ACCIDENT REPORT - HAZARDOUS LIQUID PIPELINE SYSTEMS

A federal agency may not conduct or sponsor, and a person is not required to respond to, nor shall a person be subject to a penalty for failure to comply with a collection of information subject to the requirements of the Paperwork Reduction Act unless that collection of information displays a current valid OMB Control Number. The OMB Control Number for this information collection is 2137-0047. All responses to the collection of information are mandatory. Send comments regarding this burden or any other aspect of this collection of information, including suggestions for reducing the burden to: Information Collection Clearance Officer, PHMSA, Office of Pipeline Safety (PHP-30) 1200 New Jersey Avenue, SE, Washington, D.C. 20590.

INSTRUCTIONS

Important: Please read the separate instructions for completing this form before you begin. They clarify the information requested and provide specific examples. If you do not have a copy of the instructions, you can obtain one from the PHMSA Pipeline Safety Community Web Page at http://www.phmsa.dot.gov/pipeline/library/forms.

PART A - KEY REPORT INFORMATION

<table>
<thead>
<tr>
<th>Report Type: (select all that apply)</th>
<th>Original:</th>
<th>Supplemental:</th>
<th>Final:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Revision Date:</td>
<td>04/17/2021</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Operator's OPS-issued Operator Identification Number (OPID): 2552
2. Name of Operator COLONIAL PIPELINE CO
3. Address of Operator:
 3a. Street Address 1185 SANCTUARY PARKWAY SUITE 100
 3b. City ALPHARETTA
 3c. State Georgia
 3d. Zip Code 30009-4765
4. Local time (24-hr clock) and date of the Accident: 08/14/2020 18:20
5. Location of Accident:
 Latitude / Longitude 35.414106, -80.806185
6. National Response Center Report Number (if applicable): 1284598
7. Local time (24-hr clock) and date of initial telephonic report to the National Response Center (if applicable): 08/14/2020 19:43
8. Commodity released: (select only one, based on predominant volume released)
 - Refined and/or Petroleum Product (non-HVL) which is a Liquid at Ambient Conditions
 - Specify Commodity Subtype: Gasoline (non-Ethanol)
 - If "Other" Subtype, Describe:
 - If Biofuel/Alternative Fuel and Commodity Subtype is Ethanol Blend, then % Ethanol Blend:
 - If Biofuel/Alternative Fuel and Commodity Subtype is Biodiesel, then Biodiesel Blend e.g. B2, B20, B100
9. Estimated volume of commodity released unintentionally (Barrels): 28,571.00
10. Estimated volume of intentional and/or controlled release/blowdown (Barrels): 24,512.00
11. Estimated volume of commodity recovered (Barrels): 24,512.00
12. Were there fatalities? No
 - If Yes, specify the number in each category:
 12a. Operator employees
 12b. Contractor employees working for the Operator
 12c. Non-Operator emergency responders
 12d. Workers working on the right-of-way, but NOT associated with this Operator
 12e. General public
 12f. Total fatalities (sum of above)
13. Were there injuries requiring inpatient hospitalization? No
 - If Yes, specify the number in each category:
 13a. Operator employees
 13b. Contractor employees working for the Operator
 13c. Non-Operator emergency responders
 13d. Workers working on the right-of-way, but NOT associated with this Operator
 13e. General public
 13f. Total injuries (sum of above)
Form PHMSA F 7000.1

14. Was the pipeline/facility shut down due to the Accident? Yes
 - If No, Explain:
 - If Yes, complete Questions 14a and 14b: (use local time, 24-hr clock)
 14a. Local time and date of shutdown: 08/14/2020 18:43
 14b. Local time pipeline/facility restarted: 08/19/2020 21:00
 - Still shut down? (Supplemental Report Required)

15. Did the commodity ignite? No
16. Did the commodity explode? No
17. Number of general public evacuated: 0
18. Time sequence (use local time, 24-hour clock):
 18a. Local time Operator identified Accident - effective 7-2014 changed to "Local time Operator identified failure": 08/14/2020 18:20
 18b. Local time Operator resources arrived on site: 08/14/2020 18:42

PART B - ADDITIONAL LOCATION INFORMATION

1. Was the origin of the Accident onshore? Yes
 - If Yes, Complete Questions (2-12)
 - If No, Complete Questions (13-15)

- If Onshore:
 2. State: North Carolina
 3. Zip Code: 28078
 4. City: Huntersville
 5. County or Parish: Mecklenburg
 6. Operator-designated location: Milepost/Valve Station
 Specify: ROW
 7. Pipeline/Facility name: L01
 8. Segment name/ID: Charlotte to Kannapolis
 9. Was Accident on Federal land, other than the Outer Continental Shelf (OCS)? No
 10. Location of Accident: Pipeline Right-of-way
 Specify: Under soil
 - If Other, Describe:
 Depth-of-Cover (in): 36
 12. Did Accident occur in a crossing? No
 - If Yes, specify type below:
 - If Bridge crossing –
 - Cased/ Uncased:
 - If Railroad crossing –
 - Cased/ Uncased/ Bored/drilled
 - If Road crossing –
 - Cased/ Uncased/ Bored/drilled
 - If Water crossing –
 - Cased/ Uncased
 - Name of body of water, if commonly known:
 - Approx. water depth (ft) at the point of the Accident:
 - Select:

- If Offshore:
 13. Approximate water depth (ft) at the point of the Accident:
 14. Origin of Accident:
 - In State waters - Specify:
 - State:
 - Area:
 - Block/Tract #:
 - Nearest County/Parish:
 - On the Outer Continental Shelf (OCS) - Specify:
 - Area:
 - Block #:
 15. Area of Accident:

PART C - ADDITIONAL FACILITY INFORMATION

1. Is the pipeline or facility: Interstate
2. Part of system involved in Accident: Onshore Pipeline, Including Valve Sites
 - If Onshore Breakout Tank or Storage Vessel, Including Attached Appurtenances, specify:
3. Item involved in Accident: Pipe
 - If Pipe, specify:
 - Nominal diameter of pipe (in): 40
 - Wall thickness (in): .312
3c. SMYS (Specified Minimum Yield Strength) of pipe (psi): 60,000
3d. Pipe specification: API 5L
3e. Pipe Seam, specify: DSAW
 - If Other, Describe:
3f. Pipe manufacturer: Bethlehem Steel
3g. Year of manufacture: 1978
3h. Pipeline coating type at point of Accident, specify: Coal Tar
 - If Other, Describe:
 - If Weld, including heat-affected zone, specify. If Pipe Girth Weld, 3a through 3h above are required:
 - If Other, Describe:
 - If Valve, specify:
 - If Mainline, specify:
 - If Other, Describe:
3i. Manufactured by:
3j. Year of manufacture:
 - If Other, Describe:
4. Year item involved in Accident was installed: 1978
5. Material involved in Accident:
 - If Material other than Carbon Steel, specify:
6. Type of Accident Involved:
 - If Mechanical Puncture – Specify Approx. size:
 in. (axial) by in. (circumferential)
 - If Leak - Select Type: Crack
 - If Rupture - Select Orientation:
 - If Other, Describe:
 Approx. size: in. (widest opening) by in. (length circumferentially or axially)
 - If Other – Describe:

PART D - ADDITIONAL CONSEQUENCE INFORMATION
1. Wildlife impact: Yes
 1a. If Yes, specify all that apply:
 - Fish/aquatic
 - Birds
 - Terrestrial
2. Soil contamination: Yes
3. Long term impact assessment performed or planned: Yes
4. Anticipated remediation: Yes
 4a. If Yes, specify all that apply:
 - Surface water
 - Groundwater
 - Soil
 - Vegetation
 - Wildlife
5. Water contamination: Yes
 5a. If Yes, specify all that apply:
 - Ocean/Seawater
 - Surface
 - Groundwater
 - Drinking water: (Select one or both)
 - Private Well
 - Public Water Intake
 5b. Estimated amount released in or reaching water (Barrels): 726.00
5c. Name of body of water, if commonly known: NA
6. At the location of this Accident, had the pipeline segment or facility been identified as one that "could affect” a High Consequence Area (HCA) as determined in the Operator's Integrity Management Program? Yes
7. Did the released commodity reach or occur in one or more High Consequence Area (HCA)? Yes
7a. If Yes, specify HCA type(s): (Select all that apply)
 - Commercially Navigable Waterway:
 Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program?
| High Population Area: |
|---------------------|---|
| Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program? | |
| Other Populated Area |
|---------------------|---|
| Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program? | |
| Unusually Sensitive Area (USA) - Drinking Water |
|---------------------|---|
| Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program? | Yes |
| Unusually Sensitive Area (USA) - Ecological |
|---------------------|---|
| Was this HCA identified in the "could affect" determination for this Accident site in the Operator's Integrity Management Program? | Yes |

8. Estimated cost to Operator – effective 12-2012, changed to "Estimated Property Damage":

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>8a. Estimated cost of public and non-Operator private property damage paid/reimbursed by the Operator – effective 12-2012, "paid/reimbursed by the Operator" removed</td>
<td>$ 20,674,881</td>
</tr>
<tr>
<td>8b. Estimated cost of commodity lost</td>
<td>$ 1,542,263</td>
</tr>
<tr>
<td>8c. Estimated cost of Operator's property damage & repairs</td>
<td>$ 299,500</td>
</tr>
<tr>
<td>8d. Estimated cost of Operator's emergency response</td>
<td>$ 2,930,000</td>
</tr>
<tr>
<td>8e. Estimated cost of Operator's environmental remediation</td>
<td>$ 32,312,756</td>
</tr>
<tr>
<td>8f. Estimated other costs</td>
<td>$ 6,493,739</td>
</tr>
</tbody>
</table>

Describe: Miscellaneous costs to support the response.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>8g. Estimated total costs (sum of above) – effective 12-2012, changed to "Total estimated property damage (sum of above)"</td>
<td>$ 64,253,139</td>
</tr>
</tbody>
</table>

PART E - ADDITIONAL OPERATING INFORMATION

1. Estimated pressure at the point and time of the Accident (psig): 183.00
2. Maximum Operating Pressure (MOP) at the point and time of the Accident (psig): 673.00
3. Describe the pressure on the system or facility relating to the Accident (psig): Pressure did not exceed MOP
4. Not including pressure reductions required by PHMSA regulations (such as for repairs and pipe movement), was the system or facility relating to the Accident operating under an established pressure restriction with pressure limits below those normally allowed by the MOP? No

- If Yes, Complete 4a and 4b below:
 4a. Did the pressure exceed this established pressure restriction? |
 4b. Was this pressure restriction mandated by PHMSA or the State? |

5. Was "Onshore Pipeline, Including Valve Sites" OR "Offshore Pipeline, Including Riser and Riser Bend" selected in PART C, Question 2? Yes

- If Yes - (Complete 5a. – 5f below) effective 12-2012, changed to "(Complete 5.a – 5.e below)"

 5a. Type of upstream valve used to initially isolate release source: Remotely Controlled
 5b. Type of downstream valve used to initially isolate release source: Remotely Controlled
 5c. Length of segment isolated between valves (ft): 93,000
 5d. Is the pipeline configured to accommodate internal inspection tools? Yes

- If No, Which physical features limit tool accommodation? (select all that apply)
 - Changes in line pipe diameter
 - Presence of unsuitable mainline valves
 - Tight or mitered pipe bends
 - Other passage restrictions (i.e. unbarred tee's, projecting instrumentation, etc.)
 - Extra thick pipe wall (applicable only for magnetic flux leakage internal inspection tools)
 - Other -

- If Other, Describe:

5e. For this pipeline, are there operational factors which significantly complicate the execution of an internal inspection tool run? No

- If Yes, Which operational factors complicate execution? (select all that apply)
 - Excessive debris or scale, wax, or other wall buildup
- Low operating pressure(s)
- Low flow or absence of flow
- Incompatible commodity
- Other - If Other, Describe:

5f. Function of pipeline system: > 20% SMYS Regulated Trunkline/Transmission

6. Was a Supervisory Control and Data Acquisition (SCADA)-based system in place on the pipeline or facility involved in the Accident? Yes

If Yes -

6a. Was it operating at the time of the Accident? Yes

6b. Was it fully functional at the time of the Accident? Yes

6c. Did SCADA-based information (such as alarm(s), alert(s), event(s), and/or volume calculations) assist with the detection of the Accident? No

6d. Did SCADA-based information (such as alarm(s), alert(s), event(s), and/or volume calculations) assist with the confirmation of the Accident? No

7. Was a CPM leak detection system in place on the pipeline or facility involved in the Accident? No

- If Yes:

7a. Was it operating at the time of the Accident?
7b. Was it fully functional at the time of the Accident?

7c. Did CPM leak detection system information (such as alarm(s), alert(s), event(s), and/or volume calculations) assist with the detection of the Accident?

7d. Did CPM leak detection system information (such as alarm(s), alert(s), event(s), and/or volume calculations) assist with the confirmation of the Accident?

8. How was the Accident initially identified for the Operator? Notification From Public

- If Other, Specify:

8a. If "Controller", "Local Operating Personnel", including contractors, "Air Patrol", or "Ground Patrol by Operator or its contractor" is selected in Question 8, specify:

9. Was an investigation initiated into whether or not the controller(s) or control room issues were the cause of or a contributing factor to the Accident? No, the Operator did not find that an investigation of the controller(s) actions or control room issues was necessary due to: (provide an explanation for why the Operator did not investigate)

- If No, the Operator did not find that an investigation of the controller(s) actions or control room issues was necessary due to:

- If Yes, specify investigation result(s): (select all that apply)

- Investigation reviewed work schedule rotations, continuous hours of service (while working for the Operator), and other factors associated with fatigue
- Investigation did NOT review work schedule rotations, continuous hours of service (while working for the Operator), and other factors associated with fatigue

Provide an explanation for why not:

- Investigation identified no control room issues
- Investigation identified no controller issues
- Investigation identified incorrect controller action or controller error
- Investigation identified that fatigue may have affected the controller(s) involved or impacted the involved controller(s) response
- Investigation identified incorrect procedures
- Investigation identified incorrect control room equipment operation
- Investigation identified maintenance activities that affected control room operations, procedures, and/or controller response
- Investigation identified areas other than those above:

Describe:

PART F - DRUG & ALCOHOL TESTING INFORMATION

1. As a result of this Accident, were any Operator employees tested under the post-accident drug and alcohol testing requirements of DOT’s Drug & Alcohol Testing regulations? No

- If Yes:

1a. Specify how many were tested:

1b. Specify how many failed:
2. As a result of this Accident, were any Operator contractor employees tested under the post-accident drug and alcohol testing requirements of DOT's Drug & Alcohol Testing regulations?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2a. Specify how many were tested:

2b. Specify how many failed:

PART G – APPARENT CAUSE

Select only one box from PART G in shaded column on left representing the APPARENT Cause of the Accident, and answer the questions on the right. Describe secondary, contributing or root causes of the Accident in the narrative (PART H).

<table>
<thead>
<tr>
<th>Apparent Cause:</th>
<th>G5 - Material Failure of Pipe or Weld</th>
</tr>
</thead>
</table>

G1 - Corrosion Failure - only one sub-cause can be picked from shaded left-hand column

Corrosion Failure – Sub-Cause:

- **If External Corrosion:**
 1. Results of visual examination:
 2. Type of corrosion: *(select all that apply)*
 - Galvanic
 - Atmospheric
 - Stray Current
 - Microbiological
 - Selective Seam
 - Other:
 3. The type(s) of corrosion selected in Question 2 is based on the following: *(select all that apply)*
 - Field examination
 - Determined by metallurgical analysis
 - Other:
 4. Was the failed item buried under the ground?
 - If Yes:
 - 4a. Was failed item considered to be under cathodic protection at the time of the Accident?
 - If Yes - Year protection started:
 - 4b. Was shielding, tenting, or disbonding of coating evident at the point of the Accident?
 - 4c. Has one or more Cathodic Protection Survey been conducted at the point of the Accident?
 - If “Yes, CP Annual Survey” – Most recent year conducted:
 - If “Yes, Close Interval Survey” – Most recent year conducted:
 - If “Yes, Other CP Survey” – Most recent year conducted:
 - If No:
 - 4d. Was the failed item externally coated or painted?
 5. Was there observable damage to the coating or paint in the vicinity of the corrosion?
 - **If Internal Corrosion:**
 6. Results of visual examination:
 - Other:
 7. Type of corrosion: *(select all that apply):*
 - Corrosive Commodity
 - Water drop-out/Acid
 - Microbiological
 - Erosion
 - Other:
 8. The cause(s) of corrosion selected in Question 7 is based on the following: *(select all that apply):*
 - Field examination
 - Determined by metallurgical analysis
 - Other:
 9. Location of corrosion: *(select all that apply):*
 - Low point in pipe
 - Elbow
 - Other:
 10. Was the commodity treated with corrosion inhibitors or biocides?
11. Was the interior coated or lined with protective coating?

12. Were cleaning/dewatering pigs (or other operations) routinely utilized?

13. Were corrosion coupons routinely utilized?

Complete the following if any Corrosion Failure sub-cause is selected AND the “Item Involved in Accident” (from PART C, Question 3) is Tank/Vessel.

14. List the year of the most recent inspections:
 - 14a. API Std 653 Out-of-Service Inspection
 - No Out-of-Service Inspection completed
 - 14b. API Std 653 In-Service Inspection
 - No In-Service Inspection completed

Complete the following if any Corrosion Failure sub-cause is selected AND the “Item Involved in Accident” (from PART C, Question 3) is Pipe or Weld.

15. Has one or more internal inspection tool collected data at the point of the Accident?
 - 15a. If Yes, for each tool used, select type of internal inspection tool and indicate most recent year run:
 - Magnetic Flux Leakage Tool
 - Most recent year:
 - Ultrasonic
 - Most recent year:
 - Geometry
 - Most recent year:
 - Caliper
 - Most recent year:
 - Crack
 - Most recent year:
 - Hard Spot
 - Most recent year:
 - Combination Tool
 - Most recent year:
 - Transverse Field/Triaxial
 - Most recent year:
 - Other
 - Most recent year:
 - Describe:

16. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident?
 - If Yes -
 - Most recent year tested:
 - Test pressure:

17. Has one or more Direct Assessment been conducted on this segment?
 - If Yes, and an investigative dig was conducted at the point of the Accident:
 - Most recent year conducted:
 - If Yes, but the point of the Accident was not identified as a dig site:
 - Most recent year conducted:

18. Has one or more non-destructive examination been conducted at the point of the Accident since January 1, 2002?
 - 18a. If Yes, for each examination conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:
 - Radiography
 - Most recent year conducted:
 - Guided Wave Ultrasonic
 - Most recent year conducted:
 - Handheld Ultrasonic Tool
 - Most recent year conducted:
 - Wet Magnetic Particle Test
 - Most recent year conducted:
 - Dry Magnetic Particle Test
 - Most recent year conducted:
 - Other
 - Most recent year conducted:
 - Describe:

G2 - Natural Force Damage - only one sub-cause can be picked from shaded left-handed column

Natural Force Damage – Sub-Cause:

- If Earth Movement, NOT due to Heavy Rains/Floods:
 1. Specify:
 - If Other, Describe:

- If Heavy Rains/Floods:
2. Specify:
 - If Other, Describe:

 - If Lightning:

3. Specify:
 - If Temperature:

4. Specify:
 - If Other, Describe:

5. Describe:

 Complete the following if any Natural Force Damage sub-cause is selected.

6. Were the natural forces causing the Accident generated in conjunction with an extreme weather event?
 6a. If Yes, specify: (select all that apply)
 - Hurricane
 - Tropical Storm
 - Tornado
 - Other
 - If Other, Describe:

G3 - Excavation Damage - only one sub-cause can be picked from shaded left-hand column

Excavation Damage - Sub-Cause:

- If Previous Damage due to Excavation Activity: Complete Questions 1-5 ONLY IF the "Item Involved in Accident" (from PART C, Question 3) is Pipe or Weld.

1. Has one or more internal inspection tool collected data at the point of the Accident?
 1a. If Yes, for each tool used, select type of internal inspection tool and indicate most recent year run:
 - Magnetic Flux Leakage
 Most recent year conducted:
 - Ultrasonic
 Most recent year conducted:
 - Geometry
 Most recent year conducted:
 - Caliper
 Most recent year conducted:
 - Crack
 Most recent year conducted:
 - Hard Spot
 Most recent year conducted:
 - Combination Tool
 Most recent year conducted:
 - Transverse Field/Triaxial
 Most recent year conducted:
 - Other
 Most recent year conducted:
 Describe:

2. Do you have reason to believe that the internal inspection was completed BEFORE the damage was sustained?

3. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident?
 - If Yes:
 Most recent year tested:
 Test pressure (psig):

4. Has one or more Direct Assessment been conducted on the pipeline segment?
 - If Yes, and an investigative dig was conducted at the point of the Accident:
 Most recent year conducted:
 - If Yes, but the point of the Accident was not identified as a dig site:
 Most recent year conducted:

5. Has one or more non-destructive examination been conducted at the point of the Accident since January 1, 2002?
 5a. If Yes, for each examination, conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:
 - Radiography
 Most recent year conducted:
 - Guided Wave Ultrasonic
 Most recent year conducted:
 - Handheld Ultrasonic Tool
 Most recent year conducted:
Complete the following if Excavation Damage by Third Party is selected as the sub-cause.

6. Did the operator get prior notification of the excavation activity?
 6a. If Yes, Notification received from: (select all that apply)
 - One-Call System
 - Excavator
 - Contractor
 - Landowner

Complete the following mandatory CGA-DIRT Program questions if any Excavation Damage sub-cause is selected.

7. Do you want PHMSA to upload the following information to CGA-DIRT (www.cga-dirt.com)?

8. Right-of-Way where event occurred: (select all that apply)
 - Public
 - Private
 - Pipeline Property/Easement
 - Power/Transmission Line
 - Railroad
 - Dedicated Public Utility Easement
 - Federal Land
 - Data not collected
 - Unknown/Other

9. Type of excavator:

10. Type of excavation equipment:

11. Type of work performed:

12. Was the One-Call Center notified?
 12a. If Yes, specify ticket number:
 12b. If this is a State where more than a single One-Call Center exists, list the name of the One-Call Center notified:

13. Type of Locator:

14. Were facility locate marks visible in the area of excavation?

15. Were facilities marked correctly?

16. Did the damage cause an interruption in service?
 16a. If Yes, specify duration of the interruption (hours)

17. Description of the CGA-DIRT Root Cause (select only the one predominant first level CGA-DIRT Root Cause and then, where available as a choice, the one predominant second level CGA-DIRT Root Cause as well):
 - Root Cause:
 - If One-Call Notification Practices Not Sufficient, specify:
 - If Locating Practices Not Sufficient, specify:
 - If Excavation Practices Not Sufficient, specify:
 - If Other/None of the Above, explain:

G4 - Other Outside Force Damage
- only one sub-cause can be selected from the shaded left-hand column

Other Outside Force Damage – Sub-Cause:

- If Damage by Car, Truck, or Other Motorized Vehicle/Equipment NOT Engaged in Excavation:
 1. Vehicle/Equipment operated by:

- If Damage by Boats, Barges, Drilling Rigs, or Other Maritime Equipment or Vessels Set Adrift or Which Have Otherwise Lost Their Mooring:
 2. Select one or more of the following IF an extreme weather event was a factor:
 - Hurricane
 - Tropical Storm
 - Tornado
 - Heavy Rains/Flood
 - Other
 - If Other, Describe:

- If Previous Mechanical Damage NOT Related to Excavation: Complete Questions 3-7 ONLY IF the "Item Involved in Accident" (from PART C, Question 3) is Pipe or Weld.

3. Has one or more internal inspection tool collected data at the point of the Accident?
 3a. If Yes, for each tool used, select type of internal inspection tool and indicate most recent year run:
<table>
<thead>
<tr>
<th>Method</th>
<th>Most recent year conducted:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Flux Leakage</td>
<td></td>
</tr>
<tr>
<td>Ultrasonic</td>
<td></td>
</tr>
<tr>
<td>Geometry</td>
<td></td>
</tr>
<tr>
<td>Caliper</td>
<td></td>
</tr>
<tr>
<td>Crack</td>
<td></td>
</tr>
<tr>
<td>Hard Spot</td>
<td></td>
</tr>
<tr>
<td>Combination Tool</td>
<td></td>
</tr>
<tr>
<td>Transverse Field/Triaxial</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

4. Do you have reason to believe that the internal inspection was completed BEFORE the damage was sustained?

5. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident?
 - If Yes:
 - Most recent year tested:
 - Test pressure (psig):

6. Has one or more Direct Assessment been conducted on the pipeline segment?
 - If Yes, and an investigative dig was conducted at the point of the Accident:
 - Most recent year conducted:
 - If Yes, but the point of the Accident was not identified as a dig site:
 - Most recent year conducted:

7. Has one or more non-destructive examination been conducted at the point of the Accident since January 1, 2002?
 - If Yes, for each examination conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:
 - Radiography
 - Guided Wave Ultrasonic
 - Handheld Ultrasonic Tool
 - Wet Magnetic Particle Test
 - Dry Magnetic Particle Test
 - Other

7a. If Yes, and examination was conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:
 - Radiography
 - Guided Wave Ultrasonic
 - Handheld Ultrasonic Tool
 - Wet Magnetic Particle Test
 - Dry Magnetic Particle Test
 - Other

8. Specify:
 - If Intentional Damage:
 - If Other, Describe:

9. Describe:
 - If Other Outside Force Damage:

G5 - Material Failure of Pipe or Weld
- only one sub-cause can be selected from the shaded left-hand column

Use this section to report material failures ONLY IF the "Item Involved in Accident" (from PART C, Question 3) is "Pipe" or "Weld."

<table>
<thead>
<tr>
<th>Material Failure of Pipe or Weld – Sub-Cause:</th>
<th>Environmental Cracking-related</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The sub-cause shown above is based on the following: (select all that apply)</td>
<td></td>
</tr>
<tr>
<td>- Field Examination</td>
<td>Yes</td>
</tr>
<tr>
<td>- Determined by Metallurgical Analysis</td>
<td>Yes</td>
</tr>
<tr>
<td>- Other Analysis</td>
<td>- If "Other Analysis", Describe:</td>
</tr>
<tr>
<td></td>
<td>- Sub-cause is Tentative or Suspected; Still Under Investigation (Supplemental Report required)</td>
</tr>
</tbody>
</table>

2. List contributing factors: (select all that apply)
- Fatigue or Vibration-related
 Specify:
 - If Other, Describe:

- Mechanical Stress:
 - Other
 - If Other, Describe:

- If Environmental Cracking-related:
 3. Specify: Other
 - If Other - Describe: Corrosion fatigue.

Complete the following if any Material Failure of Pipe or Weld sub-cause is selected.

4. Additional factors: (select all that apply):
 - Dent
 Yes
 - Gouge
 - Pipe Bend
 - Arc Burn
 - Crack
 Yes
 - Lack of Fusion
 - Lamination
 - Buckle
 - Wrinkle
 - Misalignment
 - Burnt Steel
 - Other
 - If Other, Describe:

5. Has one or more internal inspection tool collected data at the point of the Accident? Yes

5a. If Yes, for each tool used, select type of internal inspection tool and indicate most recent year run:
 - Magnetic Flux Leakage
 Most recent year run:
 - Ultrasonic
 Most recent year run:
 - Geometry
 Most recent year run:
 - Caliper
 Most recent year run:
 - Crack
 Yes
 Most recent year run: 2017
 - Hard Spot
 Most recent year run:
 - Combination Tool
 Yes
 Most recent year run: 2017
 - Transverse Field/Triaxial
 Most recent year run:
 - Other
 Most recent year run:

Describe:

6. Has one or more hydrotest or other pressure test been conducted since original construction at the point of the Accident? No

 - If Yes:
 Most recent year tested:
 Test pressure (psig):

7. Has one or more Direct Assessment been conducted on the pipeline segment? No

 - If Yes, and an investigative dig was conducted at the point of the Accident:
 Most recent year conducted:
 - If Yes, but the point of the Accident was not identified as a dig site:
 Most recent year conducted:

8. Has one or more non-destructive examination(s) been conducted at the point of the Accident since January 1, 2002? Yes

8a. If Yes, for each examination conducted since January 1, 2002, select type of non-destructive examination and indicate most recent year the examination was conducted:
 - Radiography
 Most recent year conducted:
 - Guided Wave Ultrasonic
 Most recent year conducted:
 - Handheld Ultrasonic Tool
 Most recent year conducted:
 - Wet Magnetic Particle Test
 Yes
 Most recent year conducted: 2004
- Dry Magnetic Particle Test

- Other

<table>
<thead>
<tr>
<th>Most recent year conducted:</th>
<th>Yes</th>
</tr>
</thead>
</table>

| Most recent year conducted: | 2004 |

Describe: Manual measurement of deformation

G6 – Equipment Failure - only one sub-cause can be selected from the shaded left-hand column

Equipment Failure – Sub-Cause:

- If Malfunction of Control/Relief Equipment:
 1. Specify: *(select all that apply)* -
 - Control Valve
 - Instrumentation
 - SCADA
 - Communications
 - Block Valve
 - Check Valve
 - Relief Valve
 - Power Failure
 - Stopple/Control Fitting
 - ESD System Failure
 - Other
 - If Other – Describe:

- If Pump or Pump-related Equipment:
 2. Specify:
 - If Other – Describe:

- If Threaded Connection/Coupling Failure:
 3. Specify:
 - If Other – Describe:

- If Non-threaded Connection Failure:
 4. Specify:
 - If Other – Describe:

- If Other Equipment Failure:
 5. Describe:

Complete the following if any Equipment Failure sub-cause is selected.

6. Additional factors that contributed to the equipment failure: *(select all that apply)*
 - Excessive vibration
 - Overpressurization
 - No support or loss of support
 - Manufacturing defect
 - Loss of electricity
 - Improper installation
 - Mismatched items (different manufacturer for tubing and tubing fittings)
 - Dissimilar metals
 - Breakdown of soft goods due to compatibility issues with transported commodity
 - Valve vault or valve can contributed to the release
 - Alarm/status failure
 - Misalignment
 - Thermal stress
 - Other
 - If Other, Describe:

G7 - Incorrect Operation - only one sub-cause can be selected from the shaded left-hand column

Incorrect Operation – Sub-Cause:

- If Tank, Vessel, or Sump/Separator Allowed or Caused to Overfill or Overflow
 1. Specify:
 - If Other, Describe:

- If Other Incorrect Operation
 2. Describe:

Complete the following if any Incorrect Operation sub-cause is selected.
PART I - PREPARER AND AUTHORIZED SIGNATURE

Preparer's Name: Mark Piazza
Preparer's Title: Manager - Pipeline Compliance
Preparer's Telephone Number: 6787635911
Preparer's E-mail Address: mpiazza@colpipe.com
Preparer's Facsimile Number:

Authorized Signer Name: Mark Piazza
Authorized Signer Title: Manager - Pipeline Compliance
Authorized Signer Telephone Number: 6787635911
Authorized Signer Email: mpiazza@colpipe.com
Date: 04/17/2021