated in the Executive Summary, the MY-01 monitoring did not separate the pattern and profile data based on reach. These parameters remained constant across the three reaches and likely represent the entire length of the main channel; making comparison across monitoring years difficult. Moreover, reaches 2 and 3a both show a change in slope within the reach. These slopes are represented in Table IX and do not correlate with the MY-01 slope. However, when the reach-wide slope was calculated, correlation to MY-01 was found.

Little Beaver Creek was divided into three reaches for monitoring. Reach 1 extends from the top of the restoration to the confluence with Tributary 1, a total of 991 linear feet. One pool and one riffle permanent cross section was located within this reach, both of which show a 10% increase in bankfull width compared to MY-01 data. The permanent riffle section has become shallower and has decreased 10% in cross sectional area. The overall pattern remains very close to the as-built alignment. Approximately 20% of the pool radii of curvature have become smaller due the erosion of the outside bend and the shifting of the pool thalweg. In this reach there is more consistency of the correct pool location within the meander bend areas, however, for the majority of the stream length the riffles are too short. The stream profile is being influenced by structure placement in typical riffle locations that are initiating pool formation. Possible riffle construction in conjunction with the existing sill structures may correct the stream profile issues.

Reach 2 extends from the confluence with Tributary 1 to station 33+00, 1,309 linear feet, and contains two riffles and one pool cross section. Of the two riffle sections, little change was found in section 3 from MY-01. Riffle section 5, however, had insufficient points in MY-01 to make a good comparison. The pool section shows an 11% increase in width and area, however no significant changes were noted in the section and therefore this may be attributed to the bankfull location between years. The longitudinal profile, station 20+00 through 26+50, is dominated by riffles and pools that have shifted into inappropriate places within the plan form of the stream or segments in which structures have caused submerged riffles and long pools. The profile station 27+00 through 32+00 is dominated by a series of structures. These structures placed at riffle locations are forming scour pools at the downstream face. The pools typically extend to the next structure. The sill structures have influenced the stream profile by creating a sill step followed by a scour pool formation that is not compatible with the stream type or plan form. The section of this reach from station 29+50 to 30+50 has riffles migrating into pools due to structure placement.

The Catena Group

Reach 3A is located from 33+00 to the end of the project, 732 linear feet. Riffle cross section 6 within this reach is aggrading however riffle section 8 has experienced very little change. The pool cross section shows positive development from the last year monitoring data in that it has narrowed and has developed a deeper pool. This is most likely due to the shifting of the riffle upstream into the pool and the pool shortening due to the confinement of a structure that has been placed just downstream. Aggradation within the longitudinal profile has occurred from 33+25 through 33+75 as the riffle has extended and filled a pool area in a meander bend. Most of the pools throughout the reach have increased in depth from the MY-01data. This reach is dominated by riffles that have shifted into the meander bends. The stream segment from station 37+25 through 39+00, has riffles in the correct plan form location; however, they are typically short.

The 381 linear foot Tributary 1 ties into Little Beaver Creek at station 19+25. The profile comparison indicates that the upper riffles within the first 75 feet of stream length have down-cut. Most of stream length in the middle segment of the tributary has remained very similar to MY-01 data. In the lower segment of the stream just above cross section 2, the pattern has adjusted to a better riffle-pool sequence where, previously, multiple pools were indicated. The tributary transitions to Little Beaver Creek through a long riffle that ties the two streams together in a very shallow floodplain.

Tributary 2 is 206 linear feet and ties into Little Beaver Creek at station 29+50. The stream channel is very stable and is entirely covered with thick herbaceous vegetation. Three pools are evident in the profile at the appropriate locations within the stream pattern. Where the tributary ties into Little Beaver Creek there should be a riffle, however there is a pool instead that has resulted in unstable banks in the creek.

Table VIII A. Baseline Morphology and Hydraunc Summary Table VIII. Baseline Morphology and Hydraulic Summary Little Beaver Creek Stream Mitigation Site/Project No. 221 Reach 1 (991 feet)																		
Parameter	USG	S Data	ı	Region	al Curve	Interval	Pre-Ex	isting Co	ndition	Project R	Reference	Stream	Desig	n		As-buil	t	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)				7.1	28	16			11.2	14	16.7	14.4			14.5	13.8	29.7	21.8
BF Cross Sectional Area (ft ²)				11	43	21			8	12.2	15.5	13.7			15	25.1	34.2	29.7
BF Mean Depth (ft)				0.9	2.5	1.7			0.7	0.8	0.9	0.9			1.04	1.2	1.8	1.5
BF Max Depth (ft)									1.2	1.4	2	1.8			2.3	2.3	3.4	2.9
Width/Depth Ratio									15.6	16	18	17.6			14	7.6	25.8	16.7
Entrenchment Ratio									2	3	13.6	6.1			>8	4.3	11.2	7.8
Wetted Perimeter (ft)																16.9	18.2	17.6
Hydraulic radius (ft)																1.1	1.5	1.3
Bank height ratio (ft/ft)									3.7						1	1	1	1
Pattern		•						•		-	•							
Channel Beltwidth (ft)							12	16	14	5	40		36	65		37.9	58.2	48.1
Radius of Curvature (ft)							6	12	8.4	11	90		29	44		10.9	26.2	18.59
Meander Wavelength									38	14	67		46	83		68.7	98.5	80.1
Meander Width ratio							1.1	1.4	1.3				2.5	4.5		1.61	2.47	2.04
Profile		-			-			•		•	•			-		•	•	
Riffle length (ft)										4	18					17	68	32
Riffle slope (ft/ft)							0.009	0.067	0.035	0.00083	0.1125		0.007	0.02	0.014	0.001	0.02	0.008
Pool length (ft)										6	41.5					0.0013	0.0035	0.0027
Pool spacing (ft)							4	78	30	14	95.8		36.5	58	46.5	31	43	
Substrate																		
d50 (mm)									5.7	0.5-1.0	45							
d84 (mm)									16	8.0-11.3	125							
Additional Reach Parameters		-		-										-				-
Valley Length (ft)															834			834
Channel Length (ft)																		991
Sinuosity									1	1.2	1.5				1.3			1.81
Water Surface Slope (ft/ft)					1				0.011	0.0025	0.0133				0.0066			0.0076
BF slope (ft/ft)																		0.0072
Rosgen Classification									E4			C4,C5			C4/5			C4/C5
Habitat Index																		

 Table VIII A. Baseline Morphology and Hydraulic Summary

Table VIII. Baseline Morphology and Hydraulic Summary																		
					Little B	eaver Cre			-	e/Project N	No. 221							
Parameter	TI	SGS D	ata	Region	al Curva	Interval		h 2 (1,30	ondition	Project R	oforonco	Stroom		Design	•		As-built	
	U	5G5 D	ala	Region		Inter var	TTE-LX			110ject N	<u>elelence</u>	Stream		Design	L	<u> </u>	AS-Duilt	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)				7.1	16	28	10.5	15.1	12.8	14	16.7	14.4			16.1	15.4	21.1	17.8
BF Cross Sectional Area (ft ²)				11	21	43	14.3	14.8	14.6	12.2	15.5	13.7			18.5	17.9	22.8	20.4
BF Mean Depth (ft)				0.9	1.7	2.5	0.9	1.4	1.2	0.8	0.9	0.9			1.15	0.8	1.3	1.13
BF Max Depth (ft)							1.9	2.5	2.2	1.4	2	1.8			2.5	1.88	2.54	2.29
Width/Depth Ratio							7.4	16	9	16	18	17.6			14	11.69	17.24	16.4
Entrenchment Ratio									1.4	3	13.6	6.1			>11	2.27	8.07	5.8
Wetted Perimeter (ft) 11.6 24.8 16.4 Hydraulic radius (ft) 0.83 1.27 1.11															16.4			
Hydraulic radius (ft) 0.83 1.27 1.11															1.11			
Bank Height Ratio (ft/ft)	Bank Height Ratio (ft/ft) 2.8 1 1 1 1 1															1		
Pattern																		
Channel Beltwidth (ft)							10	37	20	5	40		40	72		32.2	61	45
Radius of Curvature (ft)							6	35	16.5	11	90		32	48		18.3	31.8	24.4
Meander Wavelength							40	95	60	14	67		51	91		76.9		113.3
Meander Width ratio							1	2.9	1.6				2.5	4.5		1.81	3.43	2.53
Profile																		
Riffle length (ft)										4	18					17	68	32
Riffle slope (ft/ft)							0.009	0.045	0.02	0.00083	0.1125		0.005	0.015	0.0095	0.001	0.02	0.008
Pool length (ft)										6	41.5					0.0013	0.0035	0.0027
Pool spacing (ft)							30	86	51	14	95.8		36.5	80.5	55	31	43	
Substrate			T		1	1	-			•	1					1	1	
d50 (mm)									5.7	0.5-1.0	45							
d84 (mm)									16	8.0-11.3	125							
Additional Reach Parameters			T		1	1	-			•	1					1	1	
Valley Length (ft)															3997			828
Channel Length (ft)																		1309
Sinuosity									1.1	1.2	1.5				1.3			1.58
Water Surface Slope (ft/ft)									0.0055	0.0025	0.0133				0.0047			0.0047
BF slope (ft/ft)																		0.0045
Rosgen Classification									F4-G4			C4,C5			C4/5			C4/C5
Habitat Index																		

-

Table VIII B. Baseline Morphology and Hydraulic Summary

Table VIII. Baseline Morphology and Hydraulic Summary																		
Little Beaver Creek Stream Mitigation Site/Project No. 221 Reach 3A (732 feet)																		
Parameter	TI	SGS D	ata	Pogion	ol Curvo	Interval	-		Condition	Project R	oforonco	Stroom		Design			As-built	
	0.	5 6 5 D	ala	Region			TIC-L	Aisting (1 I Oject K	<u>xerer ence</u>	Stream		Design	L		AS-Duilt	
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)				7.1	16	28	9.5	15.5	12.8	14	16.7	14.4			17.1	16.9	18.8	18.1
BF Cross Sectional Area (ft ²)				11	21	43	19.2	21.9	21	12.2	15.5	13.7			21	20.1	33.6	25.5
BF Mean Depth (ft)				0.9	1.7	2.5	1.4	2	1.7	0.8	0.9	0.9			1.22	1.1	1.8	1.4
BF Max Depth (ft)							2.1	2.6	2.3	1.4	2	1.8			2.7	1.75	3.23	2.41
Width/Depth Ratio							6.8	7.8	7.5	16	18	17.6			14	10.48	17.24	13.41
Entrenchment Ratio									1.6	3	13.6	6.1			3	4.06	4.42	10.17
															19.04			
Hydraulic radius (ft)	Hydraulic radius (ft) 1.06 1.62 1.32															1.32		
Bank Height Ratio (ft/ft)	Bank Height Ratio (ft/ft) 2.3 1 1 1 1															1		
Pattern																		
Channel Beltwidth (ft)							9	79	24	5	40		43	77		19.4	43.2	32.4
Radius of Curvature (ft)							4	33	15	11	90		34	51		15.29	23.3	19.58
Meander Wavelength							19	135	53	14	67		54	97		78.8	123.3	
Meander Width ratio							1	6.2	1.9				2.5	4.5		1.07	2.38	1.79
Profile																		
Riffle length (ft)										4	18					17	68	32
Riffle slope (ft/ft)							0.01	0.07	0.023	0.00083	0.1125		0.005	0.015	0.0098	0.001	0.02	0.008
Pool length (ft)										6	41.5					0.0013	0.0035	0.0027
Pool spacing (ft)							18	122	64	14	95.8		33	84	52	31	43	
Substrate		-		-	-	-			-					-			-	
d50 (mm)									5.7	0.5-1.0	45				5.7			
d84 (mm)									16	8.0-11.3	125				16			
Additional Reach Parameters																		
Valley Length (ft)															2855			625
Channel Length (ft)																		732
Sinuosity									1.1	1.2	1.5				1.3			1.17
Water Surface Slope (ft/ft)									0.0067	0.0025	0.0133				0.0057			0.0067
BF slope (ft/ft)																		0.0062
Rosgen Classification									G4			C4,C5			C4/5			C4/C5
Habitat Index																		

Table VIII C. Baseline Morphology and Hydraulic Summary

Table IX A. Morphology and Hydraulic Monitoring Summary

Little Beaver Creek Stream Mitigation Site/Project No. 221 Reach 1 (991 feet)																								
Parameter				Section 1 iffle						Section 2 pol														
		I	T	T	r	I			T	T	T	I		T	T	T	T	Γ		I	T	T		
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	13.8	15.4					17.4	19.1																
Floodprone Width (ft)	154	154					87	87																
BF Cross Sectional Area (sq.ft)	25.1	22.4					17.2	18.4																
BF Mean Depth (ft)	1.8	1.45					0.99	0.96																
BF Max Depth (ft)	3.4	2.88					2.21	2.24																
Width/Depth Ratio	7.6	10.6					17.5	19.9																
Entrenchment Ratio	11.2	10					5.04	4.55																
Hydraulic Radius (ft)	16.9	17.2					18.2	20.3																
Wetted Perimeter (ft)	1.5	1.31					0.95	0.91																
Bank Height Ratio	1	1					1	1																
Substrate																								
d50 (mm)	0.81	0.36					0.57	N/A																
d84 (mm)	1.6	1.9					7.42	N/A																
			•						•	•	•			•	•		•			•				
Parameter	M	Y-01 (20	$(07)^1$	М	Y-02 (20	08)	M	Y-03 (20	09)	M	Y-04 (20	10)	М	Y-05 (20)	11)	М	Y-06 (20	12)	М	IY+ (201	3)	Ν	AY+ (2014	4)
		- (-		1	- (-	/		(-		ļ	- (-	- /			,			,		X -	- /	<u> </u>		,
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	29	78.1	43	30.3	76.3	48.8																	1	
Radius of Curvature (ft)	6.84	32.6	17.5	17	49.2	29.5																		
Meander Wavelength (ft)	62.1	126	88.5	63	98	80.5																	1	
Meander Width Ratio	1.56	4.2	2.31	1.49	3.76	2.4																	1	
Profile																								
Riffle length (ft)	3.77	109	18.6	3	41	14.9																		
Riffle slope (ft/ft)	0.01	1.7	0.04	0.01	0.41	0.07																		
Pool length (ft)	9.86	93.7	40.9	9	86	30																		
Pool spacing (ft)	3.77	97.6	18.1	17	107	47.3																	+	
Additional Reach parameters																								
Valley Length (ft)	1	834			834		1			l I						I			l I			1		
Channel Length (ft)	1	991			1033		1			l I						I			l I			1		
Sinuosity	1	1.19			1.24		1			1						I			1			1		
Water Surface Slope (ft/ft)		0.0069			0.0065																			
BF Slope (ft/ft)		0.0085			0.0107																			
Rosgen Classification																								
Habitat Index*	1				C4		1			1						1			1					
Macrobenthos*																								
1 MY-01 monitoring did							L									L						1		

1. MY-01 monitoring did not separate these parameters based on the separate reaches.

Table IX B. Morphology and Hydraulic Monitoring Summary

						L	ittle Be	aver C		ream M ach 2 (1			Project	: No. 22	1									
Parameter				Section 3 iffle						Section 4 ool						Section 5 ffle								
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	16.4	16.7					19.4	21.6					28.2	30.7										
Floodprone Width (ft)	53	54.5					97	97					126	126										
BF Cross Sectional Area (sq.ft)	19.1	18.5					23.9	26.9					44	39										
BF Mean Depth (ft)	1.16	1.11					1.23	1.24					1.56	1.27										
BF Max Depth (ft)	2.32	2.36					2.71	2.68					3.93	3.78										
Width/Depth Ratio	14.2	15					15.8	17.3					18.1	24.1										
Entrenchment Ratio	3.25	3.27					4.98	4.49					4.47	4.11										
Hydraulic Radius (ft)	17.5	17.5					20.6	22.8					30.3	33.3										
Wetted Perimeter (ft)	1.09	1.06					1.16	1.18					1.45	1.17										
Bank Height Ratio	1	1					1	0.85					1	0.99										
Substrate																								
d50 (mm)	1.31	0.68					0.43	N/A					7.08	8										
d84 (mm)	1.85	2.35					1.55	N/A					14.2	55.5										
		•				•			•			•												
Parameter	M	Y-01 (20	$(007)^1$	М	Y-02 (20	08)	M	Y-03 (20	09)	М	Y-04 (20	10)	M	Y-05 (20)	11)	М	Y-06 (20	12)	Ν	I Y+ (201	3)	Ν	IY+ (201-	4)
		<u>``</u>	,		<u> </u>	,		,	,		,	,		,	,		<u>,</u>	,		,	,		<u> </u>	,
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	29	78.1	43	34.3	115	58.3																		
Radius of Curvature (ft)	6.84	32.6	17.5	17.7	63.2	29.7																		
Meander Wavelength (ft)	62.1	126	88.5	69	120	94.3																		
Meander Width Ratio	1.56	4.2	2.31	1.68	5.68	2.87																		
Profile																								
Riffle length (ft)	3.77	109	18.6	2.4	50	15.6																		
Riffle slope (ft/ft)	0.01	1.7	0.04	0.01	0.16	0.04																		
Pool length (ft)	9.86	93.7	40.9	17	97	41																		
Pool spacing (ft)	3.77	97.6	18.1	24	173	77.7																		
			<u> </u>		<u>.</u>						·				·	_	<u> </u>			·				
Additional Reach parameters																								
Valley Length (ft)		828			828																			
Channel Length (ft)		1309			1398																			
Sinuosity		1.58			1.69																			
Water Surface Slope (ft/ft)		0.0048		0.0	0012/0.00	83 ²																		
BF Slope (ft/ft)	0.0039 0.0019/0.0091 ²															1								
Rosgen Classification	1	C4/C5		1	C4											t			1			1		
Habitat Index*		-														1								
Macrobenthos*	1			1												1			1			1		
1 MY-01 monitoring did		1		. 1			·			1						1			1			I		

MY-01 monitoring did not separate these parameters based on the separate reaches.
 This reach has two distinct slopes with the transition at approximate station 27+00.

Table IX C. Morphology and Hydraulic Monitoring Summary

						Little	Beave	er Cre			litigati (732 fe		e/Proje	ect No.	221									
Parameter			Cross S Ri	ection 6 ffle	5				Cross S Po	ection 7 ool	7				Cross S Rit									
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	21.7	19.5					19.9	17.7					19.5	19.3										
Floodprone Width (ft)	95	78.5					156	156					75	73.2										
BF Cross Sectional Area (sq.ft)	25.5	20.8					38.1	34.7					23.6	27.6										
BF Mean Depth (ft)	1.18	1.07					1.91	1.96					1.21	1.43										
BF Max Depth (ft)	2.34	1.79					4.29	4.72					2.68	2.67										
Width/Depth Ratio	18.4	18.2					10.4	9.01					16.1	13.5										
Entrenchment Ratio	4.4	4.03					7.86	8.82					3.84	3.79										
Hydraulic Radius (ft)	22.4	19.9					23	21.4					20.6	20.4										
Wetted Perimeter (ft)	1.14	1.04					1.66	1.62					1.15	1.36										
Bank Height Ratio	1	1					1	0.93					1	1										
Substrate																								
d50 (mm)	3.4	7.75					0.2	N/A					0.21	0.88										
d84 (mm)	18	28.3					0.82	N/A					bdrk	8.12										
	•		L	L	L				L					L				1					1	
Parameter	MY	Y-01 (20	$(07)^1$	M	Y-02 (20)08)	MY	2-03 (20)09)	M	Y-04 (20)10)	M	Y-05 (20)11)	MY	Y-06 (20)12)	М	Y+ (201	3)	М	Y+ (201	14)
			-		-	-			-	<u>I</u>	-	-		·	-		-	-		-	-	<u>I</u>	-	
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	29	78.1	43	40.3	78.3	56.6																		
Radius of Curvature (ft)	6.84	32.6	17.5	19.2	45.2	31																		
Meander Wavelength (ft)	62.1	126	88.5	77	114	95.9																		
Meander Width Ratio	1.56	4.2	2.31	1.98	3.85	2.78																		
Profile																								
Riffle length (ft)	3.77	109	18.6	3	69	13.6																		
Riffle slope (ft/ft)	0.01	1.7	0.04	0	0.13	0.03																		
Pool length (ft)	9.86	93.7	40.9	10	54	27.4																		
Pool spacing (ft)	3.77	97.6	18.1	15	73	37.7																		
				1						-												-		
Additional Reach parameters		(25			()5																			
Valley Length (ft)		625			625																			
Channel Length (ft)		732			790																			
Sinuosity Watar Surface Slame (ft/ft)		1.17		0.0	1.26	272																		
Water Surface Slope (ft/ft)		0.0069																						
BF Slope (ft/ft)		0.0058		0.0	027/0.02	132*																		
Rosgen Classification		C4/C5			C4																			
				1			1												1			1		
Habitat Index* Macrobenthos*																								

Little Beaver Creek Stream Mitigation Site/Project No. 221

1. MY-01 monitoring did not separate these parameters based on the separate reaches.

2. This reach has two distinct slopes with the transition at approximate station 36+00.

Table IX D. Morphology and Hy			8		•	Little Be	eaver C			/litigati 1 (381 f		Project/	t No. 2	21										
Parameter		Cros	ss Section P	n T1 (Trib ool	outary)			Cross		T2 (Trib ffle	utary)													
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+					[Ι		1		1		
BF Width (ft)	12.5	14					9.46	13.8																
Floodprone Width (ft)	42	38.8					53	60.3																
BF Cross Sectional Area (sq.ft)	10.7	8.82					5.96	9.09																
BF Mean Depth (ft)	0.85	0.63					0.63	0.66																
BF Max Depth (ft)	2.04	1.59					1.31	1.82																
Width/Depth Ratio	14.7	22.2					15	21																
Entrenchment Ratio	3.38	2.77					5.61	4.37											1					
Hydraulic Radius (ft)	14.5	14.8					10	14.6																
Wetted Perimeter (ft)	0.73	0.6					0.6	0.62																
Bank Height Ratio	1	0.97					1	0.98																
Substrate																								
d50 (mm)	0.59	N/A					0.18	N/A																
d84 (mm)	7.11	N/A					0.91	N/A																
														1	l	I				1	1	1	1	1
Parameter	М	Y-01 (20)07)	М	Y-02 (20	08)	М	Y-03 (20	09)	М	Y-04 (20	10)	М	Y-05 (20)11)	M	Y-06 (20)12)	N	1Y+ (20	13)	Ν	IY+ (20	14)
	111	1 01 (20	,01)		1 02 (20	.00)	1,1	1 05 (20	07)		1 01(20	10)	111	1 05 (20	(11)	111	1 00 (20	512)	10	11 (20	15)	1,	11 (20	11)
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)																								
Radius of Curvature (ft)																								
Meander Wavelength (ft)																								
Meander Width Ratio																								
Profile																								
Riffle length (ft)																								
Riffle slope (ft/ft)																								
Pool length (ft)																								
Pool spacing (ft)																								
															1									
Additional Reach parameters																								
Valley Length (ft)	1			l I						I														
Channel Length (ft)																								
Sinuosity	1																							
Water Surface Slope (ft/ft)																			1					
BF Slope (ft/ft)													1			1			1			1		
	1			1															1					
Rosgen Classification																								
Rosgen Classification Habitat Index*																								

Table IX D. Morphology and Hydraulic Monitoring Summary

C. Wetland Assessment

Wetland restoration and enhancement was originally proposed for this project to accompany the stream restoration. The March 2003 Restoration Plan proposed 4.4 acres of wetland restoration and 0.7 acre of wetland enhancement. Stream restoration did not occur along Reach 3b below the road crossing and no alteration in the water table levels have been observed to date. The stream bed was not raised to the proposed level along Reach 1 and 2 as proposed in the restoration plan. Presently, there are 2.4 acres of potential wetland restoration along Reach 1 and 2, and no areas are proposed for enhancement. It is still unclear whether hydrology will be restored in the areas proposed for restoration.

The wetland design was created from the reference community along with published descriptions of piedmont bottomland hardwood forests and general observations of characteristic wetland structure and function. Areas that were considered suitable for wetland restoration are those areas that could support planted hydrophytic vegetation and had the groundwater level altered via site construction such that it would remain within 12 inches of the soil surface for at least 5% of the growing season.

Currently there are eight RDS groundwater gauges (2, 3, 4, 5, 6, 7, 8, & 9) within the conservation easement. The gauges record data daily and are downloaded monthly. Gauges were installed according to the specifications of Technical Note HY-1A-3.1 (USACE 1993). By recommendation from EEP, these gauges were installed on June 25, 2008 to replace an older set of gauges. Data was retrievable from three (6, 7 & 9) of the old gauges (Appendix C). Four of the current groundwater gauges (6, 7, 8, and 9) in the proposed wetland restoration areas of Reach 1 and 2, are displaying jurisdictional wetland hydrology (saturation within 12 inches of the soil surface for >5% of the growing season), and the remaining gauges (2, 3, 4, & 5) do not have saturation within 12 inches of the soil surface (See Appendix C). These gauges will be relocated to proposed wetland restoration areas in Reach 1 that currently do not contain gauges. Precipitation data for Apex from December 01, 2007 to November 14, 2008 was provided by the State Climate Office and is provided in the groundwater gauge data tables in Appendix C.

	I abit A	. Wettanu Chieria Atta	minent												
	Little Beaver Creek Stream and Wetland Restoration Site-Project No. 221														
Tract	Gauge ID	Hydrology Threshold Met?	Tract Mean	Veg Plot ID	Veg Survival Threshold Met?	Tract Mean									
1	. 2	No		VP 11	Yes										
	3	No		N/A	N/A										
	4	No		N/A	N/A										
	5	No	50%	N/A	N/A	66%									
	6*	Yes		N/A	N/A										
	7*	Yes		VP 2	No										
	8*	Yes		N/A	N/A										
	9*	Yes		VP 5	Yes										

Table X. Wetland Criteria Attainment

* Meets hydrological threshold for 5% or greater of the growing season

IV. Methodology

Methodologies follow EEP monitoring report template Version 1.2-11/16/06 and guidelines (Lee et al 2006). Photos were taken with a digital camera. A Trimble Geo XT handheld unit with sub-meter accuracy was used to collect groundwater gauge locations, vegetation monitoring plot origins, and problem area locations.

A. Vegetation Methodologies

Eight representative vegetation monitoring plots were chosen out of the original fifteen plots established in Reach 1, 2 and 3 during the as built survey data collection. Level II of the EEP/CVS protocol Version 4.0 was used to collect data for MY-02. Data collected for these plots are in Appendix A.

B. Stream Methodologies

Stream profile and cross-sections were surveyed using total station equipment and methods. The survey data was plotted using AutoCAD Civil3D. The longitudinal profile was generated using the design baseline alignment provided by Earth Tech. This was determined to be the alignment used for the mitigation plan and MY-01 monitoring report.

Cross sectional data was extracted based on a linear alignment between the end pins. The MY-00 and MY-01 data was adjusted such that their surveyed pin locations were as closely aligned to MY-02 as possible. It is unknown which alignments were used to generate the cross-sections for MY-00 and MY-01. Dimensional data was generated using in-house designed spreadsheets based on the Rosgen dimension criteria and equations.

Pattern parameters were calculated by measuring the plotted dimensions of the MY-02 surveyed thalweg. Profile parameters were determined through analysis of a Microsoft Excel generated plot of the profile based on the aforementioned baseline alignment.

C. Wetland Methodologies

Eight RDS groundwater monitoring gauges (2, 3, 4, 5, 6, 7, 8, & 9) were downloaded monthly to ensure proper function throughout the growing season. Data was exported into Excel spreadsheet along with incorporation of local rainfall data provided by the State Climate Office (Appendix C).

V. References

Lee, Michael T. Peet, Robert K. Roberts, Steven D., Wentworth, Thomas R. (2006). *CVS-EEP Protocol for Recording Vegetation Version 4.0.*

Weakley, Alan (2007). Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas. http://www.herbarium.unc.edu/flora.htm.

Appendix A.

1. Vegetation Raw Data

Wake County, North Carolina

EEP Project No. 221 Date: May 2009

Wake County, North Carolina

221 March 2009

Appendix A. 1. Vegetation Survey Data Tables

Database name	Little Beaver Creek cvs-eep-entrytool-v2.2.5.mdb
Report Prepared By	The Catena Group
Date Prepared	11/25/2008
DESCRIPTION OF WORKSH	EETS IN THIS DOCUMENT
Planted Stems	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
Total Stems	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.
Vegetation Monitoring Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Total Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Total Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	221
project Name	Little Beaver Creek
Description	4435 stream restoration, 1560 preservation, 2.4 acres wetland restoration southwest of Apex, NC. Constructed July-Nov. 2005.
River Basin	Cape Fear
length(ft)	4435
stream-to-edge width (ft)	50
area (sq m)	41198.33
Required Plots (calculated)	11
Sampled Plots	8 (Reduced plot number due to EEP recommendations)

Table 1. Vegetation Metadata

	Species	4	3	2	1	0	Missing	Unknown
	Aronia arbutifolia	1	1	1				
	Carpinus caroliniana var.							
	caroliniana			1				
	Cornus florida		2					
	Fraxinus pennsylvanica	5	23	5		1		
	Hamamelis virginiana var.							
	virginiana	1	5					
	Quercus alba	1						
	Quercus lyrata	3	3					
	Quercus phellos		2					
	Viburnum nudum			1		1		
	Morella cerifera	7	3					
	Hamamelis virginiana	5						
TOT:	11	23	39	8		2		

 Table 2. Vegetation Vigor by Species

	Species	All Damage Categories	(No Damage)	Deer	Diseased	Insects
	Aronia arbutifolia	3	2			1
	Carpinus caroliniana var. caroliniana	1		1		
	Cornus florida	2		1	1	
	Fraxinus pennsylvanica	34	16	17		1
	Hamamelis virginiana	5	5			
	Hamamelis virginiana var. virginiana	6	2	3		1
	Morella cerifera	10	7			3
	Quercus alba	1				1
	Quercus lyrata	6	3	1		2
	Quercus phellos	2	1	1		
	Viburnum nudum	2	2			
TOT:	11	72	38	24	1	9

 Table 3. Vegetation Damage By Species

Table 4.	Vegetation Damage	e by Plot	
1	Dlat	All Domogo	

	Plot	All Damage	No	Deer	Diseased	Insects
		Categories	Damage			
	221-01-0002-year:2	1				1
	221-01-0005-year:2	23	15	5		3
	221-01-0007-year:2	23	11	8		4
	221-01-0008-year:2	4	2	2		
	221-01-0009-year:2	1		1		
	221-01-0010-year:2	3	3			
	221-01-0011-year:2	13	5	6	1	1
	221-01-0014-year:2	4	2	2		
TOT:	8	72	38	24	1	9

 Table 5. All Stems by Plot and Species

		Total	#	Avg #	Plot	Plot	Plot	Plot			Plot	Plot
	Species	Stems	Plots	Stems	2	5	7	8	9	10	11	14
	Acer rubrum var. rubrum	95	6	15.83	4	2	12	1	16		60	
	Aronia arbutifolia	3	2	1.5		2	1					
	Baccharis halimifolia	2	2	1			1				1	
	Betula nigra	6	2	3				5	1			
	Carpinus caroliniana	1	1	1				1				
	var. caroliniana											
	Cornus florida	2	1	2							2	
	Diospyros virginiana	4	2	2		2			2			
	Fraxinus pennsylvanica	36	5	7.2		19	5		1		9	2
	Hamamelis virginiana	6	2	3			5	1				
	var. virginiana											
	Liquidambar styraciflua	453	8	56.62	12	125	139	35	26	63	46	7
	Liriodendron tulipifera	11	2	5.5		4	7					
	var. t <i>ulipifera</i>											
	Nyssa sylvatica	2	1	2						2		
	Pinus taeda	160	8	20	17	20	29	13	4	38	38	1
	Platanus occidentalis	9	3	3	1	3	5					
	var. occidentalis	-	_	_			_					
	Quercus alba	1	1	1							1	
	\tilde{Q} uercus lyrata	6	4	1.5	1	2	1	2				
	Quercus nigra	28	1	28						28		
	Quercus phellos	4	3	1.33			2			1	1	
	<i>Rhus copallinum</i> var.	3	2	1.5			2		1			
	copallinum	-							_			
	Rosa multiflora	1	1	1					1			
	Sambucus canadensis	1	1	1	1				-			
	Ulmus rubra	2	1	2	-						2	
	Viburnum nudum	2	1	2							2	
	Morella cerifera	11	1	11			11					
	Carpinus caroliniana	31	3	10.33			11		1	3	27	
	Quercus	5	1	5					5	5	27	
-	Hamamelis virginiana	5	2	2.5					5	3		2
	Hypericum	9	4	2.25	5	1				1	2	
	Liriodendron tulipifera	2	1	2.23	5	1			2	1	2	
	Platanus occidentalis	1	1	2 1					1			
	Prananus occidentatis Prunus serotina	2	1	2		2			1			╂────
		15	1	15		2				15		
	Acer rubrum				1	0				15		
TOT:	Ulmus 33	10 929	2 33	5	1 42	9 191	220	58	61	154	191	12

VPA #	Station #	Probable Cause	Severity	Photo #
Bare Banks			Č.	
2	10+30	Bare banks/Eroding on left and right descending bank	Minor	None
3	10+50	Bare right descending bank	Minor	None
11	14+50	Bare banks/Eroding on left descending bank	Minor	None
12	15+70	Bare banks/Eroding on left and right descending bank	Severe	None
13	16+70	Bare banks/Eroding on right descending bank	Severe	VPA 13
14	17+50	Bare right descending bank	Moderate	None
16	100ft up UT1	Bare left descending banks/Sweetgums seedlings numerous	Minor	None
19	20+80	Bare right descending bank	Minor	None
26	34+00	Bare right descending bank	Moderate	None
27	35+60	Bare left descending banks	Moderate	VPA 27
29	37+00	Bare banks/Eroding on left and right descending bank	Severe	None
Bare Bench				
4	10+60	Bare bench/plantings absent	Moderate	None
6	12+80	Bare bench/plantings absent	Minor	VPA 6
	10+80 -			
7	12+80	Plantings absent/area used as an ATV corridor	Severe	VPA 7
8	13+80	Bare bench/plantings absent	Moderate	None
9	13+50	Bare bench/plantings absent	Minor	None
10	14+00	Plantings absent/impacted by ATV's	Moderate	None
15	18+50	Bare bench/impacted by ATV's	Moderate	VPA 15
18	19+60	Bare slope adjacent to bench	Minor	None
Eroding Banks				
1	10+00	Incised stream immediately adjacent upstream	Minor	VPA1
5	11+00	Eroding banks	Moderate	VPA 5
17	200ft up UT1	Eroding right descending banks	Minor	None
	22+00 -			
20	22+50	Eroding banks along left and right descending banks	Severe	None
21	27+90	Eroding left descending banks	Severe	VPA 21
22	28+60	Eroding left and right descending banks	Minor	None
23	29+00	Eroding left descending banks	Moderate	None
24	31+00	Eroding left and right descending banks	Severe	VPA 24
25	32+40	Eroding left and right descending banks	Severe	VPA 25
28	36+30	Eroding right descending banks	Minor	None
Invasive Exotics				None
30	See CCPV	Tall Fescue encroaching buffer	Severe	VPA 30
31	See CCPV	Japanese Stiltgrass encroaching buffer	Severe	VPA 31

Appendix A 2. Vegetation Problem Area Photos

VPA 1. Left and Right descending banks have eroded bank.

VPA 5. Left and rifght descending banks have eroding banks.

VPA 6. Bare area within the buffer with no vegetation.

VPA 7. Grassy area within buffer with no evidience of planted tree species.

VPA 13. Bare coir matting.

VPA 15. Bare area within buffer.

VPA 16. Bare coir matting with ubiquitous sweetgum saplings (*Liquidambar styraciflua*).

VPA 21. Left descending bank is eroding and is has bare coir matting.

VPA 24. Left descending bank has bare coir matting and eroding banks.

VPA 26. Left and right descending banks are bare of vegetation.

VPA 30. Tall Fescue (*Lolium arundinaceum*) is encroaching into the buffer on the right descending side of the stream.

VPA 31. The invasive exotic Japanese Stiltgrass (*Microstegium vimineum*) encroaching into the buffer.

Appendix A. 3. Vegetation Monitoring Plot Photos

Vegetation Plot 14

Vegetation Plot 11

Vegetation Plot 10

Vegetation Plot 9

Vegetation Plot 8

Vegetation Plot 7

Vegetation Plot 5

Vegetation Plot 2

Appendix B.

1. Stream Current Conditions Plan View

(Source: Wake County)

Appendix B

2. Stream Problem Area Table

Feature Issue	Station Numbers	Suspected Cause	Photo Number		
Right Bank Undercut	10+00	Upstream- Fallen tree causing 2ft undercut.	PA 1		
5	10+08		—		
Pool Filling	10+50	Incorrect pattern geometry.	PA_2		
	10+60				
Structure Concern	11+30 11+30	8" gap in rock structure, channel elevation.	PA_3		
	11+30				
Structure Bypass	11+75	Overland flow around right of structure.	PA_4		
	11+75				
Bank Failure	11+90	Undercut toe due to storm flows.	PA_5		
	12+50	Wrong location and elevation.			
Sill Under Water	12+50				
a successful and the set	12+50	Deal filled with an dimension frame weather and	PA_7		
Aggradation of Pool	12+70	Pool filled with sediment from upstream.			
Riffle in Outside Meander	13+50	Riffle forming at outside of meander bend due to structure placement, soil	PA_8		
Rime in Outside Meander	13+65	failure in root wads present.			
Bank Failure-Left	15+60	Left bank failure resulting from high banks.	PA_9		
Sank Failure-Leit	15+90		FA_9		
Structure Failure	15+90	Water going through sill, materials in sill structure are approximately 2" higher	PA_10		
	16+00	than water surface elevation.	17_10		
Bank Erosion	16+60	Outside bend on the right bank, erosion.	PA_11		
	16+80				
Bank Scour	16+95	Scour upstream of root wads, poor root wads causing erosion.	PA_12		
	17+05	· · · · · · · · · · · · · · · · · · ·			
Bank Erosion 18+15		Erosion upstream of root wads.	PA_13		
	18+25	· · · · · · · · · · · · · · · · · · ·			
Channel Narrowing	19+00	Channel narrowing and getting shallower.	PA_14		
-	19+30		—		
Pool Aggraded	19+50 19+60	Pool has aggraded, pushed the channel to the inside of the bend & straightened, rootwad & structure buried in bank.	PA_15		
	21+70				
Bank Erosion	21+70	Aggraded soils causing right bank to blow out.	PA_16		

Bank Erosion	25+00	Fraction on right bank due to secur hale formation	PA_17
Bark Elosion	25+08		FA_17
Over-widening	25+50	Over-widening as a result of depositional aggradation	PA_18
Over-widening	On 25+08 Erosion on right bank due to scour hole formation. hing 25+50 Over-widening as a result of depositional aggradation. hing 26+25 Over-widening as a result of depositional aggradation and unstable banks. re and Widening 27+00 Unstable bank erosion and channel widening. iailure 27+00 Piping of structure, flow bypassing on right bank. iailure 27+30 Structure has gaps and piping due to improper construction erosion due to bypassing on right bank, no root wads at this location. Riffle 28+00 Riffle is degrading, no root wads before or after riffle as indicated. ank 28+25 protection or stabilization. n 28+25 Firm structure, scour hole formation causing riffle to degrade degrading riffle material has migrated to banks, structure beginning to pipe. iailure 28+50 Rootwad placement too high, no footer present piping resulting, erosion is resulting as well. on 28+95 No root wads or structure at this location, channel is widening with vertical eroding bank walls. callure 29+50 Structure is piping due to boulder gapping and no chinking. 29+50 Banks are beginning to erode at toe. 29+50 on 29+50 Banks are beginning to erode at toe. </td <td>174_10</td>	174_10	
Over-widening		Over-widening as a result of depositional aggradation and unstable banks	PA_19
		ever widening as a result of depositional aggradation and anstable banks.	177_10
Bank Failure and Widening		I Instable bank erosion and channel widening	PA_20
Bank randre and Widening	27+50	Character bank crosion and charmer widening.	174_20
Structure Failure	27+00	Pining of structure, flow hypassing on right bank	PA_21
	27+00	Tiping of structure, now bypassing of fight bank.	17_21
Structure Failure	27+30	Structure has gaps and piping due to improper construction erosion due to	PA_22
	27+50	bypassing on right bank, no root wads at this location.	1 7_22
Degrading Riffle	28+00	Piffle is degrading, no root wads before or after riffle as indicated	PA_23
	28+00	Rime is degrading, no root wads before of alter time as indicated.	FA_23
Unstable Bank	28+00	No root wads at this location, vertical unstable banks, scouring due to no bank	PA_24
	28+25	protection or stabilization.	FA_24
Degradation	28+25	Firm structure, scour hole formation causing riffle to degrade degrading riffle	
Degradation	28+45	material has migrated to banks, structure beginning to pipe.	PA_25
Structure Failure	28+50	Rootwad placement too high, no footer present piping resulting, erosion is	PA_26
	28+50	resulting as well.	FA_20
Bank Erosion	28+95	No root wads or structure at this location, channel is widening with vertical	
Bank Erosion	29+10	eroding bank walls.	PA_27
Structure Failure	29+25	Structure is nining due to boulder conning and no shinking	
	29+25	Structure is piping due to boulder gapping and no chinking.	PA_28
Denk Frazien	29+30	Denke are beginning to grade at tag	
Bank Erosion	29+50	Banks are beginning to erode at toe.	PA_29
Denk Frazien	29+75	Dight hank is grading, no rest wade at this location	
Bank Erosion	29+80	Right bank is eroding, no root wads at this location.	PA_30
Darely Francian	30+50	Otean hanks in tight meander, as a sint has formation	
Bank Erosion	30+70	Steep banks in tight meander, no point bar formation.	PA_31
	30+60	Othersteine is similar due to boulder sensing and as shipking	
Structure Failure	30+60	Structure is piping due to boulder gapping and no chinking.	PA_32
	31+10	Structure causing backwater, scour at upstream bank against structure no sill	
Structure Erosion	31+20	visible.	PA_33
Structure and Dank Failure	31+50	Boulders too large, chinking failed because of joint gapping no root wads	DA 24
Structure and Bank Failure	31+70	present at location, piping, scour on left and right banks.	PA_34

Channel Widening	35+25	Erosion on right and left banks, root wads beginning to scour upstream.	PA_35	
	36+10	Erosion on right and left barries, root wads beginning to seour upstream.	1 7_00	
Degradation, Erosion, Structure	36+10	Erosion and degradation resulting because of structure failure due to piping.	PA_36	
Failure	36+10	Possible loss of riffle.	FA_30	
Bank Erosion & Scour	36+70	Erosion and scour possibly resulting from backwater due to structure.	PA_37	
Balik Elosion & Scoul	36+75		FA_37	
Scour Hole	36+75	Scour resulting from upstream degradation and channel widening possible loss	PA_38	
	37+00	of upstream structure could result in the future.	FA_30	
Aggradation	38+00	Aggradation in pool.	PA_39	
Aggradation	38+15	Aggradation in pool.	FA_38	
Bank Erosion	10+60	Bank erosion left and right banks possibly due to steep upstream riffle	TPA_1	
	10+80	transition to pool and ending into bench.	11 7_1	
Bank Erosion	11+40	Bank eroding on left bank at bench, channel is beginning to straighten due to	TPA_2	
Balik Liosion	11+60	upstream riffle.	II A_2	
Bank Erosion	11+70	Channel widening in bend erosion and bank failures resulting	TPA 3	
	11+95	Chamiler widening in bend erosion and bank failures resulting	IFA_5	
Bank Erosion	12+50	Bank erosion		
	12+25	Dalik elusiuli	TPA_4	
Easment Violation	12+75	Vehicular/ATV crossing of stream, rutting resulting causing stream bank		
	13+00	destabilization and disruption of the channel.	TPA_5	

Appendix B

3. Representative Stream Problem Area Photos

Photo 1: PA_1

Photo 2: PA_2

Photo 3: PA_3

Photo 4: PA_4

Photo 5: PA_5

Photo 6: PA_6

Photo 7: PA_7

Photo 8: PA_8

Photo 9: PA_9

Photo 10: PA_10

Photo 11: PA_11

Photo 12: PA_12

Photo 13: PA_13

Photo 14: PA_14

Photo 15: PA_15

Photo 16: PA_16

Photo 17: PA_17

Photo 18: PA_18

Photo 19: PA_19

Photo 20: PA_20

Photo 21: PA_21

Photo 1: PA_22

Photo 2: PA_23

Photo 3: PA_24

Photo 4: PA_25

Photo 5: PA_26

Photo 6: PA_27

Photo 7: PA_28

Photo 8: PA_29

Photo 9: PA_30

Photo 10: PA_31

Photo 11: PA_32

Photo 12: PA_33

Photo 1: PA_34

Photo 2: PA_35

Photo 3: PA_36

Photo 4: PA_37

Photo 5: PA_38

Photo 6: PA_39

Tributary 1

Photo 7: TPA_1

Photo 8: TPA_2

Photo 9: TPA_3

Photo 10: TPA_4

Photo 11: TPA_5

Appendix B

4. Stream Photo-Station Photos

Photo Point 1. Downstream view from Station 10+00.

Photo Point 3. Upstream view.

Photo Point 2. Upstream view from Cross Section #1.

Photo Point 3. Downstream view.

Photo Point 2. Downstream of Cross Section #1.

Photo Point 4. Upstream view from Cross Section #2.

Photo Point 4. Downstream View from Cross Section #2.

Photo Point 6. Downstream view from confluence of Tributary 1.

Photo Point 5. Upstream view.

Photo Point 5. Downstream view.

Photo Point 6. Upstream view from confluence of Tributary 1.

Photo Point 7. Downstream view from Cross Section #T1.

Photo Point 7. Upstream view from Cross Section #T1.

Photo Point 8. Downstream view from Cross Section #T2.

Photo Point 8. Upstream view from Cross Section #T2.

Photo Point 9. Downstream view from Cross Section #3.

Photo Point 9. Upstream view from Cross Section #3.

Photo Point 10. Downstream view.

Photo Point 10. Upstream view.

Photo Point 11. Downstream view from Cross Section #4.

Photo Point 11. Upstream view from Cross Section #4.

Photo Point 12. Downstream view.

Photo Point 12. Upstream view.

Photo Point 13. Downstream view. gravel road stream crossing.

Photo Point 13. Upstream view.

Photo Point 14. Downstream view of Tributary 2.

Photo Point 14. Upstream view of Tributary 2.

Photo Point 15. Downstream view from Cross Section #5.

Photo Point 15. Upstream view from Cross Section #5.

Photo Point 16. Downstream view.

Photo Point 16. Upstream view.

Photo Point 18. Downstream view.

Photo Point 17. Downstream view from Cross Section #6.

Photo Point 17. Upstream view from Cross Section #6.

Photo Point 18. Upstream view.

Photo Point 19. Downstream view from Cross Section #7.

Photo Point 19. Upstream view from Cross Section #7.

Photo Point 20. Downstream view.

Photo Point 21. Downstream view of Cross Section #8.

Photo Point 21. Upstream view.

Photo Point 20. Upstream view.

Photo Point 22. Downstream view.

Photo Point 22. Upstream view of Cross Section 8.

Photo Point 23. Upstream view from the gravel road stream crossing.

Appendix B

5. Table B.2 Qualitative Visual Stability Assessment

	Table B2. Visual Morphologica Little Beaver Creek Stream R Reaches 1, 2, 3a,:	estoration/Proje				
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-built ¹	Total Number / feet in unstable state	% Perform in Stable Condition	Feature Perform Mean or Total
A. Riffles	1. Present?	49	64	NA	77%	
	2. Armor stable (e.g.no displacement?)	23	64	NA	36%	
	3. Facet grade appears stable?	27	64	NA	42%	
	4. Minimal evidence of embedding/fining?	15	64	NA	23%	
	5. Length appropriate?	16	64	NA	25%	41%
B. Pools	 Present? (e.g. not subject to severe aggrad. Or migrat.?) Sufficiently deep (Max. Pool D:Mean Bkf>1.6?) 	53 42	64 64	NA NA	83% 66%	
	3. Length appropriate?	30	64	NA	47%	65%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	35	64	NA	55%	
	2. Downstream of meander (glide/inflection) centering?	31	64	NA	48%	52%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	47	64	NA	73%	
	2. Of those eroding, # w/concomitant point bar formation?	9	17	NA	53%	
	3. Apparent Rc within spec?	47	64	NA	73%	
	4. Sufficient floodplain access and relief?	39	64	NA	61%	65%
E. Bed	1. General channel bed aggradation areas (bar formation)	NA	NA	7/150 ²	95%	
General	2. Channel bed degradation-areas of increasing downcutting of head cutting?	NA	NA	3/186 ²	94%	94%
F. Bank	1. Actively eroding, wasting, or slumping bank?	NA	NA	9/225	96%	96%
G. Cross	1. Free of back or arm scour?	30	34	NA	88%	
vanes, sills,	2. Height appropriate?	15	34	NA	44%	
single wing vanes	3. Angle and geometry appear appropriate?	27	34	NA	79%	
	4. Free of piping or other structural failures?	27	34	NA	79%	73%
H. Wads/	1. Free of scour?	16	25	NA	64%	
Boulders	2. Footing stable?	19	25	NA	76%	70%

1. The tributaries were not separated from the main channel in the MY-01 monitoring report.

2. Taken from a comparison of the longitudinal profiles of MY-01 and MY-02

	Table B2. Visual Morphologica Little Beaver Creek Stream R	estoration/Proje				
Feature Category	Tributary 1: (3 Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-built ¹	Total Number / feet in unstable state	% Perform in Stable Condition	Feature Perform Mean or Total
A. Riffles	1. Present?	8	11	NA	73%	
	2. Armor stable (e.g.no displacement?)	8	11	NA	73%	
	3. Facet grade appears stable?	8	11	NA	73%	
	4. Minimal evidence of embedding/fining?	6	11	NA	55%	
	5. Length appropriate?	7	11	NA	64%	67%
B. Pools	1. Present? (e.g. not subject to severe aggrad. Or migrat.?)	10	11	NA	91%	
	2. Sufficiently deep (Max. Pool D:Mean Bkf>1.6?)	7	11	NA	64%	
	3. Length appropriate?	8	11	NA	73%	76%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	7	11	NA	64%	
	2. Downstream of meander (glide/inflection) centering?	7	11	NA	64%	64%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	6	11	NA	55%	
	2. Of those eroding, # w/concomitant point bar formation?	1	5	NA	20%	
	3. Apparent Rc within spec?	7	11	NA	64%	
	4. Sufficient floodplain access and relief?	8	11	NA	73%	53%
E. Bed	1. General channel bed aggradation areas (bar formation)	NA	NA	0	100%	
General	2. Channel bed degradation-areas of increasing downcutting of head cutting?	NA	NA	1/52 ²	86%	93%
F. Bank	1. Actively eroding, wasting, or slumping bank?	NA	NA	3/110	86%	86%
G. Cross	1. Free of back or arm scour?	2	2	NA	100%	
vanes, sills,	2. Height appropriate?	2	2	NA	100%	
single wing	3. Angle and geometry appear appropriate?	2	2	NA	100%	
vanes	4. Free of piping or other structural failures?	2	2	NA	100%	100%
H. Wads/	1. Free of scour?	0	0	NA	NA	
Boulders	2. Footing stable?	0	0	NA	NA	NA

1. The tributaries were not separated from the main channel in the MY-01 monitoring report.

2. Taken from a comparison of the longitudinal profiles of MY-01 and MY-02 $\,$

	Table B2. Visual Morphologica Little Beaver Creek Stream R Tributary 2: (2	estoration/Proje				
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total number per As-built ¹	Total Number / feet in unstable state	% Perform in Stable Condition	Feature Perform Mean or Total
A. Riffles	1. Present?	5	5	NA	100%	
	2. Armor stable (e.g.no displacement?)	5	5	NA	100%	
	3. Facet grade appears stable?	5	5	NA	100%	
	4. Minimal evidence of embedding/fining?	5	5	NA	100%	
	5. Length appropriate?	5	5	NA	100%	100%
B. Pools	 Present? (e.g. not subject to severe aggrad. Or migrat.?) Sufficiently deep (Max. Pool D:Mean Bkf>1.6?) 	5	5	NA NA	100% 100%	
	3. Length appropriate?	5	5	NA	100%	100%
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	5	5	NA	100%	
	2. Downstream of meander (glide/inflection) centering?	5	5	NA	100%	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	5	5	NA	100%	
	2. Of those eroding, # w/concomitant point bar formation?	0	0	NA	100%	
	3. Apparent Rc within spec?	5	5	NA	100%	
	4. Sufficient floodplain access and relief?	5	5	NA	100%	100%
E. Bed	1. General channel bed aggradation areas (bar formation)	NA	NA	0	0%	
General	2. Channel bed degradation-areas of increasing downcutting of head cutting?	NA	NA	0	0%	100%
F. Bank	1. Actively eroding, wasting, or slumping bank?	NA	NA	0	0%	100%
G. Cross	1. Free of back or arm scour?	1	1	NA	100%	
vanes, sills,	2. Height appropriate?	1	1	NA	100%	
single wing	3. Angle and geometry appear appropriate?	1	1	NA	100%	
vanes	4. Free of piping or other structural failures?	1	1	NA	100%	100%
H. Wads/	1. Free of scour?	0	0	NA	NA	
Boulders	2. Footing stable?	0	0	NA	NA	NA

1. The tributaries were not separated from the main channel in the MY-01 monitoring report.

Appendix B

6. Cross Section Plots

Project:		Litte Beave	r Creek			Summary	(bankfull)	
Cross Sec	tion:	Cross Sect	ion 1			MY0	MY1	MY2
Feature		Riffle			A (BKF)	N/A	25.1	22.4
Station:		11+25			W (BKF)	N/A	13.8	15.4
Date:		10/25/08			Max d	N/A	3.4	2.9
Crew:		RL, JW, ZF)		Mean d	N/A	1.8	1.5
					W/D	N/A	7.6	10.6
	MY0-2006	*		MY1-2007			MY2-2008	1
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
			0	296.22		0.00	296.27	LPIN
			5	295.63		11.04	295.47	
			10	295.75		20.11	294.83	
			14	295.13		31.79	294.84	
			17	294.91		41.33	294.71	
			20	294.83		47.43	294.65	
			22.5	294.51		52.75	294.10	
			24	294.71		56.75	292.71	
			29	294.74		60.95	292.00	
			35	294.73		70.58	291.82	BKF L
			40	294.56		73.54	291.09	
			49.5	294.69		76.60	290.15	Toe L
			54	293.96		77.63	288.93	
			57	292.42		79.11	288.77	TW
			58.5	292.04		80.98	288.95	
			65	291.9		81.84	289.10	
			70	291.93		82.52	290.33	TOE R
			73.3	291.9		83.73	290.51	
			76.3	290.55		84.94	290.89	
			77.2	289.96		86.67	291.65	BKF R
			78	289.62		91.51	291.41	
			78.2	289.38		101.45	291.36	
			78.2	288.67		107.37	292.20	
			80	288.81		111.16	292.53	
			81	288.59		117.06	292.83	
			81.9	288.44	TW	131.38	292.79	
			83	288.64		142.99	292.91	
			83.1	289.97		155.43	292.93	

*This cross section was moved after MY0 , therefore MY0 is not represented on this plot.

		Litte Beaver					(bankfull)	10/5	
oss Secti ature		Cross Secti Pool	on 4		A (BKF)	MY0 20.4	MY1 23.9	MY2 26.9	
ion:		25+40			A (BKF) W (BKF)	20.4 15.4	23.9 19.4	26.9 21.6	
e:		10/25/08			Max d	2.5	2.7	2.7	
<i>r</i> :		RL, JW, ZP			Mean d	1.3	1.2	1.2	
	MY0-2006	1		MY1-2007	W/D	11.6	15.8 MY2-2008	17.3	
	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes	
0	285.74	RPIN4	4.378	285.334	XS4	0.00	285.72	LP	
1.03	285.523		11.69	285.752	XS4	9.32	285.50		
3.942 3.119	285.782 286.281		26.393 36.189	286.008 284.101	XS4 XS4	22.94 29.27	286.36		
.294	285.196		48.166	283.553	XS4BKF	29.27 34.09	285.78 284.46		
.678	283.908		50.03	281.889	XS4EOW	37.89	284.01		
7.48	283.661		52.311	280.847	XS4TW	43.16	284.17		
.135	282.863		54.913	281.546	XS4TW	47.07	284.18	BKF L	
.989 .769	281.92 280.929	LEW	57.971 63.563	281.831 283.404	XS4EOW XS4BKF	48.47 50.26	283.44 281.96	TOE L	
.914	280.853		75.146	283.843	XS4 XS4	50.20	281.90	IDEL	
.967	281.064		81.117	285.473	XS4	52.39	281.11	TW	
.306	281.429		101.114	285.125	XS4	54.21	281.27		
.765	281.626					56.92	281.62		
.016	281.937 282.458	REW				58.34 58.79	282.02 282.49	TOE R	
.409	282.458 283.387	BKF				58.79 59.87	282.49 282.75	I	
.339	283.791					61.26	282.90		
.628	284.409					63.34	283.40	BKF R	
1.67	285.491					67.06	283.72		
.841 5.208	285.412 284.77					73.71 75.81	283.92 284.25		
3.154	284.693					78.38	284.96		
4.767	284.766	LPIN4				81.63	285.48		Photo of XS-4, Sta 25+40 looking in the downstream direction
						86.89	285.66		
						103.94	285.33		
			1			123.27 135.06	284.82 284.77	RP	
						135.00	204.77		
287 -						135.00	204.77		Cross Section 4 Station 25+40 Pool
287 - 286 -					M	133.00	204.11		Cross Section 4 Station 25+40 Pool
						133.00	204.11		Cross Section 4 Station 25+40 Pool
286 -						133.00			Cross Section 4 Station 25+40 Pool
286 - 285 -						133.00	204.11		Cross Section 4 Station 25+40 Pool
286 - 285 -						133.00			Cross Section 4 Station 25+40 Pool
286 - 285 -						133.00			Cross Section 4 Station 25+40 Pool
286 - 285 -					X				Cross Section 4 Station 25+40 Pool
286 - 285 -						133.00	204.71		Cross Section 4 Station 25+40 Pool
286 -									Cross Section 4 Station 25+40 Pool
286 - 285 - 284 - 283 -						133.00			Cross Section 4 Station 25+40 Pool
286 - 285 - 284 - 283 - 282 -						133.00			Cross Section 4 Station 25+40 Pool
286 - 285 - 284 - 283 -						133.00			Cross Section 4 Station 25+40 Pool
286 - 285 - 284 - 283 - 282 -						133.00			Cross Section 4 Station 25+40 Pool
286 - 285 - 284 - 283 - 282 - 281 - 280 -									
286 - 285 - 284 - 283 - 282 - 281 -			20			40			
286 - 285 - 284 - 283 - 282 - 281 - 280 -			20						

Project:	Litte Be	aver Creek	Г	:	Summary	/ (bankfull)				2 3 11 1 20		and and	
Cross Sect Feature	ion: Cross S Riffle	ection 5	Δ	A (BKF)	MY0 22.8	MY1 44.0	MY2 39.0			the set		1 Alles	
Station:	29+86		v	W (BKF)	17.1	28.2	30.7	1		Carl Carl	A PART AND A PART		
Date: Crew:	10/25/0 RL, JW			Max d Mean d	2.5 1.3	3.9 1.6	3.8 1.3			- AN	A A A A A A A A		
0.011			v	W/D	12.8	18.1	24.1	3					
Station	MY0-2006 Elevation Note	Station	MY1-2007 Elevation	Notes	Station	MY2-2008 Elevation	Notes			and the Highly		and the	
0	281.556 LPIN	5 9.759	282.698	XS5	0.00	281.44	LP				CHE STRAND AND A STRAND	and the start of the	
0.327 3.333	281.481 281.453	18.551 43.367	282.059 281.937	XS5 XS5	4.16 10.87	281.45 282.85		Ū.	R-Charles (mail	and the second			
9.332 19.117	282.862	53.092 70.014	281.674 279.871	XS5 XS5BKF	19.52 35.77	281.96 281.67			A Line And			1 4 4 4 A	
37.5	281.877 281.491	70.928	279.271	XS5	44.29	282.19		3			Frank AN S M. 34	ALL PLAN	
45.756 54.979	282.018 281.447	72.217 74.647	277.638 278.22	XS5 XS5	52.89 61.74	281.67 281.50	BKF L		MARINA STATE	10 C	The second s	The second second	
66.104	281.203 BKF	77.751	279.004 >	XS5EOW	64.15	280.98	DIGIL	1	What the come	the second		a standard and	
69.211 71.773	280.408 279.288 LEW	82.766 100.074		XS5BKF XS5	67.25 69.23	280.77 279.99		15			A State Constant	A States	
72.465	279.11 REW	115.409	283.557	XS5	70.18	279.67		0		Lat - Read	A STATE	A Martin	
73.33 74.775	278.738 279.163	135.854	283.753	XS5	70.75 73.75	278.03 277.88	TOE L	1		10 m	and the second sec	15701197-1-	
76.724	279.165 REW				75.46	277.69	TW						
77.807 81.037	279.293 280.33 BKF				77.48 77.61	278.22 278.35	TOER	+				S (123 (1))	
83.598 94.31	281.345 281.269				78.32 79.80	279.56 279.82			and the second	2		ENNIN'	
103.696	282.517				81.46	280.59				The Ast	A CARLEN CAR		
114.686 128.068	283.517 283.746				83.50 93.87	281.43 281.47	BKF R			a later	- Energy		
137.36	283.815				101.20	281.88				THE REAL		J. S. K.	
137.671	283.814 LPIN	ŀ			110.84 122.73	283.19 283.63			Photo of XS-5,	Sta 29+86 looking i	n the downstream direction		
					130.67	283.79							
					136.98 137.81	283.94 283.92	RP						
285 -								Cross Se	ction 5 Station 29+86 Riffle				
284 -													
283 -	/ *												
(Feet)													
281 - 281 - 280 -													
а ш 280 -													
279 - 278 -													
277 -	D		20		40			60	80	100	120	140	160
		-							Station (Feet)				~
								As-Bu	ilt 🗕 Year 1 📥 Year 2 📕 Bankfu	I			

Project:		Litte Beave	r Creek			Summary	/ (bankfull)	
Cross Sec	tion:	Cross Sect	ion 7			MY0	MY1	MY2
Feature		Pool			A (BKF)	33.6	38.1	34.7
Station:		36+03			W (BKF)	18.8	19.9	17.7
Date:		10/25/08			Max d	3.2	4.3	4.7
Crew:		RL, JW, ZF			Mean d	1.8	1.9	2.0
					W/D	10.5	10.4	9.0
	MY0-2006			MY1-2007			MY2-2008	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation	Notes
0	279.042	LPIN7	0	278.836	X7LPIN	0.00	279.00	LP
0.51	279.009		33.871	279.486	X7	10.98	279.04	
21.568	279.149		80.043	279.431	X7	27.27	279.46	
51.281	279.693		82.978	278.174	X7	51.48	279.82	
72.894	279.523		93.22	278.001	X7	64.37	279.69	
79.627	279.601		95.724	277.739	X7BKF	79.27	279.73	
82.59	278.736		98.349	276.99	X7	84.35	278.44	
87.041	278.193		99.368	276.863	X7	93.18	278.09	
94.236	277.961	BKF	100.513	276.5	X7	98.41	277.36	BKF L
98.157	276.993		104.615	275.711	X7	100.05	276.62	
102.16	276.049		105.514	275.836	X7EOW	104.88	275.89	
103.932	275.906	LEW	107.136	274.455	X7	106.12	275.59	
105.965	275.503		109.075	273.707	X7TW	106.98	273.56	TOEL
107.475	275.001		110.653	274.181	X7	108.65	272.99	TW
109.213	274.767		112.523	276.792	X7	109.62	274.05	
110.698	274.732		113.122	278.052	X7	111.04	274.57	
111.472	275.849	REW	124.51	278.205	BFF	113.90	278.05	BKF R
113.144	278.162		128.632	278.601	X7	119.43	278.21	
115.189	278.219		133.265	280.31	X7	128.11	278.74	
119.535	278.145		176.974	280.341	X7	133.95	280.45	
126.016	278.369		190.038	280.536	X7RPIN	139.75	280.91	
131.054	279.632					152.76	280.79	
136.84	280.834					175.17	280.20	
151.129	280.814					189.83	280.53	RP
170.425	280.583							
185.112	280,462							
190.413	280.531							
100 774	200 520							

Photo of XS-7, Sta 36+03 looking in the downstream direction

Project:		Litte Beaver					/ (bankfull)		
Cross Sect Feature		Cross Secti Riffle	on 8		A (BKF)	MY0 22.9	MY1 23.6	MY2 27.6	
Station: Date:		38+95 10/25/08			W (BKF) Max d	16.9 2.3	19.5 2.7	19.3 2.7	
Crew:		10/25/06 RL, JW, ZP			Mean d	2.3	1.2	1.4	
	MY0-2006			MY1-2007	W/D	12.5	16.0	13.5	An and a second s
Station	Elevation	Notes	Station	Elevation	Notes	Station	MY2-2008 Elevation	Notes	
0 0.557	278.133 278.132	RPIN8	0 25.324	278.133 277.525	X8LPIN X8	0.00 2.47	278.15 278.11	LP	
9.078	276.132		40.752	276.877	X8	9.65	276.11		
25.947	277.434		49.89	274.504	X8	22.03	277.64		
40.226 47.204	277.27 275.744		57.682 61.183	273.884 273.676	X8BKF X8	31.79 38.64	277.58 277.39		
50.988	274.302		64.709	271.887	X8	44.38	276.75		
55.07 58.922	274.208 274.007		66.921 69.9	271.478 271.212	X8 X8TW	50.52 52.39	274.61 274.23		
62.826	272.853		70.922	272.187	X8EOW	58.74	274.18		
65.582 65.82	271.76 271.647	LEW	76.163 82.659	273.83 274.11	X8EOW X8	61.64 63.35	273.66 272.96		
67.491	271.603		89.153	274.343	X8	65.41	272.25		
68.655 70.16	271.634 271.64		96.616 104.537	275.246 274.307	X8 X8	66.23 68.42	271.57 271.39	TOEL V WS=272.0	
70.513	271.775	REW	104.3	274.305	X8	71.24	271.44	TOER	
72.077 76.207	272.403 273.867	BKF	106.021 111.011	272.985 274.269	X8 X8	72.72 73.29	272.41 272.74		
81.667	274.058	Bru	117.843	276.998	X8	78.73	274.06	BKF R	
93.832 101.171	274.481 273.732					83.12 88.92	274.09 274.30		
104.991	273.731					92.04	274.85		
110.065 118.23	275.174 277.125					95.82 98.59	275.12 274.86		Photo of XS-8, Sta 38+95 looking in the downstream direction
135.88	277.552					101.85	274.15		
141.007	277.648					104.80	273.44		
									Cross Section 8 Station 38+95 Riffle
279	1								
278									
277									
276 (Leet) 275							× ×	\	
9 <u>4</u> 275									
Elevation									
E									
273									
272	<u> </u>								
271	1								
270	0		20)		40			60 80 100 120 140 160
			20)		40			60 80 100 120 140 160 Station (Feet)
			20)		40			

Appendix B

7. Longitudinal Profiles

Appendix B

8. Pebble Count Frequency Distribution Plots

			PEBBLE C	OUNT						
Project:	Little Beaver O	Creek Monitori	ng MY2			Date:	11/20/2008	3		
Location:	Cross Section	#1								
Particle Counts										
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative		
	Silt/Clay	< 0.062	S/C	13		13	13%	13%		
	Very Fine	.062125	S	18	0	18	18%	31%		
	Fine	.12525	Α	12	0	12	12%	43%		
	Medium	.2550	Ν	15	0	15	15%	58%		
	Coarse	.50 - 1.0	D	17	0	17	17%	75%		
.0408	Very Coarse	1.0 - 2.0	S	10	0	10	10%	85%		
.0816	Very Fine	2.0 - 4.0		5	0	5	5%	90%		
.1622	Fine	4.0 - 5.7	G	0	0	0	0%	90%		
.2231	Fine	5.7 - 8.0	R	0	0	0	0%	90%		
.3144	Medium	8.0 - 11.3	Α	0	0	0	0%	90%		
.4463	Medium	11.3 - 16.0	٧	0	0	0	0%	90%		
.6389	Coarse	16.0 - 22.6	E	0	0	0	0%	90%		
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	0	0	0	0%	90%		
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0	0	0	0%	90%		
1.77 - 2.5	Very Coarse	45.0 - 64.0		0	0	0	0%	90%		
2.5 - 3.5	Small	64 - 90	С	0	0	0	0%	90%		
3.5 - 5.0	Small	90 - 128	0	0	0	0	0%	90%		
5.0 - 7.1	Large	128 - 180	В	0	0	0	0%	90%		
7.1 - 10.1	Large	180 - 256	L	0	0	0	0%	90%		
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	90%		
14.3 - 20	Small	362 - 512	Ŀ	0	0	0	0%	90%		
20 - 40	Medium	512 - 1024	D	0	0	0	0%	90%		
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	90%		
	Bedrock		BDRK	10	0	10	10%	100%		
			Totals	100	0	100	100%	100%		

			PEBBLE C	OUNT							
Project:	Little Beaver O	Creek Monitori	ng MY2		Date: 11/20/2008						
Location:	Cross Section	#3									
	Particle Counts										
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative			
	Silt/Clay	< 0.062	S/C	8	0	8	7%	7%			
	Very Fine	.062125	S	12	0	12	11%	18%			
	Fine	.12525	Α	11	0	11	10%	28%			
	Medium	.2550	Ν	14	0	14	13%	41%			
	Coarse	.50 - 1.0	D	28	0	28	25%	66%			
.0408	Very Coarse	1.0 - 2.0	S	18	0	18	16%	83%			
.0816	Very Fine	2.0 - 4.0		8	0	8	7%	90%			
.1622	Fine	4.0 - 5.7	G	4	0	4	4%	94%			
.2231	Fine	5.7 - 8.0	R	2	0	2	2%	95%			
.3144	Medium	8.0 - 11.3	Α	5	0	5	5%	100%			
.4463	Medium	11.3 - 16.0	V	0	0	0	0%	100%			
.6389	Coarse	16.0 - 22.6	E	0	0	0	0%	100%			
.89 - 1.26	Coarse	22.6 - 32.0	L	0	0	0	0%	100%			
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0	0	0	0%	100%			
1.77 - 2.5	Very Coarse	45.0 - 64.0		0	0	0	0%	100%			
2.5 - 3.5	Small	64 - 90	С	0	0	0	0%	100%			
3.5 - 5.0	Small	90 - 128	0	0	0	0	0%	100%			
5.0 - 7.1	Large	128 - 180	В	0	0	0	0%	100%			
7.1 - 10.1	Large	180 - 256	L	0	0	0	0%	100%			
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%			
14.3 - 20	Small	362 - 512	L	0	0	0	0%	100%			
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%			
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%			
	Bedrock		BDRK	0	0	0	0%	100%			
			Totals	110	0	110	100%	100%			

			PEBBLE C	OUNT						
Project:	Little Beaver O	Creek Monitori	ng MY2		Date: 11/20/2008					
Location:	Cross Section	#5								
Particle Counts										
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative		
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%		
	Very Fine	.062125	S	0	0	0	0%	0%		
	Fine	.12525	Α	2	0	2	2%	2%		
	Medium	.2550	Ν	5	0	5	4%	6%		
	Coarse	.50 - 1.0	D	6	0	6	5%	11%		
.0408	Very Coarse	1.0 - 2.0	S	15	0	15	13%	25%		
.0816	Very Fine	2.0 - 4.0		17	0	17	15%	39%		
.1622	Fine	4.0 - 5.7	G	5	0	5	4%	44%		
.2231	Fine	5.7 - 8.0	R	7	0	7	6%	50%		
.3144	Medium	8.0 - 11.3	Α	2	0	2	2%	52%		
.4463	Medium	11.3 - 16.0	V	1	0	1	1%	53%		
.6389	Coarse	16.0 - 22.6	E	4	0	4	4%	56%		
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	8	0	8	7%	63%		
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	16	0	16	14%	77%		
1.77 - 2.5	Very Coarse	45.0 - 64.0		14	0	14	12%	89%		
2.5 - 3.5	Small	64 - 90	С	1	0	1	1%	90%		
3.5 - 5.0	Small	90 - 128	0	5	0	5	4%	95%		
5.0 - 7.1	Large	128 - 180	В	2	0	2	2%	96%		
7.1 - 10.1	Large	180 - 256	L	0	0	0	0%	96%		
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	96%		
14.3 - 20	Small	362 - 512	Ŀ	0	0	0	0%	96%		
20 - 40	Medium	512 - 1024	D	0	0	0	0%	96%		
40 - 80	Lrg- Very Lrg	1024 - 2048	R	3	0	3	3%	99%		
	Bedrock		BDRK	1	0	1	1%	100%		
			Totals	114	0	114	100%	100%		

			PEBBLE C	OUNT							
Project:	Little Beaver O	Creek Monitori	ng MY2		Date: 11/20/2008						
Location:	Cross Section	#6									
	Particle Counts										
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative			
	Silt/Clay	< 0.062	S/C	0	0	0	0%	0%			
	Very Fine	.062125	S	10	0	10	9%	9%			
	Fine	.12525	Α	5	0	5	5%	14%			
	Medium	.2550	Ν	8	0	8	7%	21%			
	Coarse	.50 - 1.0	D	3	0	3	3%	24%			
.0408	Very Coarse	1.0 - 2.0	S	4	0	4	4%	28%			
.0816	Very Fine	2.0 - 4.0		12	0	12	11%	39%			
.1622	Fine	4.0 - 5.7	G	9	0	9	8%	47%			
.2231	Fine	5.7 - 8.0	R	4	0	4	4%	50%			
.3144	Medium	8.0 - 11.3	Α	9	0	9	8%	59%			
.4463	Medium	11.3 - 16.0	ν	2	0	2	2%	61%			
.6389	Coarse	16.0 - 22.6	E	13	0	13	12%	72%			
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	20	0	20	18%	91%			
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	5	0	5	5%	95%			
1.77 - 2.5	Very Coarse	45.0 - 64.0		5	0	5	5%	100%			
2.5 - 3.5	Small	64 - 90	С	0	0	0	0%	100%			
3.5 - 5.0	Small	90 - 128	0	0	0	0	0%	100%			
5.0 - 7.1	Large	128 - 180	В	0	0	0	0%	100%			
7.1 - 10.1	Large	180 - 256	L	0	0	0	0%	100%			
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%			
14.3 - 20	Small	362 - 512	Ŀ	0	0	0	0%	100%			
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%			
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%			
	Bedrock		BDRK	0	0	0	0%	100%			
			Totals	109	0	109	100%	100%			

			PEBBLE C	OUNT						
Project:	Little Beaver O	Creek Monitori	ng MY2		Date: 11/20/2008					
Location:	Cross Section	#8								
Particle Counts										
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative		
	Silt/Clay	< 0.062	S/C	17	0	17	15%	15%		
	Very Fine	.062125	S	12	0	12	11%	26%		
	Fine	.12525	Α	11	0	11	10%	36%		
	Medium	.2550	Ν	8	0	8	7%	43%		
	Coarse	.50 - 1.0	D	10	0	10	9%	52%		
.0408	Very Coarse	1.0 - 2.0	S	5	0	5	5%	57%		
.0816	Very Fine	2.0 - 4.0		10	0	10	9%	66%		
.1622	Fine	4.0 - 5.7	G	8	0	8	7%	73%		
.2231	Fine	5.7 - 8.0	R	12	0	12	11%	84%		
.3144	Medium	8.0 - 11.3	Α	6	0	6	5%	89%		
.4463	Medium	11.3 - 16.0	٧	0	0	0	0%	89%		
.6389	Coarse	16.0 - 22.6	E	0	0	0	0%	89%		
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	0	0	0	0%	89%		
1.26 - 1.77	Very Coarse	32.0 - 45.0	S	0	0	0	0%	89%		
1.77 - 2.5	Very Coarse	45.0 - 64.0		5	0	5	5%	94%		
2.5 - 3.5	Small	64 - 90	С	0	0	0	0%	94%		
3.5 - 5.0	Small	90 - 128	0	0	0	0	0%	94%		
5.0 - 7.1	Large	128 - 180	В	0	0	0	0%	94%		
7.1 - 10.1	Large	180 - 256	L	0	0	0	0%	94%		
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	94%		
14.3 - 20	Small	362 - 512	Ŀ	0	0	0	0%	94%		
20 - 40	Medium	512 - 1024	D	0	0	0	0%	94%		
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	94%		
	Bedrock		BDRK	7	0	7	6%	100%		
			Totals	111	0	111	100%	100%		

Appendix C.

1. Wetland Raw Data

