Guide to the Insects
of Connecticut

PART VII. THE PLECOPTERA OR STONEFLIES
OF CONNECTICUT

by STEPHEN W. HITCHCOCK

STATE GEOLOGICAL AND NATURAL HISTORY SURVEY
OF CONNECTICUT

DEPARTMENT OF ENVIRONMENTAL PROTECTION

1974
BULLETIN 107
Guide to the Insects
of Connecticut

PART VII. THE PLECOPTERA OR STONEFLIES
OF CONNECTICUT

by STEPHEN W. HITCHCOCK
Connecticut Department of Environmental Protection

BULLETIN NUMBER 107
1974
STATE GEOLOGICAL AND NATURAL HISTORY SURVEY
OF CONNECTICUT

DEPARTMENT OF ENVIRONMENTAL PROTECTION

HONORABLE THOMAS J. MESSIRE, Governor of Connecticut

DOUGLAS M. COSTLE, Commissioner of the Department of
Environmental Protection

BOARD OF ADVISORS

DR. RICHARD H. GOODWIN, Department of Botany, Connecticut College

DR. JEROME ROSENTHAL, Department of Geology, Yale University

DR. JAMES A. SLATER, Department of Zoology and Entomology,
University of Connecticut

DIRECTOR

JOE WEBB PEARLMAN, Ph.D.
Wesleyan University, Middletown, Connecticut

EDITOR

LOU WILLIAMS PAGE, Ph.D.

DISTRIBUTION AND EXCHANGE AGENT

WALTER BRAHM, State Librarian
State Library, Hartford
ACKNOWLEDGMENTS

Specimens for examination were lent by the following institutions: University of Connecticut, by James Slater; Yale University, by Charles Remington; The Connecticut Agricultural Experiment Station; Cornell University, by L. L. Peckman; University of New Hampshire, by William Biddle; University of Maine, by David Leonard; American Museum of Natural History, by Pedro Wygotsky; Illinois Natural History Survey, by H. H. Ross.

Many of the drawings are by Nancy Redshaw Pierce; the frontispiece is by Lynn McVicker, Jr. Figures of lice from T. H. Frison's works are reproduced by permission of the Illinois Natural History Survey through the courtesy of Shirley McCallam and were skillfully rephotographed from the original plates by William Zehr. Other photographic reproductions were made by Kenneth Welch.

I am grateful for the encouragement, financial aid, and secretarial assistance furnished by The Connecticut Agricultural Experiment Station. Sandra A. Pinczek of that institution typed the many pages of manuscript.

Stephen W. Hitchcock

The Connecticut Agricultural Experiment Station, New Haven
January 15, 1973
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Phylogeny</td>
<td>2</td>
</tr>
<tr>
<td>Larval feeding</td>
<td>2</td>
</tr>
<tr>
<td>Adult feeding</td>
<td>5</td>
</tr>
<tr>
<td>Natural enemies</td>
<td>5</td>
</tr>
<tr>
<td>Mating and oviposition</td>
<td>8</td>
</tr>
<tr>
<td>Isolation of eggs and larval development</td>
<td>10</td>
</tr>
<tr>
<td>Ecology, behavior, and local distribution</td>
<td>11</td>
</tr>
<tr>
<td>Economic importance</td>
<td>16</td>
</tr>
<tr>
<td>Effects of insecticides and pollution</td>
<td>17</td>
</tr>
<tr>
<td>Distribution in Connecticut</td>
<td>17</td>
</tr>
<tr>
<td>Collecting</td>
<td>20</td>
</tr>
<tr>
<td>Glossary of descriptive terms</td>
<td>21</td>
</tr>
<tr>
<td>Morphology</td>
<td>29</td>
</tr>
<tr>
<td>Key to suborders, families, and subfamilies of the adult Plecoptera</td>
<td>32</td>
</tr>
<tr>
<td>Key to the genera of adult North American Plecoptera</td>
<td>35</td>
</tr>
<tr>
<td>Key to the genera of larvae known from Northeastern North America</td>
<td>40</td>
</tr>
<tr>
<td>Families, genera, and species of Northeastern Plecoptera, with species</td>
<td></td>
</tr>
<tr>
<td>Illustrations and keys</td>
<td>43</td>
</tr>
<tr>
<td>Capniidae</td>
<td>43</td>
</tr>
<tr>
<td>Leuctridae</td>
<td>71</td>
</tr>
<tr>
<td>Nemouridae</td>
<td>90</td>
</tr>
<tr>
<td>Tanacryptopterygida</td>
<td>114</td>
</tr>
<tr>
<td>Perlidae</td>
<td>132</td>
</tr>
<tr>
<td>Perlidae</td>
<td>135</td>
</tr>
<tr>
<td>Chloroperlida</td>
<td>165</td>
</tr>
<tr>
<td>Perlodida</td>
<td>186</td>
</tr>
<tr>
<td>Pteronarcida</td>
<td>231</td>
</tr>
<tr>
<td>Checklist of Neartic stoneflies</td>
<td>238</td>
</tr>
<tr>
<td>References</td>
<td>247</td>
</tr>
<tr>
<td>Taxonomic index</td>
<td>260</td>
</tr>
</tbody>
</table>
The Plecoptera or Stoneflies
of Connecticut
by
Stephen W. Hitchcock

INTRODUCTION

The Plecoptera are a small order of aquatic insects, with 465 described species in America north of Mexico, 74 of them recorded from Connecticut. Almost all species pass their larval life in streams in temperate climates. Some of the same species are also found in lakes in colder areas. Adults are terrestrial. Exceptions are found in the Southern Hemisphere, where a few stoneflies are terrestrial in the larval stage (Wisely, 1933; Illies, 1960a; 1964b; McLellan, 1957). In California one species of Capnia is aquatic as an adult (Jewett, 1963, 1965).

There is a great need for biological and behavioral studies of various species of stoneflies. Unfortunately, the immature stages of most stoneflies are not known. Rearing the larvae and developing means of identifying them, together with biological studies, should prove a productive field for the amateur and professional entomologist alike.

Most of the known biological information about the stoneflies is scattered in bits and pieces over many journals and years. I have attempted to summarize it in the body of the text.

General works on North American stoneflies include Needham and Claassen (1925), Claassen (1931), Frison (1935, 1942), Hanson, (1946, 1961), Ricker (1943, 1952, 1959a, b), Ricker and Ross (1968), Ross and Ricker (1971), Harden and Michel (1952), Jewett (1952b, 1960a), Nebeke and Gauvin (1965), Bauman and Gauvin (1970), Gauvin, Nebeke, and Sessions (1966), Gauvin, Ricker, Miner, Millam, and Hays (1972). For several genera, I have modified keys published by the above authors.

For other parts of the world, recent general works on Plecoptera, which include keys, are by Brinck (1949) for Sweden, Hynes (1958) for Great Britain, Illies (1955) for Germany, Lesquen (1931) for France, Aubert (1959) for Switzerland, Zhilzova (1964) for Russia, Wu (1938) for China, Rauer (1968) for northeast Asia, Kawai (1967) for Japan, McLellan (1965, 1966) and Winterburn (1965) for New Zealand, Illies (1960b, 1969), Kimmins (1951), Rick (1970), Burns (1957), Perkins (1958), and McLellan (1971) for Australia, Illies (1960b, 1961, 1963, 1966b) and Jewett (1959a, 1960b) for South America, and Jewett (1958) for Central America.
PHYLLOGENY

The Plecoptera belong to the general orthopteroid group of insects, although this group has been variously subdivided. Of present orders, they are most closely related to the Embioptera (Crampton, 1932; Ford, 1931; Hudson, 1948; Nutting, 1931; Walker, 1922, and others).

The present-day order probably originated in Late Carboniferous time from insects close to the family Narkemidæ in the extinct order Parapaleoptera (Surow, 1900, 1906). That order contains those fossils originally included in the Protopleurania. The Parapaleoptera differ from modern Plecoptera in having free MA and MF veins rather than a single M vein as do recent forms. Some of the Parapaleoptera had greatly expanded pronotal margins. Parapaleoptera adults all had 5 tarsal segments, whereas the most primitive Plecoptera today have only 3. However, the larval forms of the Parapaleoptera had either 3 or 4 segments tarsi (Carpenter, 1935). Abdominal gills are found on the larvae of both Parapaleoptera and the more primitive Plecoptera. The first true Plecoptera appear in the fossil record of the Lower Permian.

The phylogenetic relationships within the order have been the subject of several interesting studies. Illies (1905a, 1905b) summarized his earlier work and discussed his conclusions in some detail. He referred to previous works; of those particularly Tillyard (1921a) and Rickle (1950) should be consulted. Kawai (1967) gave an extended discussion of the phylogeny and biogeography of the stoneflies of the Northern Hemisphere. Ransier (1968) discussed the paleontological record and paleoecology. He suggested that the Plecoptera originated in the African subregion in or prior to Early Carboniferous time. Zwick (1969) has recently examined plecopteran phylogeny but, as I have seen only an abstract of his conclusions, it is difficult to form an opinion of his results. He has proposed several new taxa in the higher categories. Generally, the families with the most archaic characters are Australian or South American. If we consider only the North American families, there is fair agreement between various students. The Cagnidæ and Leuctridæ are closely related and, together with the Nemouridæ and Tanopterygidæ, make up the superfamilies Tanopterygoidea. The Perlidæ, Perlodidæ, and Chloroperlidæ seem to make another natural grouping. The Pteronarcidæ were an offshoot from the common stem of these last three families. The remaining northeastern family, Peltopteridæ, has been variously placed. Illies put it tentatively with some families found in the Southern Hemisphere. Ransier (1962) thought that it had a common origin with the nemourid (genus, lat.) groups. Rickle (1950) and Zwick (1969), believed that it should be closer to the basal stem from which the Perlidæ-Perlodidæ arose. Kawai (1967) came to a similar conclusion and showed that the Peltopteridæ are of Oriental origin.

LARVAL FEEDING

Several investigations have been made of the food of larval stoneflies. Generally the Setipalpia are carnivorous and the Filipalpia herbivorous but there are numerous exceptions. In the Neuricrid families we find:
PTEROMARCIIDAE The first instar of Pteronarcys protus takes no food but digests the remains of yolk in the midgut. The second instar feeds on algae (Miller, 1939). Older P. durata larvae have been reared on dead elm leaves which they skeletonize (Harden and Mickel, 1952) and P. scotti prefers elder leaves. When an energy budget was simulated for the latter, the assimilation- and growth-efficiencies were found to be quite low (McDuff, 1970). Muttkowski and Smith (1929) found the guts of 26 specimens of P. californica to contain 42 percent detritus, 4 percent animal matter, and 54 percent plant material. The latter was principally wood fibers and moss. Richardson and Gauvin (1971) found that 275 specimens of the same species contained 80 percent detritus, 9 percent plant material, and 11 percent animal matter. More than half the specimens contained animal matter. These investigators found Pteronarcys latia to be omnivorous but to eat less detritus and more plant and animal matter than does Pteronarcys. They observed Pteronarcys californica preying occasionally on other insects.

PELTOPHERIDAE Chapman and Demory (1963) stated that Peltoperla brevis feeds chiefly on algae. In stream cages, I found that P. maria skeletonized dead leaves of maple and beech but fed only sparingly on oak. The gutts of captured specimens contained detrital material, probably the remains of the dead leaves and associated flora. Wallace, Woodall, and Sherberger (1970) found that P. maria (?) feeds on leaves of 15 species of trees, with elm, elder, and sourwood preferred.

THOLIPTERYGIDAE Frison (1929) noted that the larvae of this family feed on decaying leaves and on 7 species of diatoms. Hynes (1941), Brinck (1949), and Richardson and Gauvin (1971) found the gut contents to be principally detritus, with appreciable amounts of the tissue of higher plants, together with diatoms, algae, and mineral matter—the latter undoubtedly picked up inadvertently. Brachyptera can graze on the surface of stones.

NEMOURIDAE, LECTRIDAE, CAPNIDAE Wu (1923), Frison (1929), Hynes (1941), Brinck (1949), and Jones (1950) all agree that the larvae feed on dead leaves of higher plants. Early instars of nemourids apparently feed on detritus (Hynes, 1941).

PERLIDAE Samal (1923) stated that 1st instar Perlis burmeisteriana probably do not feed and that 2nd instar eat algae. Chiaboll (1962) found that 1st instar Dinaras cephalotes feed on diatoms. Later instars of Perlidae are carnivorous and apparently feed on any stream animals that they can catch and swallow. Although plant material is occasionally found in the gut, it probably comes from the gut content of the prey or is only a minor food source (Smith, 1913; Green, 1926; Muttkowski and Smith, 1929; Hynes, 1941; Brinck, 1949; Jones, 1949; Macketh, 1957; Chiaboll, 1962; Sheldon, 1969; Richardson and Gauvin, 1971; Tarter and Krumholz, 1971).

PERLOIDEAE Food habits are similar to those of the Perlidae. Whereas an occasional perlid specimen has only vegetable matter in the gut (Hynes, 1941), at least two of the small Isoperla species appear to be strictly herbivorous (Frison, 1935). Jones (1950) found that the diet of I. gramine

3
...shifted toward animal food as the larvae became larger. Grown larvae in this family are principally predacious but do take plant materials on occasion (Dunne, 1984; Richardson and Gaston, 1971).

Cicadellidae This family appears to be less restricted to a carnivorous diet than either of the last two. Frison (1935) said that *Hyloperla* is herbivorous but Hynes (1941) and Jones (1956) found *Chloroperla* to take either plant or animal material. Nicola (1958) found *Alloperla* scavenging on dead trout embryos. Chapman and Demory (1963) claimed that *Kathroyperla perlita* feeds on equal parts on algae and detritus.

The food of larval Plecoptera is dependent on the size of the larva. Very young larvae feed on particles of detritus and other material small enough for them to handle. As the carnivorous forms become larger, they eat progressively larger and more active prey. They are apparently somewhat selective, either through choice or chance. Macketh (1957) found that the gut content of *Perla bipunctata* was 5 percent *Ricinophila* in December, when the latter formed 25 percent of the stream fauna. However, in early spring *Baetis* made up 23 percent of the gut content but only 11 percent of the fauna. *Acroneuria californica* feeds mostly on Diptera when small, Ephemeroptera when of intermediate size, and Trichoptera when large. The choice of prey also depends on the season: Diptera are taken most often in summer, Trichoptera in winter, and Ephemeroptera at all seasons (Sheldon, 1909).

My own observations bear out those of Brinck (1949), who found that the larval *Proculrophorus proniscus* recognizes prey only on antennal contact. Unlike him, however, I have observed *Acroneuria* and *Paragynella* actively searching for prey during the day. That such means is adequate is borne out by the work of Davis and Warren (1965), who found that *Acroneuria pacifica* individuals were able to crop the common food source more efficiently than do sculpins. The presence of these stoneflies reduced the food consumption and production of the fish.

The mouthparts of the predacious *Dineurus cephalotes* illustrate those of carnivorous forms. According to Chisholm (1962), the laciniac (Fig. 4) of the maxillae catch the prey and adjust its position so that the mandibles can cut it transversely into slices. The labrum (Fig. 1) is in synchrony with the mandibles so that when the latter open, the former is lifted. The hypopharynx moves upward to force the food into the cutting edge of the mandibles but as the mandibles close, it retracts, moving the food particles toward the oesophagus. Sclerotized hooks and spines in the crops of predacious forms keep the larger, harder parts of the prey from reaching the stomach. These indigestible portions are probably regurgitated (Hynes, 1941; Gray, 1926).

The phytophagous species gather material in with the laciniac, and perhaps with the labrum; this vegetable matter is then cut free and crushed with the mandibles. The mandibles are shorter and stouter than those of carnivorous species and bear a grinding surface. The food is presumably transported to the oesophagus by the action of the labrum, hypopharynx, and perhaps the basal area of the mandibles (Brinck, 1949). Richardson and Gaston (1971) suggested that *Pteronarcys* regurgitates the indigestible sand grains that have been ingested with plant material.
ADULT FEEDING

For many years it was believed that adult stoneflies did not feed, an idea apparently based on the flabby condition of the mouthparts of the large perlids and pteronarcids.

Newcomer (1918) found, however, that adult Brachyptera feed on the buds and young fruit of various fruit trees, as well as on the leaves of several trees and on the caskets of willow. Subsequently Wu (1923) determined that Nemoura tullulaeula feeds on the leaves of the touch-me-not. Frison (1929) discovered that all Illinois specimens of Taenioptera and Alloperla feed on the blue-green alga Protococcus vulgaris and that Brachyptera fasciata feeds on the blossoms of oak trees. He (1935) further stated that Leuctra and Nemoura adults are also herbivores. Hynes (1942), studying Nemoura cinerea in England, found that adults given lichens and Protococcales lived 32 to 37 days, whereas unfed adults lived only 4 to 5 days. He also surmised that food is necessary to allow egg maturation. I have observed Nemoura depressa in the laboratory feeding on algal growth from twigs collected by the stream where they emerged. Dissection showed their guts filled with this material. Hynes (1941) starved representatives of 25 species of stoneflies for a few days and then provided them with water, lichens, and algae. All Taeniopterygidae, Capniidae, Leuctridae, and Nemouridae fed on this material and all species of both sexes drank water. Brinck (1945) observed in nature that certain nemourids, capniids, taeniopterygids, and leuctrids feed on lichens and green algae and a lesser number also feed on decaying leaves near the stream bank.

All of the above genera belong to the superfamily Taeniopterygyidae. The evidence for adult feeding in other groups is less secure. Miller (1939) obtained viable eggs from unfed Pteronarcys proteus that had been reared from late instar nymphs. They required water but apparently do not take, and obviously do not require, any food. I have provided adult Peltoperla maria with a variety of substances from their normal habitat but did not observe any feeding. However, they avidly drank a mixture of honey and water. Hynes (1941), in the tests mentioned above, found that adult Perlididae and Perlidae drank water but would not eat lichens or algae. Brinck (1949) agreed that most Setipalpia do not feed but he did find food in the gut of an adult Chloroperla hammondae. Smith (1935) found that adult Paragyneta immaginata do not require food but their lives were shortened by several days if denied water. Her unfed specimens apparently produced viable eggs. Arnold (1906) observed Alloperla arctica adults drinking water. Claassen (1931) reported that adult Alloperla pallida had been observed feeding on honeydew secreted by aphids on elder. Frison (1935) saw adults of Isoperla nana feeding on the pollen of dock (Rumex) and wild grape. He found their mandibles to be well sclerotized. He states that the mandibles of I. deceps also appear functional, but those of other Isoperla do not.

Generally it appears that the smaller larval herbivores feed as adults but that the carnivores and large herbivores do not.

NATURAL ENEMIES

Adult stoneflies appear to be surprisingly free from predators. Spiders
catch some, and often as a first check on what is emerging from a stream the collector can examine nearby spider webs. Occasionally in the early spring, I have observed hunting spiders attacking winter stoneflies. I have also captured an immature *Pityokarytes phryganus* (determination by J. Anderson) feeding on a male *Taeniopteryx burki* on February 29.

There seem to be few records of other insects preying on adult stoneflies. Odonata capture mostly small Diptera (Pritchard, 1964) and apparently do not hesitate to attack any prey. However, of numerous publications of dragonfly prey records that I have examined, none mention the capture of adult stoneflies. Neither have I seen any record of euplids, adelids, or other predators insects attacking adult Plecoptera. There seems to be no reason why these predators should not include stoneflies in their diet and Plecoptera possibly are a very small component of their menu. Rohwer (1915) recorded a sawfly, *Tenthredo arenigera* feeding on adult * Allocapnia signata* but this would not be a significant cause of mortality.

Even birds do not seem to eat stoneflies as much as might be expected. Although stoneflies were numerous near their nests, only one bank swallow out of 90 took any stoneflies (*Z Allocapnia mediana*) and this was only about 1 percent of the food in the bird's stomach (Steuer, 1935). As stoneflies have but feeble powers of flight, swallows are not likely to take them on the wing.

Other reports of individual birds feeding on identified stoneflies are: a robin on *Proctocladius* (Prison, 1937), a chinkadee on *Allocapnia pygmaea* (Willey, 1936), a bluejay on "*Capnia ornalis*" (Hamilton, 1932)—probably *Paracapnia orbis* or *P. ampulato*; and a golden crowned kinglet and a chinkadee probably feeding on *Allocapnia recta* (Hamilton, 1933).

Although adult stoneflies apparently are not the principal food of any bird, they are palatable to a wide variety of bird species. McAtee (1932) identified Plecoptera in the stomachs of 41 species of Neartic birds but these insects only represented 0.0419 percent of all insects taken. Knappen (1934) found Plecoptera in 122 stomachs of 50 species of Neartic birds. These were generally adult insects, although a few larvae were also found. Nighthawks were the most persistent feeders, with stoneflies found in 21 stomachs. The stomach and gullet of one had 41 and 42 adult stoneflies, respectively. Other birds that appear to feed extensively on stoneflies are the American Golden-eye, Swainson's Hawk, and the Western Grebe. As might be expected, the greatest number were ingested in late spring and early summer.

Frost (1924) found adult Plecoptera in the stomachs of frogs, and Minkley (1963) reported an adult *Paragyneta* in the stomach of a bat.

Larval forms suffer more from predators than do adults. Fish take a considerable number of stoneflies, as recorded in the voluminous fisheries literature. In New Zealand, according to Tillyard (1921b), introduced trout eliminated certain native stoneflies. However, most earlier workers indicated that fish eat insects in general relationship to availability of the prey. This is not necessarily related to the total numbers of the insects. Elliott (1967c) found that the species of stonefly larvae taken by fish show a seasonal as well as a diurnal change. Gerald (1966) noted that the long-
none dace (Rhinichthys cataractae) feed proportionally more on small Plecoptera than on large. In some cases, more than the size of the insect is involved, Hartman (1958) found that active and long-legged stoneflies were taken less often (or rejected more often) as compared with Trichoptera, than would be expected merely from their size in relation to the mouth size of trout. Many fish have been recorded feeding on larval Plecoptera, and I have seen nothing to indicate that any fish does not. Mattila (1966) found 5 species of fish feeding on Ameletus rubicundus and others (for example, Lachman (1955)) have recorded various fish species preying on these insects.

Other vertebrates have been noted feeding on stoneflies. Two out of 25 water shrews (Sorex palustris) had fed on Plecoptera, which made up 2.8 percent by volume of the ingested material (Connor, 1966). Three out of 27 spotted turtles, (Clemmys gutata) contained stoneflies (Surface, 1908). Bakus (1959) reported a dipper, Cinclus mexicanus, putting its head into the water and picking Plecoptera off rocks in the stream. Salamanders have been found eating Arctiurana californica (Anderson, Martin, and Pratt, 1966).

Larval stoneflies are also preyed upon by crayfish (Péris, 1965).

Larvae are also subject to predation by the larvae of other insects; in fact, they probably take a major share of the stonefly population.

The predacious caddisworms feed on stoneflies but, except on Lestora (Jones, 1950), less so than on Ephemeroptera and Diptera (Mattock and Smith, 1929; Jones, 1949). Slack (1936) lists no Plecoptera in the diet of caddisworms but there were apparently few in the stream he studied. That (1960) found Rhyncophila vaccini feeding on Nemoura spp. out of 20 species of Rhyncophila fed very little or not at all on stoneflies. Generally the caddisworms do not seem to take a heavy toll, perhaps because the larval stoneflies are either too quick or too well concealed.

The predaceous stoneflies may make of their stonefly brethren and are one of the chief causes of mortality. Coleoptera apparently feed only lightlv on Plecoptera (Mattock and Smith, 1929; Hynes, 1941; Brinck, 1949; Jones, 1950). However, Wu (1925) reported that hydrophilid beetles larvae are common predators of Nemoura versicolor. I have seen only one record of aquatic Neopteroidea preying on stoneflies (Helson, 1964), but we can assume that they do because they eat almost any insect.

Few parasites have been recorded; undoubtedly this reflects only the rarity of close examinations for parasites in stoneflies. Winkler (1958), Schoenemund (1924), and Kühlbrecher (1934) have all found meromithid worms in stoneflies. Mattock (1950) discussed a parasitic mite found on 6 species of stoneflies in Japan. Léger and Gaubier (1932) described the embiozyce Orthoidea cornutus in the larva of a Protoneuma and Helson (1954) discovered a gregarine parasite in Stenoepelma praemine. Mattock and Smith (1929) found that 12 percent of larval Arctiurana porphyrata contained gregarines. Desportes (1963) included a figure of a gregarine found in Perla and Isoperla. She also gave additional references to gregarine infections. Weisser found 2 species of microsporidia in Chloroperla (Thompson, 1909). Cercariae of trematodes infect stoneflies but apparently do little harm (Hall, Weaver and Gomez-Miranda,
Cercarieae appear to be most common in the Perlidae, Perlodidae, and Perlomariidae (Hall, 1960; Hall and Groves, 1963; Anderson, Martin, and Pratt, 1966).

Frisson (1935) described what he called "anal gills" on Leuctra clauseni and later (1942) stated that L. tenax and L. ferrugineus had similar gills. I have observed such structures on a Nemoura larva and, because it does not seem likely that such delicate gills would grow sporadically in diverse genera, conclude that they are probably fungal growths on the living larva.

MATING AND OVIPOSITION

It was noted in the mid-1800s that some stoneflies beat the ends of their abdomens on the surfaces where they were resting. This drumming, observed many times subsequently, was assumed to be a mating signal. Rupprecht (1965, 1968, 1969) has recently studied it in some detail. Drumming has been found in Acroneuria, Perlomycrus, Teneiopeterus, Capnia, Dinocras, Dina, Isoperla, and Perlca. The signal is specific to each species in frequency and duration. Drumming is not necessary before mating to release the sexual response; it serves only to bring the two sexes into close proximity. The males drum and unmated females respond. Depending on genus (and perhaps species), the two sexes either actively search for each other or the females remain in place while the males seek them out. The signal is not given by the sound of the drumming but by the vibrations of the substrate and is perceived by the substrate organs of the maxae. Once a female is mated, she no longer responds to the drumming signal of a male.

The manner in which exact immediate recognition of the sexes is made is not known but it is probably tactile. Males often try to mate with unresponsive females and have even observed a male Allocaepia apparently trying to mate with a female Teneiopeterus, which would imply a lack of fine discrimination. Perlesta placida apparently depends on visual recognition or chance encounters (Stewart, Armar, and Solomon, 1969). Other senses may be involved, however. Hynes (1941) observed a male Capnia nigra attempting to mate with a female Leuctra nigra that had been in contact with a female C. nigra. He therefore suggested the presence of a pheromone. Coleman and Hynes (1970) state that Allocaepia pygmaea males can recognize females at distances of 15 cm.

Mating is usually necessary to produce viable eggs. However, Degrange (1958) discovered that a small percentage of eggs from virgin females of at least 9 species would hatch. Because females would not oviposit, the eggs had to be obtained by dissection but it is possible that in nature there may be occasional young produced without fertilization.

In mating, the male mounts the back of the female, puts his abdomen to the side of the female and recurves the tip to bring his genitalia into position against hers on the ventral side of her abdomen. The male has a variety of projections, varying by species, with which to accomplish mating. Various genital hooks or protrusions are present on any of the distal abdominal segments, including, in some species, the epiproct and paraprocts (fig. 9). Either of two principal means of sperm transference occur in
Nearctic stoneflies. The first, in the Setipalpia and some Filipalpia, is a simple extrusion of the eversible copulatory organ, apparently made turgid by body fluid. The second, found in some Filipalpia, is the use of the epiproct as a sperm conveyer. Notonemoura males use the ventral process of the subgenital plate as a sperm conveyer (McLellan, 1965). Some Plecoptera have accessory glands and in at least one species, *Arctoperla coleoptrata*, there is a spermatophore (Brinck, 1962). Brinck (1955) examined the reproductive system and mating of a number of stoneflies from different families in some detail and gave a valuable comparative study of the order. Berthelmy (1969) made additional comments on mating in *Leuctra*. The limited information available on individual North American species is given in the accounts that follow.

In at least some species, several matings can occur and several batches of eggs can be laid. This is probably a common occurrence, so that counts of single egg masses probably do not represent the full complement of eggs. Frankl and Whitehead (1928) state that 5 *Pelorodes microcephala* (= *mortoni*) laid 11 egg masses in 11 days, thus averaging 2.2 egg masses per female. Brinck (1949) found that *Dinecras cephalotes* extruded 3 successive masses of 600, 470, and 230 eggs. *Paragnetina immarginata* mates more than once, perhaps before each oviposition, and in *P. media* the egg mass is formed within 1 hour of copulation (Heiman and Knight, 1970). The number of egg masses varies between 2 and 4, the number of eggs decreasing with each successive mass (Smith, 1913). *Pteronarcys proteus* will mate between successive ovipositions but this is not necessary in order to deposit the full number of eggs. Again, successive egg masses decrease in size with time, for example, 386, 134, 88, 25, 45 eggs per mass (Miller, 1939). All of the above species are Setipalpia but Khoo (1968b) found that *Hydropsyche reticulata* also laid up to 1,500 eggs in 4 batches with 8 to 11 days between successive batches. However, *Caphnia bifrons* deposits only a single group of eggs, generally 300-400 but with a range of 110-713 (Khoo, 1969), and *Allocrea elegans* also lays but a single batch (Coleman and Hynes, 1970).

To deposit the eggs, females either crawl to the edge of the water (and sometimes into the water), or run across the water, or fly across it, dipping the tip of the abdomen. The exact method apparently depends on species and circumstances.

When the egg mass is deposited in the water, the gelatinous coating surrounding each egg swells and the eggs separate and fall free. Upon reaching the substrate, each egg becomes glued to the surface. Setipalpian eggs are variable in shape and resorption but generally possess a collar at one end. (Apparent exceptions are found in several *Allocrea*, according to Knight and his co-workers, 1965a, b). This collar bears a circular white structure, the basal plate, which, upon contact with the substrate, sticks the egg in place. The sticky material of the basal plate is elastic, allowing the eggs to return to position when displaced. In some Setipalpia, there are additional adhesive knobs on the gelatinous covering of the egg, or the eggs bear hooked filaments (*Perleta plebeia*). Filipalpian eggs are round or oval, without a collar or anchor plate. These eggs are attached to the substrata by the gelatinous coating that swells and becomes sticky when wetted. In those few species whose embryos develop while the egg is still
in the female, there is no sticky material on the eggs but these larvae hatch as soon as the eggs are deposited in the water (Percival and Whitehead, 1928; Miller, 1939; Brinck, 1949; Berthelot, 1964; Knight, Nebeker, and Gaulin, 1965a, b; Stewart, Ammar, and Solon, 1969).

INCUBATION OF EGGS AND LARVAL DEVELOPMENT

The period from oviposition to the hatching of the egg varies greatly, from a few minutes for the European Cepnia bifrons to 10 months in Pteronarcys protensis and Diura bicudata. Disania cephalotes spends up to a year in the egg stage (Ulfstrand, 1908). In the laboratory under cold temperatures, eggs of Brachyptera rivi can have an incubation period of as long as 14 months (Kuo, 1968c). In nature, the range of most species is apparently from 3 weeks to a month, with some species needing up to 3 months (Percival, 1929; Percival and Whitehead, 1928; Nelson, 1934; Hyne, 1941; Brinck, 1949; Komatsu, 1971).

Our knowledge of diapause (a period of arrested development) in the egg or larval stage comes in part from Miller (1939) but more particularly from the interesting work of Kuo (1964, 1965a, b, c). Not all stoneflies have diapause; studies show that at least 2 Lontra species, 1 species of Tarmopteryx, and 1 Nemoura species do not.

Diapause in the Pteronarcys protensis egg is initiated by freezing temperatures in the fall and is broken by warmer temperatures in the spring. No photoperiodic phenomenon is involved, for if the eggs are kept warm, they develop normally, and hatching occurs in December. In nature, egg diapause occurs from November to April. Cepnia bifrons diapauses in the larval stage. It hatches from the egg immediately following oviposition in the spring, develops to the 4th or 5th instar and then, following higher temperatures and lengthening days, enters diapause. Disapause ends in the fall and larval growth resumes. Diapause is broken by low temperatures. Brachyptera rivi also diaposes over the summer but in the early stage, just after formation of the germ disk. In contrast to C. bifrons, diapause was lengthened by low temperatures. Different environmental conditions affecting the egg did not initiate and break diapause, so probably diapause is initiated in the mother, as it is in some other insects. Disapause in Diura bicudata is genetically determined in part. In two different populations, one laid diapause eggs and one did not. Disapause occurred in the egg stage just before the revolution of the embryo and lasted 4 to 4 1/2 months over the summer, until broken by chilling in the fall. Nondiapause eggs had a 3-month incubation period and the insect a 1-year life cycle, whereas diapause eggs had a 9- to 11-month incubation period and the insect a 2-year life cycle.

Of the 4 stoneflies known to diapause that have been carefully studied, 3 diapause in the egg stage (although at different periods of embryonic life), 1 as a larva; 3 diapause in the summer, 1 over the winter; 2 have diapause initiated in the egg stage, 1 in the larval, and 1 apparently in the adult mother; 2 have diapause broken by cooler temperatures, 1 by warmer, and for 1 the temperature effect is unknown.

In Plecoptera, larval diapause is possibly of wider occurrence than realized. Various North American species emerge from the egg in the spring.
but exhibit little or no growth until fall. Others, such as _Perleta flavida_, do not appear to have a synchronized emergence period and perhaps do not diapause. Harper and Hynes (1970) found diapausing larvae of several winter stoneflies in the genera _Pterygodiscus_, _Brachyptera_, _Allocapnia_, and _Capnia_ but not in _Paracapnia_.

In the latter part of embryonic life, the hypodermis secretes an embryonic cuticle about the body. On the head, this cuticle is formed into a conical hollow egg-tooth. At hatching, the egg-tooth presses against a pre-existing rupture line, causing the shell to split. In the _Seitigalpia_, this rupture line separates a cap from the rest of the egg, whereas in the _Filagalia_ it is a longitudinal division. The embryonic cuticle and egg-tooth are usually left in the empty egg shell when the 1st instar larva emerges (Miller, 1939, 1940; DeGrange, 1957).

The number of larval instars has been investigated in only a few species. _Capnia bifrons_ has 14 to 15 in the male, 15 to 16 in the female (Kho, 1968a); _Nemoura vallicolaria_ has 22 (Wa, 1923); _Amphinemura decemcorta_ has 24 (Kon, 1971); _Perla brunneivestitana_ has 23 (Sámal, 1923); _Pteronarcys proteus_ has 12 in the male and 13 in the female (Holdsworth, 1941b).

Larval development occurs at a variable rate, depending on species. Brinck (1949) has divided the stoneflies into various growth classes—
a) rapid growth in late summer or early fall and again in late spring but little or no growth through the winter, b) greatest growth in fall and early winter, with adult emergence in late winter, c) steady growth throughout the year, somewhat retarded in the coldest part of the winter, d) even growth throughout the year, and e) most growth occurring in the warm weather of late spring and early summer.

There is a relationship between temperature and light that regulates larval growth. The influence of each depends somewhat on the species. Hirvenoja (1960) found that the uniform temperature of a spring in Finland apparently disrupts the normal growth pattern of _Nemoura pictetii_, so that adults and larvae of all ages could be taken simultaneously. This is in contrast to _Nemoura conon_ (Hirvenoja, 1959) and _Brachyptera risi_, _Leuctra hippopus_, and _Nemoura pictetii_ in Denmark (Thorup, 1963) whose growth rates were not correlated with temperature; they grew at seasonally regulated rates throughout the year, even though found in the uniform water temperature of a spring. Thorup suggested that this variable growth rate may reflect the degree of plant growth or the presence of detritus from decomposing leaves in the fall. It is also possible that there may be a direct effect of photoperiod on the insect itself. I have collected adults of _Nemoura depressa_ in all months of the year at a single location in California.

In northern Sweden there is a cessation of larval growth in the winter but in a less rigorous climate, winter temperatures play a less decisive part in the growth pattern and speed of growth may vary from one year to another (Svensson, 1966).

ECOLOGY, BEHAVIOR, AND LOCAL DISTRIBUTION

The presence or absence of a stonefly in a stream can be the result of a
multitude of interacting factors. For example, cold water may slow metabolism but it also holds more oxygen. The movement of the water and the character of the stream substrate affect aeration, insect drift, collection of detritus, and plant composition. These, in turn, feed back to the patterns of water movement and available oxygen. For general reviews of these factors on stream organisms, one may consult Macan (1961, 1963) or Hynes (1970). Although much of the information on other aquatic insect orders is applicable to stoneflies, in the discussions below I will include only those studies that were concerned specifically with the Plecoptera.

In more temperate areas, winter does not seem to be a time of exceptional danger to stoneflies. Some damage to plecopteran populations comes from anchor ice, both physical damage to the insect itself and from damage lifting the benthic Plecoptera into the stream where fish can feed on them. Brown, Clothier, and Alvord (1953) found Plecoptera even in areas where anchor ice formed several times a season, and Benson (1955) found a few Plecoptera in floating anchor ice. As long as any free water remained on the bottom, the insects could survive. Further north, winter temperatures are more crucial. Clifford (1969) determined that larval Nemoura cinerea suffered very heavy mortality when a dry autumn allowed the reduced amount of water to be frozen down into the substrate. A severe winter considerably reduced the numbers of Perlodes and Nemoura in England but left other species little affected (Elliott, 1969b). Pattee (1959) discovered that the larvae of Perlodes abdominalis became acclimated to the lowering temperatures and that small specimens consumed even more oxygen in February than in September and October. Kamler (1969), working in Poland, found Plecoptera more abundant in the cooler streams, and that even in the warmer streams they were more likely to be found in the cooler parts.

Needham and Uttinger (1956), in sampling the organisms, water velocity, and depth across a stream, found that Alloperla and Isoperla were collected in inverse ratio to the depth and speed of the water. The velocity ranged up to about 3 ft/sec but these stoneflies were most common at velocities of 1-2.5 ft/sec. The presence of Isogenus bore no relationship to water speed or depth.

However, the speed of the water measured at the surface does not necessarily reflect the velocity at the spot occupied by an insect, and close to the substrate there may be relatively little current. The insect responds to the stream velocity of its microhabitat. The European Brachyptera rufa is found on the upper parts of stones in the current but in slack water will swim or hang from the water surface. Individuals do not necessarily face directly upstream but, rather, orient to the flow of the water over the substrate. As the current increases, they maintain position but press their bodies more closely to the surface (Madsen, 1969). Moreover, the velocity and pattern of the current also regulate the deposition of sediment and detritus. Egglishaw (1964, 1969) studied the relationship between detritus and several stonefly species and found that, for species of Nemoura, Leuctra, Isoperla, Chlooperla, and Perlodes, an increase in detritus means an increase in the number of stoneflies. Presumably the insects were aggregating for food rather than as a direct response to the current. Too
much deposition of matter is, of course, detrimental and Plecoptera disappear, to be replaced by chironomids when inorganic sedimentation becomes too heavy (Cordone and Kelley, 1961).

Many stoneflies feed on allochthonous detritus, derived from plant material falling into the stream, rather than on living plant growth within the stream (Mindall, 1967). Consequently, the stream cover probably regulates the species of stonefly to be found in a stream, but this effect has never been closely examined. *Pteronarcys dorsata* was not found in a stream below a productive lake rich in nutrients but was common in the stream above the lake (Cushing, 1963), even though there was more food available in the former location. Likewise, *Aeroneuria thomasi* was found only in riffles above geyser basins in Yellowstone, not below, although other stoneflies were not affected by the ion concentration and higher temperature (Vincent, 1967). Whether these differences are due to the availability of certain food or whether the insects are directly affected by the quality of the water is not known. Larval *Pteronarcys californica* can regulate its internal salt balance from the surrounding water, even without access to food (Colby, 1970). However, stonefly populations can be related to general ecological conditions within streams (Markle, 1954; Gault, 1959). Polluted streams have shown that some stoneflies are quite resistant to certain chemical changes in their environment, whereas such changes cause other Plecoptera to disappear quickly. *Chironomus trifurcatus* was found in a stream with a heavy zinc concentration (Jones, 1938) and nemourids and capniids common in acidic waters (Mathes, 1966; Oehl, 1962). Bell and Nebeker (1969) give the median lethal pH level for several species of stonefly in the laboratory, with the most hardy reaching a pH of about 3. Gault and Herri (1971) and Nebeker (1971) give information on the tolerance of various stoneflies to heated water, with the most sensitive dying at 36°C. However, even at temperatures that permitted larval survival, there was an adverse effect on adult emergence.

The amount of available oxygen is related both to water temperature and current speed. *Brachyptera rii* is found on top of stones, where there is a high oxygen content in the water, whereas *Nemoura flexuosa* is found beneath the stones, where the oxygen content is low. Although oxygen is available within leaf packets, *B. rii* remains on the surface of the packet. This probably reflects the greater current speed at the surface. The water current brings fresh oxygenated water to the insect, while the animal has exhausted the oxygen immediately adjacent to its body. *B. rii* dies sooner than *N. flexuosa* under conditions of declining oxygen unless the water is agitated (Madsen, 1968). There are day-night differences in oxygen consumption in some species, with oxygen uptake greater in the dark (Zelazno and Enge, 1971).

The variation in oxygen consumption between individual larval specimens is very great—various workers have reported results that vary by many hundredfold.

Olson and Rueger (1968) determined that, unlike other aquatic insects, larger specimens of the stoneflies *Pteronarcys picteti* and *Pantopsides media* have higher oxygen-consumption rates than do smaller individuals.
of these species. That is, large specimens consume more oxygen per mg of body weight than do small ones. By contrast, *Pteronarcys californica* and *Aronarvia pacifica* fit the usual pattern of greater oxygen consumption by smaller individuals (Knight and Gauthin, 1966b). This is an unsolved discrepancy. However, the relationship of size to oxygen consumption is possibly correlated with body surface rather than with weight (Istenič, 1963).

Patté (1935), working with *Perla abdominalis*, found that the oxygen consumption of larvae shifted sharply with a change in temperature; greater consumption with a rise in temperature, less consumption with a decrease.

As the larvae became accustomed to the new temperature, the difference in oxygen consumption lessened; that is, a sudden rise in temperature caused a great increase in oxygen consumption that later was somewhat moderated.

In response to respiratory distress, stoneflies often make rapid up-and-down body movements by flexing the legs, so that they appear to be doing "sipples." Presumably this is to increase the amount of oxygen-bearing water in contact with the gills. As the water immediately adjacent to the larva becomes deficient in oxygen, this movement creates currents and also moves the position of the gills in the water.

Using the number of movements per minute as an indication of respiratory demand, one can compare the relationship between the concentration of dissolved oxygen, the velocity, and the temperature of the water. *Aronarvia pacifica* was observed to begin these "sipples" sooner and at a faster rate the higher the temperature and the lower the water velocity. These involuntary movements increased as the oxygen concentration dropped, until the insect could no longer increase the rate of movement to compensate for the oxygen lack in the water. There was then a sharply decreasing amount of movement until death occurred. Stonely larvae with gills can apparently stand lower oxygen concentrations than can those without gills (Knight and Gauthin, 1963, 1966a). Kamler (1970) likewise found respiratory movements in *Perlae intricata* greater with higher temperatures and lower oxygen.

Both *Aronarvia pacifica* and *Pteronarcys californica* can survive lower dissolved-oxygen concentrations better at lower temperatures, probably because of reduced metabolism, but *A. pacifica* is killed at water temperatures above 60°F, even when oxygen is abundant (Gauthin and Gauthin, 1961; Knight and Gauthin, 1964).

Possibly there are more subtle effects than oxygen starvation alone. At low levels of oxygen, *P. californica* is unable to regulate body fluid volume and becomes distended. Even if removed to oxygen-rich water, it is apparently unable to rid itself of this excess fluid and dies, although, if the fluid is removed with a hypodermic syringe, normal life resumes (Knight and Gauthin, 1964).

For stoneflies, therefore, there is an intimate relationship between water velocity, oxygen content, and temperature. The papers of Knight and the Gauthins cited above should be consulted for the exact figures on these
parameters for the survival of the two stonefly species which they studied.

Several studies have correlated species or species groups of immature stoneflies with various types of streams. It appears that there are additional factors that help to regulate the kind and number of stoneflies in a stream. Ulfsbärd (1967) studied the distribution of larval plecoptera within a stream, correlating the effects of stream depth, current, and substrate. *Diura marzki* was found in areas of strong current and bare rock, whereas other stoneflies were found in areas of less current and more sediment and detritus. Ulfsbärd concluded that distribution within the stream is related more closely to food than to any other factor; a conclusion with which Egglishaw (1964, 1969) concurred.

Water temperature determines the emergence of adult stoneflies and altitudinal differences in adult-emergence time probably only reflect temperature differences (Sprules, 1947; Gledhill, 1960; A. W. Knipp in Scott, 1961; Nebecker, 1971b; Radford and Hartland-Rowe, 1971b). The emergence time of any one species becomes progressively later as the altitude increases and there is also a shift in species toward the more productive forms (Knight and Gauvin, 1966c). It has not been determined whether the water must reach a certain critical temperature for adults to emerge or if emergence time is determined by a summation of accumulated heat (Radford and Hartland-Rowe, 1971a). There is possibly an interaction of photoperiod and temperature that determines maturation and size. Khoo (1964) found that photoperiod initiates adult development whereas cold temperatures restrict growth, causing the formation of adult characters within the larval skin. However, Nebecker and Gauvin (1967) stated that wing brachyptery is genetically determined, rather than a response to lengthening days and cool temperatures.

Emergence usually occurs at the time of day when humidity is highest (Brinck, 1949) or perhaps when water temperature is lowest and oxygen tension highest (Radford and Hartland-Rowe, 1971a), although I have observed Paracapnia emerging at midday. Cloudy related species are usually temporally isolated when emerging from the same stream. Although closely related species may emerge at the same time from two separate streams, if they are together in the same stream one species will usually emerge several days ahead of the other. Males emerge first (Sheldon and Jewett, 1967), although there may be exceptions in some stoneflies with extended emergence periods (Harper and Pilon, 1970).

The effects of light on stoneflies have been little examined. Light traps in Connecticut have caught some adult periods, particularly *Perlodes placida*. Other stoneflies (principally Lestra) were caught in a light trap only occasionally and singly. In Africa, *Neosperla sp* adults emerge year round, a mercury-vapor light trap made peak catches of this stonefly from 30 to 90 minutes after sunset (Tyndall, 1961). The larval European *Dimorera cephalotes* is photonegative (Scheer, 1962).

Larval stoneflies are commonly collected in insect drift in streams. The considerable information on this subject has been summarized by Elliott (1960a, b). Plecoptera are more active at night and are, therefore, most commonly found in the drift at night. This stonefly activity is correlated
with changes in light rather than with other factors (Elliott, 1967a; Chasten, 1969). Although stoneflies in drift have been described as re-attaching themselves to the substrate within a short time, there is one bit of evidence indicating that this is not always so. The trematode Cephaloaferina dichopt odom has as its first intermediate host a snail that is not found below 2,000 ft altitude. The second intermediate host is the stonefly Acroneuria californica. Cysts of C. dichopt odom have been found in A. californica as far down the watershed as 200 ft above sea level (Anderson, Martin, and Pratt, 1966). As the stonefly could have obtained these cysts only at the higher elevations, at least some larval stoneflies are carried longer distances downstream than previously thought.

In addition to downstream drift, both adults and larvae can move upstream. Both sexes fly with the wind (Elliott, 1967a) and so, if the wind is right, presumably can go considerable distances and populate denuded areas upstream. Thomas (1966) reported that adult Copesia atra emerging from a stream moved preferentially toward a nearby forest. Once inside the bordering woods, they walked upstream. If no woods were visible as the stoneflies emerged, the insects tended to move upstream immediately. Adult Allocapnia typhosa moved directly away at a right angle from the stream but were not seen to turn upstream (Coleman and Hynes, 1970).

Although the larvae of many arthropods have been recorded moving upstream, there is little information on Plecoptera. Hultin and his co-workers (1969) found larval Nemoura flexuosa, and Bishop and Hynes (1969) found larval Allocapnia typhosa moving upstream in mid-winter.

ECONOMIC IMPORTANCE

Stoneflies are of little direct importance to man. In the Pacific Northwest, Brachyptera pacifica has been reported as a minor pest in orchards (Newcomer, 1918, 1950) and on ornamental plants (Schuh and Mote, 1948). The adults feed on the foliage, buds, and fruit, and are most injurious to apricots, peaches, and plums. Kawai (1967) stated that Japanese workers have found the closely related Rhhabdiosperma nihon as an occasional pest on soft fruits in Japan. Tsuchii and Suzuki (1957) found larval netnurids causing damage by feeding on the underwater parts of the edible Wasabi plant.

Winter Allocapnia stoneflies, upon adult emergence, commonly crawl up any vertical surface. If large numbers emerge, they sometimes cause annoyance to nearby residents. In the spring of 1967, a school in Connecticut sought to control adult Allocapnia that were crawling up the building and into the classrooms. In Pennsylvania, Allocapnia recta was reported crawling into a milkhouse and contaminating milk cans and other equipment (Allon, 1963).

Acroneuria pacifica is the alternate host to at least one internal fluke of birds (Macy and Bell, 1968). Hall and Groves (1963) found that 7 out of 9 species of cercariae in a species of river snail entered Plecoptera.

A. pacifica has also been observed attacking and killing eggs and small alevins of the steelhead or rainbow trout, *Salmo gairdneri* (Clare and
Phillips, 1968). Nicola (1968) however, found that larvae of *Allopoera* sp. are beneficial in one way: they scavenge dead salmon eggs, thereby preventing the spread of fungus to living eggs.

Indirectly, stoneflies are probably of greatest economic importance as a natural fish food and as biological indicators of unpolluted waters. Generally, fish feed on stoneflies in the proportion in which they are available, relative to other foods. A decrease in stonefly availability merely causes the fish to shift to other prey. Stoneflies are usually indicative of clean water and, in conjunction with other aquatic organisms, have been used as a measure of water purity. Hynes (1960) summarizes much of the work on this subject. Gauthin (1958) lists those stoneflies found in the zone of clean water and those in the zone of degradation. None was found in grossly polluted waters.

In addition to the above references, an interesting and more extended discussion on the practical importance of stoneflies is given by Winkler (1964).

EFFECTS OF INSECTICIDES AND POLLUTION

Like many other aquatic insects, stoneflies are quite sensitive to insecticides. These chemicals are usually applied to control forest defoliators and reach streams only incidentally. The effects of stoneflies of such spraying were summarized by Hitchcock (1965). More recent studies are by Ide (1967) and Sprague (1958). Laboratory studies defining more exact levels of stonefly mortality were made by Hitchcock (1965) and by Jensen and Gauthin (1964, 1966).

Resistance to insecticides varies by species and, unfortunately, most North American stoneflies cannot be identified in the immature stages. However, some stoneflies are quite resistant to certain chemicals (Jones, 1958) and possibly there are also considerable differences in resistance to insecticides. Certain species, such as larval *Peltoperla maria*, recover from insecticidal treatment but show a reduced adult emergence (Hitchcock, 1965). No resistance has yet been acquired by field populations following 7 successive years of spraying (Sprague, 1958).

Most of the larger streams in Connecticut have suffered from varying degrees of pollution. Some, such as the Naugatuck River, are devoid of stoneflies. Although pollution and land use undoubtedly affect the distribution and movement of stoneflies, this has never been examined in detail.

DISTRIBUTION IN CONNECTICUT

Because most Plecoptera are poor fliers and restricted to water courses, they are good subjects for zoogeographical studies. Several faunal movements of stoneflies in eastern North America have been postulated (Ricker, 1964; Ross, 1965; Ricker, Maloquin, Harper, and Ross, 1968; Ross and Ricker, 1971). Most of these apply only indirectly to New England.

The present distribution of stoneflies in Connecticut is of recent origin, dating back to the last glaciation of 15,000 to 20,000 years ago. Consequently, our population is somewhat depauperate compared to those of the
Appalachians and Cumberlands to the south, which remained ice free. Pre-glacial stoneflies were forced southward by the advancing ice and only the more active species were able to return after its retreat.

To re-enter this area, stoneflies needed to find a suitable habitat and a means of access. Unfortunately, little is known of the absolute requirements of stoneflies, particularly for food. Probably the plant cover that contributes dead leaves to a stream determines in part what Plecoptera are found there. This aspect of stonefly distribution has yet to be examined.

According to Davis (1965, 1969), there probably was tundra vegetation in Connecticut 12,000 to 14,000 years ago. At 12,000 B.P. (years before the present) there was a gradual increase of woodland, with a sharp rise at 9,000 B.P. These woodlands consisted of white pine and other trees now typical of the forests of the northern Great Lakes region. At 8,000 B.P., with a warmer, drier climate, deciduous trees became more common. Subsequently, beech (6,500 B.P.), hickory (5,500 B.P.), and chestnut (2,000 B.P.) appeared.

A large number of stonefly species that are not found in Connecticut or other parts of New England have penetrated from unglaciated regions into the Great Lakes area, New York state, and the St. Lawrence River plain to the Maritimes (Hitchcock, 1968; Ricker, Malcolm, Harper, and Ross, 1968; Ross and Ricker, 1971). A barrier running along the Hudson River-Lake Champlain line apparently denied them access to New England. The lower Hudson Valley was an estuary of the sea 12,000 B.P. and, as recently as 4,000 B.P. and perhaps even later, was saline enough to support oysters (Newman and his co-workers, 1969). This condition would be fatal to any stoneflies that tried to establish themselves there or that were carried downstream into this brackish water. To the north there were several post-glacial lakes that interrupted eastward movement. The present-day Hudson River drains only a narrow strip of land on its eastern boundary, providing only limited access to aquatic insects moving eastward. Its small eastern drainage basin and its general southward flow contrast sharply with those of its principal tributary, the Mohawk River, to the west. That river aids east-west movement of stoneflies and its numerous tributaries help north-south movement. North of the Hudson River, Lake Champlain and the relatively high Adirondacks prevent eastward stonefly movement.

Within Connecticut there are 9 principal drainage basins, of which only 3 (Housatonic, Connecticut, Thames) extend over any considerable area (Flint, 1930). Because all these streams debouch into saline Long Island Sound, it would be difficult for a species to move from the mouth of one stream to the mouth of another along the coast, as may have occurred along the tributaries of the Mississippi River (Ross and Ricker, 1971). However, since the tributary headwaters of the various streams are in close proximity, there seems no reason why east-west movement should not take place there.

The topography of Connecticut is divided generally into Eastern and Western Uplands and a Central Lowland. Few stoneflies appear to be restricted to any one of these areas. Allocapnia zohi and Capnia manitoba are restricted to the Western Upland in small brooks in Hartland and Goshen, respectively. The former
species occurs on the Cumberland Plateau with outlying populations in previously glaciated areas in Connecticut and New Brunswick. This distribution is difficult to explain unless there are other undiscovered populations in limited areas of New England. *C. manitoba* is found in Canada from Manitoba eastward, with collections also from various parts of New England (Hanson and Hitchcock, 1961). As all its closest relatives are western and its distribution unique, it seems clear that it must be a recent immigrant from western Canada, with Connecticut representing its southernmost extension.

Brockptera glacialis has been collected only in the Eastern Uplands. Enough collections have been made to show that it is not a collecting artifact. There is no apparent reason why this species should not also be present in western Connecticut.

Species that are found in both the Eastern and Western Uplands but not in the Central Lowlands or along the coast are: *Allocapnia minima, Brockptera pacifica, Allocapnia imbecilla* and *Neoperla clavata*. With the exception of the last named, these are either northern or mountainous species.

Presumably the first stonfly colonizers in Connecticut were those species that can survive near-tundra conditions and/or are now found only to the north of us. These would probably not include such northern species as *Chiasia sabulosa* or *Capnia verrucalis*, which have western affinities, or immediate relatives to the south, and have probably only recently extended their range eastward. More likely candidates are *Arcypteryx compacta* and *Diura nana*. These presumed Pilgrim Fathers of the Connecticut stonflies are northern Holarctic species and were pushed southward ahead of the advancing glaciation, then retreated with the melting ice sheet, to be eventually trapped as isolated populations near or above timberline in the White Mountains of New Hampshire, probably at about the time of the Valderson glaciation some 10,000 years ago. Because of long distributional gaps, it is extremely unlikely that they could have attained the peaks of the White Mountains from a northern population after the disappearance of the ice sheet from northern Canada. *Allocapnia minima* occurs over most of the previously glaciated area of North America. It perhaps survived the Wisconsin ice sheet in an unglaciated part of Newfoundland (Ross and Ricker, 1971; Ross, Rotanel, Martin, and McAlpine, 1967), then moved down the East Coast.

From 12,000 years ago, the gradual increase of woodland and the amelioration of climate allowed stonflies that had survived glaciation south of the ice to move north again. The Great Lakes watershed alternately drained to the west and south or to the east, depending on the advance or retreat of lesser glacial ice sheets in the colder Middletown (13,000 B.P.), the warm Two Creek (11,500 B.P.), the colder Valders (10,500 B.P.) stages, and the warm thermal maximum of the Manistee (5,000 B.P.). Dependent on the glaciation to the north, western New York was drained either eastward through the Hudson or northward to the St. Lawrence (Flint, 1933, 1936, 1927). These changes in streamflow and drainage basins provided ample opportunity for stonflies to move from the area of the present Ohio River drainage into the Great Lakes drainage. Although the St. Lawrence plain was covered by intrusions of the sea, when land emerged, the stonflies
could easily follow the St. Lawrence downstream to the Maritimes, although this movement must be of relatively recent date.

Movement directly eastward past the Hudson River and its succession of glacial lakes was more difficult and only some species extended their range into southern New England. Presumably some of the less active species should also be found in the lower (northern) Lake Champlain Valley, an area that has never been searched thoroughly for stoneflies. There are some indications that as these species reached the Maritimes, their range extended southward along the coast. Perhaps, over a long period of time, they will reach southern New England, if their way is not blocked by greatly polluted streams.

From 8,000 to 2,000 years ago, the woodlands of Connecticut assumed approximately their present composition, with a decline of conifers and an increase in deciduous trees. There was probably a continuing trickle of new species from the Appalachian hardwood forests.

There thus appear to be four main elements of the stonefly population in Connecticut: 1) Species that could survive near-tundra conditions and were probably the first colonizers following glacial retreat. Those that were sufficiently adaptable remained as the climate warmed. Example: Allocapnia terebralis. 2) Midwestern species that are typical of the Great Lakes region and the St. Lawrence River plain. Several species have penetrated the Hudson River barrier. Example: Lestra ferruginea. 3) Appalachian species that moved northward as deciduous trees increased in this area. Example: Peltoperla maria. 4) Species from western North America that moved across Canada following final retreat of the Wisconsin glaciation and then moved southward into New England. These are the most recent invaders of only a few thousand years ago. Example: Capnia manitoba.

COLLECTING

Immature stoneflies in the eastern United States usually live in running water and can be captured by stirring rocks with the feet or hands and letting the insects drift on to a screen held a few feet downstream. Moss and bunches of dead leaves should also be removed from the water and carefully examined for stoneflies in a water-filled white pan or taken back to the laboratory for examination. Seepage areas, small trickles, and intermittent streams should not be neglected when collecting. Cast skins may be found on bridges or rocks over streams.

Adults are usually collected by sweeping the vegetation near streams or by examining bridges, posts, and tree trunks near running water. Some adults may be found hiding under rocks on shore, although turning over rocks is a tedious and often unproductive way to collect. The winter forms (Allocapnia, Teneiopyrgus, Brachyptera) can be collected in numbers where they have come out of the water and crawled up on bridges and highway posts. Some species come readily to light traps (Perlesta, Acroceridae). Occasionally, good collecting may be had by netting adults as they fly over the stream. A Malaise trap over a stream will capture some specimens.

Whenever possible, late instar larvae should be reared in order to associate them with known adults. All instars may be preserved in 80 per-
cent alcohol. With large specimens, it is usual to change the liquid in a week or two, as the body contents of the insect will dilute the alcohol.

GLOSSARY OF DESCRIPTIVE TERMS

This Glossary is not exhaustive and the definitions are applicable only to stoneflies. Some of them may make purists cringe. Nevertheless, it is hoped that the glossary will make the keys and biological discussions intelligible to those who have not previously studied entomology.

A: anal vein.
abdome: the penis or intromittent organ.
al cell: an area between two longitudinal anal veins that is delineated by cross-veins.
al vein: (A): longitudinal vein in the posterior area of the wing (fig. 6).
anterior: toward the forward part.
anterolateral: the front corner.
aptic: the segment farthest from the base to which the series of segments is attached; the last segment.
apically: at the extremity.
apophysisal pit: the external pit (or pits) on the thorax that marks a cuticular ingrowth.
neprous: without wings.
basal lobe: a rounded lobe found on the 7th, 8th, or 9th sternite of some species.
basal processes: accessory sclerotic structures at the base of the epipodite.
basisternum (bs): the largest thoracic sternite (figs. 10, 12).
beadhypygium: with short, abbreviated wings.
bs: basisternum.
C: costa.
cerina: a ridge or low keel.
cc: cecus.
cell: wing area bounded on all sides by veins.
cephalad: toward the head.
cerecom (pl. cercom) (cc): terminal paired appendages at the posterior extremity of the abdomen (fig. 9).
cervix (adj. cervical): the neck, the area between head and thorax.
clypeus: the most anterior part of the head, to which the labrum is attached.
coad: a transverse line in the wings, made of crossveins and bases of main veins, generally running from the apex of the subcosta to the cubitus.
coast (C): the anterior vein of the wing (fig. 6).
coxal: the basal segment that connects the leg to the body.
crossvein: a short vein connecting two longitudinal veins.
Cts: clypeus.
ct-s: a crossvein connecting the clypeus with the 1st anal vein.
cubitus (Ct): the longitudinal wing veins lying between the media and the anal veins (fig. 6).
cusp: a pointed process resembling a sharp tooth.
cuticle: the outermost layer of the integument.
detritus: very small pieces of organic matter derived from larger pieces by mechanical or bacterial action.
dispause: a state of arrested development, usually initiated by temperature or light.
distal: farthest from the center of the body.
edcysal line: the Y-shaped line on the head, marking where the cuticle splits at time of molting.
egg-tooth: a projecting point on the head used by the viviparous insect to break the egg shell at hatching.
ep: epigaster
epiproct (ep): a raised (generally), unpaired, sclerotic structure attached to the 10th tergite of the male and used in mating.
eversible: able to be turned inside out.
femur (pl. femora): the large basal segment of the leg, connected to the thorax by the coxa.
f: furcasternum.
furcal pit: apophysical pit.
furcasternum (fo): a sclerotized thoracic plate posterior to the basisternum (figs. 10, 12).

Figures 1-9

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = anal vein</td>
<td>la = labium</td>
</tr>
<tr>
<td>C = costa</td>
<td>lo = lateral ocellus</td>
</tr>
<tr>
<td>ce = cercus</td>
<td>M = media</td>
</tr>
<tr>
<td>Cu = cubitus</td>
<td>mo = median ocellus</td>
</tr>
<tr>
<td>el = edcysal line</td>
<td>o = occipital region</td>
</tr>
<tr>
<td>ep = epiproct</td>
<td>or = ocellar ridge</td>
</tr>
<tr>
<td>g = glossa</td>
<td>ot = ocellar triangle</td>
</tr>
<tr>
<td>gs = gales</td>
<td>p = palpus</td>
</tr>
<tr>
<td>h = hammer</td>
<td>pg = paraglossa</td>
</tr>
<tr>
<td>l = labrum</td>
<td>pl = posterior lobe</td>
</tr>
<tr>
<td>my = preaprostact</td>
<td>R = radius</td>
</tr>
<tr>
<td>Rs = radial sector</td>
<td>s = stylet or basal process</td>
</tr>
<tr>
<td>Sc = subcosta</td>
<td>sg = submental gill</td>
</tr>
<tr>
<td>ss = sternum</td>
<td>t = titillator</td>
</tr>
<tr>
<td>v = vesicle or basal lobe</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Head of larval Parastichia media.
Fig. 2. Mandible of larval Isogenia subvittata.
Fig. 3. Mandible of larval Nemoura sp.
Fig. 4. Maxilla of larval Isogenia subvittata.
Fig. 5. Labium of larval Isogenia subvittata.
Fig. 6. Forewing and hindwing of Pachycentrus longus.
Fig. 7. Unknown larvae from Gale River, New Hampshire. The eyes are at a distance from the posterior margin of the head greater than their own length. The forewing pad (a) is parallel to the hindwing pad (b).
Fig. 8. Larval Nemoura sp. The eyes are "normal"; that is, they are at a distance from the posterior margin of the head less than their own length. The forewing pad (a) is divergent from the hindwing pad (b).
Fig. 9. Adult male guastella.
g: glosae.
g: galea.
galea (ga): a process on the maxillae (fig. 4).
ganglia: disc-like structures along the ventral nerve cord.
genital hook: a sclerotized process on the male terminalia used in mating; it can originate from the 10th tergite or from a paraprostom.
gills: a feathery protuberance, either single or branched, serving as a respiratory organ.
glossa (g): the paired inner lobes of the labium (fig. 5).
glabrous: without hairs.
h: hammer.
hammer (h): a raised tubercle on the posterior margin of the 9th sternite of Acrosura (fig. 9).
hemigentral lobe: either segment of the 1st 10th tergite of the male.
Holarctic: pertaining to the northern hemisphere.
hypodermis: the cellular layer of the integument that secretes the cuticle.
hypopharynx: the "tongue."
image: the adult insect.
inclined: cut or narrowly notched.
instar: the form of the insect between each moult.
intercostal: crossveins running between the costal veins.
intersegmental membrane: thin flexible tissue connecting the sclerites of the body segments.
l: labium.
lar: labium.
labium (labi): the lower "lip" (fig. 3).
labrum (lab): the upper "lip" (fig. 1).
lacina (la): the inner projecting process of the maxilla (fig. 4).
larva: an immature insect.
lateral: pertaining to the side.
M: media.
MA vein: anterior media.
macropterous: with normal-size wings.
mandibles: the 1st pair of jaws (figs. 2, 3).
maxilla: the 2nd pair of jaws (fig. 4).
media (M): longitudinal wing vein situated between the radial sector and cubitus (fig. 6).
median: middle.
mentum: a sclerite on the labium that bears the distal processes.
median: on the median plane of the body.
mesal: along the median plane of the body.
meso: a prefix pertaining to the 2nd thoracic segment; for example, the meso- term is the dorsal surface of the 2nd thoracic segment.
meta: a prefix pertaining to the 3rd thoracic segment, for example, the meta- basisternum is the basisternum of the 3rd thoracic segment.
MF vein: posterior media.
Neartic: pertaining to North America and adjacent islands.
notum: dorsal surface.
occipital region: the posterior area of the head.
occipital ridge (or): a ridge or line of bristles running laterally across the head behind the eyes.
occular triangle: the area included within an imaginary line connecting all 3 ocelli (fig. 3).
ocellar: a simple eye located on the head between the compound eyes; stoneflies have either 2 or 3.
ocr: occipital ridge.
overiviparous: living young produced by the hatching of the egg within the mother's body.
p: patpns
palpus (pp): an antennalike process on the maxilla and labium (fig. 4, 5).
paragential plate: a paired sclerotized plate at the base of the epiproct.
paraglossa (pg): the paired outer lobes of the labium (fig. 5).
paraproct (pp): a pair of sclerotized lobes or plates located behind the 10th sternum (fig. 9); in some species they are curved forward as genital hooks or otherwise modified.
ph: postfurcasternum.
phg: paraglossa.
pheromone: a chemical released by one insect that modifies the behavior of another.
phytophagous: feeds on plant material.
posterior: toward the rear.
posterior lobe: a produced hemitergal lobe.
postfurcasternum (ph): a sclerotized thoracic plate posterior to the furcasternum (figs. 10, 12).
pp: paraproct.
pro: a prefix pertaining to the 1st thoracic segment, for instance, a proleg is a leg on the 1st thoracic segment.
proximal: closes to the center of the body.
prothoracic stripe: a longitudinal colored mark on the prothorax.
prosternum: a thickened and/or darkened spot on costal margin of the wing.
R: radius.
rm: a crossvein between the radius and media.
radial sector (Rs): a longitudinal wing vein branching from the radius (fig. 6).
radius (R): a longitudinal anterior wing vein (fig. 6).
residualization: a network of fine lines.
Rs: radial sector.
rugose: wrinkled, roughened.
s: stylets.
sc: subcosta.
sclenic: an area of the integument that is hardened and darkened.
sclerotized: hardened and darkened.
scolium: the posterior dorsal sclerite of the meso- and metanotum.
seta: still "hair."
setae: covered with setae.
sinuate: wavy.
spicula: terminal processes in Lecicta. If figure 9 were a Lecicta, pp would
be the sperillus and i the paraproct or stillator.

spermatophore: a capsule containing sperm.

spina sternum (ss): an intersegmental sclerite of the thoracic sternum (Figs. 19, 12)

ss: spina sternum.

stermite: a sclerite on the sternum.

sternum: ventral surface.

styles (s): accessory lateral processes at the base of the epiproct.

THORACIC STERNAE

Fig. 19. *Paloptera maria*, adult female

Fig. 20. *Phaengaphora capito*, adult female

Fig. 21. *Arctosa subnana*, adult female

Fig. 22. *Nemoura sp.*, larva

Fig. 23. *Pseudoceras sp.*, larva

Fig. 24. *Nemoura nigrilim*, adult
subgenital lobes: paraprocts.
subcosta (Sc): longitudinal vein just behind the leading edge of the wing (fig. 5).
subgenital plate: produced part of the female 7th or 8th sternite, covering the
genital opening.
stimulatory organ: a receptor in the tibia for perceiving vibrations of the leg.
submentum (sm): the basal sclerite of the labium (fig. 5).
supra-anal apparatus: the epiproct and associated structures.
t: titillator.
termin (adj., tarsal; pl. tarsi): the distal part of the leg, consisting of 3 segments and bearing the claws (figs. 25, 26, 27).
terminal: newly emerged adult, soft and light colored.
tergum: dorsal surface.
thorax (adj. thoracic): the middle section of the body, between the head and abdomen.
tibia: a segment of the leg connected proximally with the femur, distally with the tarsus.
titillator (t): a lateral pair of apical processes in Lecitri (fig. 9).
These probably represent the paraprocts (see discussion under Lecitridae).
tubercle: a small rounded projection.

Fig. 25. *Nemura nigrita*
Fig. 26. *Tenuigryxa maura*
Fig. 27. *Pelecoris maria*
MORPHOLOGY

The following account, identifying the anatomical parts used in the keys and discussed in the descriptions that follow, complements the preceding Glossary. More detailed information is given in recent studies of the external morphology of Capniidae (Hanson, 1946), Chloroperla, Isoperla, Perlho, Lencina, Nemora (Genchi, 1948, 1950; Wittig, 1955) and Pteronarcyia and Uplitera (Nelson and Hanson, 1960a,b). A comparative study of the thorax was made by Matsuda (1970), of the abdominal nervous system by Schmitt (1963) and Knox (1965), and of the blood by Arnold (1966). Summaries of the available information on genetics was given by Matthey and Aubert (1947) and White (1954); and on neurosecretions by Gabe (1966). Brück (1955) gave comparative details of the genitalia of various species.

The eyes (figs. 1, 8) are generally near the posterior margin of the head (in the keys which follow this is termed "normal") but in some species they are placed far forward (fig. 7). Most genera have 3 ocelli (fig. 1), 1 median and 2 lateral; a few have only the 2 lateral ones (fig. 10). An imaginary line connecting the 3 ocelli includes the "ocellar triangle." The eclytal line is Y shaped, with the stem extending from the back of the head forward,forking just posterior to the lateral ocelli (fig. 8). On some species there is a distinct occipital ridge (fig. 1) across the back of the head. It may bear short bristles or long setae. The occipital region is the posterior part of the head.

The mouthparts used in classification are the labrum, mandibles, maxillae, and labium. In adults that do not feed, the mouthparts are weak and un-sclerotized. The mandibles of the larvae may be sharply toothed (fig. 2) or have grinding surfaces (fig. 3), depending on the food habits of the insect. The appendages of the maxilla (fig. 4) are the 5-segmented palp, the galea, and the lacinia. The lacinia may be variously shaped, with 1 or 2 sharp teeth and a row or tuft of bristles. The labium (fig. 5) bears a segmented labial palpus of 3 segments. The distal area of the labium bears 2 pairs of labes, the outer paraglossae and the inner glossae. In the Perlidae these are approximately equal length but in the Setipalidae the glossae are much reduced, in some genera appearing only as small projections on the inner side of the paraglossa. Proximally there is a small mentum and beyond it a relatively large submentum.

The prothorax bears a pair of legs. The pronotum is unornamented but some species have a median longitudinal prothoracic stripe. (fig. 24K). The mesothorax bears a pair of legs and the forewings (fig. 10); the
metathorax another pair of legs and the hindwings. The mesonotum and metanotum can bear a U-shaped mark, a dark line outlining the scutellum (fig. 2A41). There can also be a median longitudinal dark line within the "U" mark. The largest thoracic sternum sclerite is the basisternum (fig. 10). This is preceded by the small presternum and followed by the furcasternum. The synasternum is a small elongate sclerite. The ferial pits or apophyseal pits are on each side of the furcasternum. On some Plecoptera these individual sclerites are not readily apparent. In some species, a transverse ridge runs between the ferial pits, and another ridge runs posteriorly from each pit. These join and run together, forming a Y-shaped ridge.

The femur and tibia of each leg bear various bristles and hairs that are of occasional value in taxonomy. The ratio of length of the various tarsal segments is important in some genera.

The wing venation of stoneflies is not unusual and the wings of Plecoptera (fig. 6) are often used to illustrate the basic pattern of insect venation. In order, the veins are subcosta (Sc), costa (C), radius (R), radial sector (Rs), media (M), cubitus (Cu), and anal (A). The various branchings and crossoveins are quite variable and not always of value in describing new species, although the positions of crossveins cu-a and m-c are used to define some species. There are up to 3 anal veins in the forewing. The 2nd anal vein A2 is forked in some species; this is sometimes interpreted as a fusion of A2 and A3 at their bases. There is generally only 1 crossvein in the anal area, so that most stoneflies have only 1 anal cell. Some have several anal crossveins and thus several anal cells. The venation is commonly distorted in brachypterous specimens. The wing pads of the larvae may be parallel, that is, the forewings and hindwings are essentially in line with each other (fig. 7), or they may be divergent, that is, the hindwing aligned at an angle to the forewing (fig. 8).

Larval gills are present on various parts of the body. Fingerlike submental gills (fig. 5) are at the posterior corner of the submentum. Cervical gills (fig. 22) are on the neck and are simple and fingerlike or tufted. Thoracic gills can be simple or bushy and much divided. These can appear in the pleural areas or from beneath the sternum. Coxal gills are simple telescopic gills that occur singly on the ventral surface of each coxa. Abdominal gills occur laterally on the basal abdominal segments or distally between the cerci (figs. 210, 230); the latter are known as subanal gills. Vestiges of all these larval gills, except for the coxal gills, are visible on the adult. The sites of these coxal gills appear only as round membranous scars on adult coxae.

Males are quickly separated from females by observing the hooks or projections of the genital apparatus, which are generally visible dorsally. The female dorsum is unornamented. Ventrally, some males have a lobe or knob on a posterior abdominal segment, whereas the female commonly has one abdominal sternite (usually the 8th) expanded.

The abdomen of many males bears various processes that aid them in mating and us in identification (fig. 9). The diversity in size and shape of these projections is great; they range from barely perceptible bumps to
Fig. 28. Allocapnia pygmaea: a, female; b, male
Fig. 29. Capnia maculata
Fig. 30. Perlicnota asa
Fig. 31. Lestra fernigera
Fig. 32. Perlincella draco
Fig. 33. Alligator ischi
13. Adults apterus; without ocelli; vestiges of gills on intersegmental membrane between 9th and 10th abdominal segments; restricted to Japan and Korea

14. In lateral view, 2nd tarsal segment subequal to 1st in length

15. In lateral view, 3rd tarsal segment longer than 1st; 2 ocelli; 3 or less

16. Adult cercus reduced to 1 segment

17. 5 or more anal veins in hindwing

18. Wings flat at rest; only 1 or 2 intercalary crossveins in forewing

19. Vein Cu_{2} of forewing generally running approximately straight from origin to terminate at margin half way from base to tip of wing; media of hindwing forked after r-m crossvein; Northern Hemisphere except southeastern Asia

20. Generally 5 (rarely 4) anal veins reaching margin of hindwing; only 1 or 2 intercalary crossveins in forewing; many costal crossveins beyond cord in forewing; if apterus, found in Northern Hemisphere

21. Abdominal-stermite 1 present; many costal crossveins

If a species lacks all these characters, its version resembles that of the Leucotride except that it has 6 anal veins in the hindwing.
Abdominal-sterite 1 absent (abdominal segment 1 visible only as a tergite); most genera have only 1 or 2 costal crossveins. ... CRIPTOPTERIGIDAE 22

22. Adults wingless ... 23
 Adults winged ... 25

23. With ocelli ... LEPTOPERLINAE
 Without ocelli .. 24

24. Males with a small 11th tergite ANTARCTOPERLINAE
 Males without 11th tergite PARAGHIOPTERYGINAE

25. Large, with long cercus of more than 20 segments; forewing Rs with long fork, bearing 2 or more crossveins or for branches of Rs fused with R ... 26
 Small to medium, with short cercus of 20 segments or less; forewing Rs without or with only a very short fork that bears at most 1 cross- vein ... 27

26. Rs obviously forked; pterostigma generally with crossveins ... CRIPTOPTERIGIDAE
 Rs forked, with fusing of Rs, and R; pterostigma generally without crossveins ... LEPTOPERLINAE

27. C05 in forewing invariably forked; cercus commonly short, with 7 to 20 segments ... PARAGHIOPTERYGINAE
 C05 in forewing not forked; cercus generally very short, with 3 to 9 segments ... ANTARCTOPERLINAE

KEY TO THE GENERA OF ADULT NORTH AMERICAN PLECOPTERA

1. Paraglossae and glossae subequal in length (fig. 74) 2
 Paraglossae much longer than glossae (fig. 5) 21

2. Remnants of branched gills on abdominal-segments 1 and 2 (fig. 23); anal area of forewing with 2 or more rows of crossveins. ... PTERONARCIDAE 3
 No gill remnants on abdominal-segments 1 and 2 (fig. 22); anal area of forewing without crossveins or with only 1 row of them 4

3. Gill remnants present on abdominal-segment 3; western genus only ... Pteronarcopsis
 Gill remnants absent on abdominal-segment 3 (fig. 23) 4

4. 2 ocelli (frontispiece) ... Feltoperta
 3 ocelli (figs. 1, 170) ... 5

5. Tarsi in lateral view with 2nd segment much shorter than 1st (fig. 25) ... 7
6. Each coxa with small, round membranous area on ventral surface (fig. 18); male cercus with 1 segment (fig. 153) Taeniopterygidae 6

7. Cercus of more than 1 segment; A₀ of forewing unbranched (figs. 28, 29) Capniidae 9

8. Wings flat when at rest; last segment of labial palpus in ventral view appears subcircular and larger than subterminal segment (fig. 189) Nemouridae; Nemoura

9. Wingless ... 10

10. Prothoracic spinasterum fused at lateral angle with mesothoracic basisternum (fig. 10) 11

11. Mesothoracic postfurcasternal plates transversely oval and isolated by membrane from other sclerotized regions (fig. 10) Capnia

12. Cu of hindwing unbranched; anal area of hindwing large — only slightly smaller than remainder of hindwing; Sc ending before cord; eastern genus only (fig. 28) Allocapnia

13. R₁ in forewing bent upward at origin, A₁ bent abruptly caudad at junction of cu-a and then curved out again (fig. 29) Capnia

14. Prothoracic and mesothoracic pre sternum broadly united with basisternum .. 15

15. In forewing no costal cross veins beyond Sc; A₁ only slightly bent beyond cu-a; male without lobe on 9th sternite (eastern species) Nemocapnia

16. Mesothoracic postfurcasternal plates subtriangular and separated from
other sclerotized regions by membrane (fig. 14); forewing R₁ straight; male 9th sternite with lobe (western species) Eucranaeosis Mesothoracic postfurcasternal plates large and united to spinasterum and furcasternalum (fig. 12); forewing R₁ slightly curved; male 9th sternite without lobe (eastern species) Paracrinia

17. Anal area of hindwing with 6 veins Megaleuctra
Anal area of hindwing with 3 veins 18

18. Veins Rs and M of forewing with common origin on R (western species) Perlomystia
Vein Rs of forewing arising from R beyond origin of M 19

19. m-cu crossvein of hindwing joins Cu₄ after it divides (fig. 30); pro-
ternal presternum partially or completely separated from the basisternum (fig. 17); male cercus with sharp projections or pointed (figs. 91, 96) 20
m-cu crossvein of hindwing joins Cu₄ before it divides (fig. 31); pro-
ternal presternum joined to the basisternum without trace of division (fig. 16); male cercus normal, without point or projections (fig. 76) Leuctra

20. Male 9th tergite deeply cleft (fig. 96); female without a median dorsal abdominal stripe and generally with a lobe on posterior margin of 7th sternite (fig. 97) Zealactra
Male 9th tergite entire (fig. 91); female with median dorsal abdomi-
nal stripe (fig. 93), posterior margin of 7th sternite entire (fig. 92) Pseudoleuctra

21. Remains of branched gills at the lower angles of the thorax (figs. 20,
21); cu-a of forewing in most specimens either in the anal cell or
distant from it by no more than its own length; 2 or 3 ocelli 22
Remains of branched gills absent from the thorax; cu-a, if present,
generally distant from the anal cell by more than its own length (fig. 304); 3 ocelli 36

22. Males: parapectrosparsely pointed or hooked, or sides of 10th tergite
produced forward into "genital hooks". Females (eastern species only): parapectrosparsely unmodified; 8th sternite either unmodified or, more commonly, produced into a subgenital plate 23

23. Raised knob or "hammer" on 9th sternite (fig. 9) 24
No "hammer" on 9th sternite; skull of subgenital 98

24. 2 ocelli 25
3 ocelli 26

25. Anal area of forewing with 2 or more crossveins, thus forming 1 or
more cells in addition to the anal cell; A₃ of hindwing not sinuate; east of Rockies (fig. 32) Perleucotella Anal area of forewing with only 1 or 2 crossveins between A₁ and

37
A5, thus having only 1 anal cell between these 2 veins; A5 of hindwing sinuate; known only from Texas southward — *Anacroneura*

26. Anal area of forewing with 2 or more crossveins, thus forming 1 or more cells in addition to the anal cell (fig. 32); pronotum with dark median band; east of Rockies — *Perlimella*
 Anal area of forewing with only 1 crosvein, thus having only 1 anal cell (fig. 258); without dark median band on pronotum — 27

27. 10th tergite with hooks arising from the lateral angles; paraprostites normal — *Chassara*
 10th tergite unmodified, paraprostites formed into recurved hooks (fig. 218) — *Acroneura*

28. Hind margin of 10th tergite deeply cleft, with dorsal projections (genital hooks) extending forward from sides of cleft (figs. 191, 201) — 29
 Hind margin of 10th tergite not cleft; no dorsal projections on 10th tergite but with pointed paraprostites (fig. 240) — *Perilee*

29. With 2 ocelli (fig. 204) — *Neoergella*
 With 3 ocelli — 30

30. Genital hooks extending to anterior border of 8th tergite (fig. 198) — *Phasmaphora*
 Genital hooks extending at most to posterior margin of 9th tergite (figs. 191, 194) — *Paramegina*

31. Anal area of forewing with 2 or more crossveins, thus forming 1 or more cells in addition to the anal cell (fig. 32) — *Perlimella*
 Anal area of forewing with only 1 crosvein, thus having only 1 anal cell (fig. 258) — 32

32. 2 ocelli (fig. 204) — *Neoergella*
 3 ocelli — 33

33. Distinct Y-shaped prosternal and mesosternal ridge pattern (not invariably clear on prosternum) (fig. 20) — 34
 Sternal ridge patterns not in a distinct and dark Y shape (fig. 21) — 35

34. Subgenital plate notched or excavated (figs. 192, 197) — *Paramegina*
 Subgenital plate rounded (fig. 200) — *Phasmaphora*

35. Size 9-14 mm (to tip of wings); costal margin of forewing and base of Rs and M yellowish and lighter in color than brownish veins; subgenital plate barely projecting and notched (fig. 242) — *Perilee*
 Larger than 14 mm; costal margin not yellowish and not lighter in color than remainder of wing; subgenital plate either produced or, if not produced, without a median notch (figs. 219, 223) — *Acroneura*

36. A5 of forewing either not forked or forked beyond the anal cell; that is, 2 main anal veins, the 2nd of which is forked on some species
(fig. 35) Chloroperlidae 37

Fork of A2 of forewing included in anal cell, so that its 2 branches leave the cell separately; that is, there are 3 main anal veins (fig. 304) Perlidae 42

37. Anal veins of hindwing with 5-7 branches reaching margin of the wing; eyes generally small and set far forward (fig. 7); western family Paraperlinae 38

Anal veins of hindwing with at least 4 branches; eyes normal Chloroperlinae 40

38. Ocellar area dark; at least 3 crossveins in costal area beyond the subcosta; posterior margin of the male 7th sternite neither raised nor hairy Paraperla

Ocellar area light; at least 3 crossveins in costal area beyond subcosta; posterior margin of the male 7th sternite raised and hairy 39

39. Eyes almost normal in position Uperla

Eyes small and set far forward Kathaperla 41

40. Anal area of hindwing apparently absent (fig. 254) Hastaperla

Anal area of hindwing present 41

41. A2 of forewing forked (fig. 33) Alloperla

Without any branched anal veins in forewing (fig. 251) Chloroperla 42

42. Males: paraaprocts modified into recurved hooks, or considerably produced backward, or genitalia complicated by various styles and sclerotized areas 43

Females (eastern species only): paraaprocts unmodified, genitalia simple, 8th sternite generally produced into a genital plate 48

43. 10th tergite completely cleft; genitalia complicated by styles or various sclerotized structures (figs. 309, 314) Serigeninae 44

10th tergite entire or at most slightly notched; genitalia simple 45

44. Wings with 4 to many crossveins beyond the cord, generally arranged in an irregular network; 7th sternite without a lobe Arcypteryx

Wings with no more than 2 crossveins beyond the cord; 7th sternite generally with a lobe Evanpus 46

45. Paraaprocts produced inward and backward, meeting along their inner faces (fig. 336); no lobe on 8th sternite Perlinae: Diurna

Paraaprocts either turned into hooks or only slightly modified; generally with lobe on 8th sternite Perlinae 46

46. Paraaprocts not formed into hooks (although the 10th tergite has hooks arising from lateral angles); 10th tergite notched on posterior margin; western genus Caligoperla

Paraaprocts produced into recurved hooks or pointed; 10th tergite entire 47
47. Lobe on 7th sternite but not on 8th; western genus *Rickera*
 Lobe generally on 8th sternite but rarely on both 7th and 8th or on neither .. *Isoperla*

48. Numerous irregular crossveins between Rs and R; subgenital plate with 2 lobes broadly separated *Arcynopteryx (compacta)*
 Apical crossveins few or absent; subgenital plate variable 49

49. Submental gills present (fig. 5) *Isonus*
 Submental gills absent .. 50

50. Median mesosternal ridge not dividing into a Y; medial ridge commonly weak *Isonus*
 Median mesosternal ridge dividing into a Y, each arm of which extends toward, if not reaching, an apophyseal pt (fig. 305) 51

51. Dark brown with yellow median stripe on pronotum; hairs on margin of groove in prescutum not noticeably longer than other hairs on femur; subgenital plate produced halfway or more across 9th sternite; rare, found in New England only above timberline in the White Mountains and on the mountains of Gaspé .. *Diura*
 Without all of above characteristics .. 52

52. Light yellow to greenish; subgenital plate not invariably greatly produced .. *Isoperla*
 Brown or dark yellow; subgenital plate produced halfway or more across 9th sternite; yellow medial stripe on pronotum *Isoperla* and *Isonus* (bulbatus, hastatus, decexus)

KEY TO THE GENERA OF LARVAE KNOWN FROM NORTHEASTER OF NORTH AMERICA

1. Glossae and paraglossae subequal in length (fig. 74) 2
2. Gill tufts on first 2 abdominal segments (fig. 23) *Pteronarcyia*
 No gill tufts on first 2 abdominal segments (fig. 22) 3
3. Thoracic terga and sterna produced into expanded plates that overlap the following segment; head partially concealed beneath prothorax (fig. 190) *Philaephylla*
 Thoracic terga and sterna not produced; head not concealed (fig. 8) 4
4. A single retractile gill on each coxa *Tanypodopteryge*
 No coanal gills ... 5
5. In lateral view, first 2 tarsal segments subequal (fig. 26); 9th sternite produced and much longer than 9th tergite *Brachyhora*
 In lateral view, 1st tarsal segment longer than 2nd (fig. 25); 9th sternite subequal to tergite 6
6. Extended hind legs exceed end of abdomen; hindwing pads divergent from axis of body (fig. 8); cervical gills present in some species (fig. 23) *Nemoura*
Extended hind legs not exceeding end of abdomen; hindwing pads subparallel to axis of body (fig. 7); no gills present 7

First 8 abdominal segments divided into tergum and sternum by a membranous fold .. 10
First 6 or less abdominal segments divided into tergum and sternum by a membranous fold 8

First 4 abdominal segments divided laterally; labial palpi extending well beyond paraglossae Lactra
First 6 abdominal segments divided laterally; labial palpi extending to approximate tip of paraglossae 9

Abdominal bristles sparse; subanal lobes separate Pylaurostera
Abdominal bristles absent; subanal lobes partly fused Zaelmela

Body with numerous conspicuous bristles Pathrombria
Body with few and inconspicuous bristles 11

Hindwing pad (if present) broad, as developing vannal area extends almost to wing tip Alloleptia
Hindwing pad narrower, as developing vannal area extends only halfway to wing tip 12

Cerci with a fringe; several long bristles on each segment .. Nemcuspus
Cerci without obvious fringe; bristles principally at joints of segments ... Cepnum

Tufts of filamentois gills on thorax .. 14

Thoracic gills absent .. 20

Eyes set far forward on head, distance from hind margin of eye to posterior corner of head greater than diameter of eye in most species (fig. 7) ... Peronella
Eyes set normally, distance from hind margin of eye to posterior corner of head less than diameter of eye (fig. 205) 15

2 ocelli (fig. 204) .. Neoptera
3 ocelli (figs. 205-210) ... 16

Spinules or long hairs set in a row across the back of the head; in some species, spinules are on a low occipital ridge (fig. 210) 17
No spinules in row across back of head except near hind margin of eye; no occipital ridge (fig. 205) Atenouros

Subanal gills present (fig. 210) 18
Subanal gills absent (figs. 207, 208) 19

Abdomen with numerous freckles Perlesta
Abdomen without numerous freckles but brightly patterned (fig. 210) .. Phaenomophora3

3 Atenouros gregario, which can occur just south of New England, keys here but its abdomen is uniformly brown.
19. Transverse line of spinules on occiput somewhat wavy and broken at midline (fig. 299); body uniformly light brown ... Aceromoria (stollii)

Transverse line of spinules on occiput not wavy and not broken at midline (fig. 1); body either uniformly dark or patterned

Paragnetina

20. Hindwing pads at angle to axis of body (fig. 8); cerci as long as or longer than abdomen; body commonly patterned; segments of maxillary palpus evenly tapering in diameter from 1st to 5th (fig. 4)

Hindwing pads subparallel to axis of body (fig. 7); cerci three quarters the length of abdomen; body uniformly brown (fig. 299); last segment of maxillary palpus abruptly thinner than previous segments (fig. 258)

21. Arms of mesosternal Y ridge approach or meet anterior corners of furcal pits; genus known in the Northeast only from the Adirondacks, the White Mountains and the shores of Lake Superior

Arcyopteryx (compacta)

Arms of mesosternal Y ridge meet posterior corners of furcal pits

22. Single fingerlike gill at each basal corner of submentum (fig. 5)

Isogena

Submental gills absent

23. Abdominal tergites with dark longitudinal markings or dark dots (fig. 299) ... Isoperla

Abdominal tergites with transverse markings, or unicolorous, or white spotted (figs. 287, 308)

24. Only 1 tooth on lacinia Isogena (bilobatae)

2 teeth on lacinia (fig. 4)

25. Lacinia with sharp angle just below smaller tooth Isogena (bicoloratae)

Lacinia without sharp angle below smaller tooth, rounded or, more commonly, tapering from tooth to base

26. Abdominal tergites dark, with transverse row of 6 or 8 white dots on each segment; submental gills present but inconspicuous

Abdominal tergites dark, with 2 dorso-lateral spots and a few small lateral spots; genus found at high elevations in the White Mountains and the Gaspé

Dione

27. Abdominal tergites banded laterally, with anterior margins of tergites dark Isogena

Abdominal tergites banded laterally, with anterior margins of tergites light, or tergites uniformly brown, or tergites dark, with white spots or light longitudinal line

Isoperla
28. Inner margin of hindwing pads simiate or notched (fig. 259) ; body of mature larva larger than 7 mm Alleporela
Inner margin of hindwing pads straight; body of mature larva 7 mm or less .. Hestoperla, Chloroperla

FAMILIES, GENERA, AND SPECIES OF NORTHEASTERN PLECOPTERA, WITH SPECIES ILLUSTRATIONS AND KEYS

Descriptions of each family and genus represented in the northeastern United States are given below. For each genus a key to the species found in the Northeast is included. In these keys, the numerical preceding a species name gives its order among the species described under that generic heading.

Immediately under each species heading are recorded the references to the type description and any synonymy. For categories higher than generic, Illies’ (1966) fine catalog is followed; for the genera, however, with a few exceptions, the concepts of Ricker, Jeserit, and Gaufin have been followed. In the genera Nemoura, Leptra, Arcynopterys, Alleporela, and Isonemura, Illies has raised Ricker’s subgenera to generic rank. In most cases, I have retained the older, more familiar generic names but have included the subgeneric names because future work will possibly make greater use of them.

Length, given just before the species description, is measured from the anterior portion of the head to the top of the folded wing. In each case, the smaller size is that of the male and the larger that of the female. Where published descriptions include larger or smaller specimens than I have seen, I have given this greater range. Brachypodon specimens are measured to the end of the abdomen.

A description of each species follows: almost invariably with one or more figures illustrating the species. The type locality, location of the type specimen, and range of each species are also included.

Connecticut records are given by town, in most cases with the name(s) of the collector(s). Collections within a town are separated by commas and set off from those in other towns by semicolons. The present locations of the specimens are given in parentheses: (AMNH)=The American Museum of Natural History, New York City; (CARS)=The Connecticut Agricultural Experiment Station, New Haven; (UC)=University of Connecticut, Storrs; (YU)=Yale University, New Haven. Where several collections from the same town are in one institution, that location is given at the end of the records for that town. Specimens collected by Stephen W. Hitchcock, and in his collection, are indicated by (SWH).

FAMILY CEMIDAE

These small dark stoneflies are divided into 2 subfamilies—the Capniinae, which are found in North America, Europe, southern Africa, and the Neotropical region, which occur in southern Africa, southern South America, and Australia, with a single genus (Megalloneuria) in North America.
Wing venation is reduced, with very few crossveins, and the abdominal ganglia are reduced in some species, varying from 6 to 8. Adult Capniidae possess long cerci, with numerous segments. The males have a well-developed epiproct but the paraprocts are simple in most species. Harper and Hynes (1971b) have given a key to the known larvae of the Northeastern species.

GENUS *Capnia* PICTET

Capnia Pictet, 1841, Perleides: 318.

This genus is most easily distinguished by having R1 of the forewing bent upward at its point of origin and A1 of the forewing bent abruptly caudal at its junction with Cu-a and then curved outward. The thoracic presterna are free on each segment, the spinasternum are fused to the basisternum, and the mesothoracic postfurcasternal plates are free. Hanson (1946) defined the genus in detail.

Capnia are essentially western, with only a few species reaching eastern North America. Three eastern species, *C. angulata*, *C. nevadica*, and *C. labradora*, are north of the range of this bulletin but the latter is included in the key because more intensive collecting may extend its range southward.

Type of genus: *Perla nigra* Pictet.

KEY TO NORTHEASTERN SPECIES

1. Males: epiproct recurved over 10th tergite 2
 Females: without epiproct 4

2. Epiproct bipartite, divided into dorsal and ventral part 3
 Epiproct unipartite .. 2, *vernalis*

3. Upper arm of epiproct notched apically *labradora*
 Upper arm of epiproct tapering to a point apically 4, *manitoba*

4. Subgenital plate not produced past hind margin of 8th sternite, smoothly rounded or recessed 3
 Subgenital plate somewhat produced; notched at apex *labradora*

5. Subgenital plate terminating in a sclerotized tip; subgenital tract visible through 8th sternite 5, *vernalis*
 Apex of subgenital plate not more darkly sclerotized than remainder of plate; subgenital tract not visible *manitoba*

1. *Capnia manitoba* Clasen (Figs. 34-36)

 Capnia manitoba Clasen, 1924, Can. Entomol. 56: 54.
 Length: 5-0.5 mm.
 Description: The male has a rounded, granulate, dorsal process on the 7th
Capnia manitoba: posterior abdominal segments

Fig. 34. Male, lateral view.
Fig. 35. Male, dorsal view.
Fig. 36. Female, ventral view.

Tergite near the posterior margin. The epiproct is divided into an upper and lower arm, both arms being rounded and pointed at the tip. The female has the subgenital plate reared from the hind margin of the 8th sternite, forming a broad quadrangular area. Adult genitalia and wings were figured by Needham and Claassen (1925) adults and larvae by Harper and Hynes (1971b).

This species seems to be of widespread but sporadic occurrence in the northeastern United States. It flies more readily than other early-spring capniids (Hannan and Whitehead, 1961) and does not commonly occur up on the fence posts and bridge railings which are the usual collecting spots for other capniids.

Type locality: Aweme, Manitoba. Type in Canadian National Collection, Ottawa.

Range: From Manitoba east across Canada, probably to the Maritime provinces and then south into New England. This is a northern species that was able, unlike most Capnia, to spread eastward following the last glaciation.

Connecticut records: Gosben, April 1, 1959 (SWM).

2. **Capnia vernalis** Newport (fig. 37)

Length: 4.5-5.5 mm.

Fig. 37. Capnia vernalis male, lateral view of posterior abdominal segments (from Harper and Hynes, 1971b).
Description: The unique and unique epigastria of the male distinguishes this from all other species of *Campania*. The wing venation and thoracic sternites readily separate it from similar species of *Paracampania*. The nodal part of the posterior margin of the female 8th sternite is a darkly sclerotized lip set, extending anteriorly from this, the sternite is in the floor of the genital tract can be seen through the body wall. Ricker (1938) illustrated the type specimens: Harper and Hynes (1917b) the wings, adult genitalia, and larva.

This species was confused for some years with *Paracampania ephemeroides* but is a more rapid species.

Type locality: St. Martin's Falls, Albany River, Hudson's Bay, Ontario. Type in the British Museum.

Range: Across Canada from Alberta to Labrador; apparently comes into the United States only in Minnesota.

GENUS Allocampania CLAASSEN

Caprella Claassen, 1924, Can. Entomol. 56: 43 (preoccupied).

Allocampania are small, dark, commonly hemelytrous stoneflies that would escape general notice altogether except for their habit of emerging in mid-winter in large numbers and crawling over the snow. Consequently, some North American species were described earlier than all except the largest gerronemus and perldes and also caused comment from naturalists such as Thoreau.3

In recent years, H. H. Ross and W. E. Ricker and their co-workers have published a series of papers describing new species and discussing the distribution and evolution of members of this genus. There appears to be some hybridizing between species (Hanson, 1960), and the genus as a whole seems to be in a period of unusually great evolutionary change.

The monumental study of Ross and Ricker (1971) is basic to any examination of the *Allocampania*. They have keyed, figured, and mapped the distribution of every species in the genus and discussed the phylogeny and movements of populations. *Allocampania* appears to be just one of a series of species groups, most of which have been lumped under *Campania*. According to these authors, the Japanese *Tabanopygiptera* which has sometimes been considered to be congeneric and senior to *Allocampania* (see Kawai, 1967) is presumably just one of the aforementioned species groups.

Allocampania can be distinguished by the well-developed anal area of its hindwing, and by having the prothoracic spinasternum free of the mesothoracic basisternum. As with other *Campanidae*, Hanson's (1940) study should be consulted for morphological and taxonomic details.

Many species seem to overlap in some characters. As H. H. Ross and

3. Wade (1932) lists seven citations by Thoreau to stoneflies; however, a careful perusal of Thoreau's journals reveals considerably more, especially in those entries made in late winter, when *Allocampania* are active.
his fellow workers have demonstrated, geographic isolation during glacia-

tion has resulted in a multiplicity of closely related species. In single col-

lections, occasional specimens have protruberances that do not fit the general
description of the apparent species. It is probable, due to this plasticity of
structure, that exact definition of some species may have to await breeding
studies. Most species have to be cleared and expanded before they can
be adequately studied; this is particularly true of the females.

Type of genus: Caprella granulata Claassen.

KEY TO MALES OF NORTHEASTERN AND CENTRAL UNITED STATES

1. 7th and 8th abdominal tergites with dorsal projections or strongly
 humped (figs. 46, 51, 63, 64) ... 2
 8th abdominal tergite with dorsal projections; 7th segment not
 raised .. 14

2. 8th segment with 2 processes, one anterior to the other (figs. 39,
 64) .. 3
 8th segment with single process, although this can be lobed (figs. 43,
 44) .. 4

3. 7th tergite with hobbled process (fig. 64) 24, aequalis
 7th tergite with unhobbed process and with tip directed posteriorly
 (fig. 39) .. 2, curviseta

4. Process of 8th tergite trilobed ... 5
 Process of 8th tergite bilobed ... 9

5. Process of 8th tergite with median tooth smaller than lateral teeth
 (figs. 51, 53) ... 6
 Process of 8th tergite with median tooth as large as lateral teeth
 (fig. 44) ... 7

6. Process of 7th tergite tridentate, raised, and on posterior half of tergite
 (fig. 53) ... 14, olivacea
 Process of 7th tergite blunt or, if barely tridentate, is on anterior half of
 tergite, barely raised, and with median tooth tallest (fig. 51) 13, minuta
 Process on 7th tergite a low ridge in middle of tergite, commonly
 blunt ... 8

7. Process on 7th tergite raised on posterior half of tergite; somewhat
 tridentate (fig. 44) .. 7, inducta
 Process on 7th tergite a low ridge in middle of tergite and is very low and shallowly
 notched, see aurora

8. In lateral view, posterior corner of 8th tergal process angled; in dorsal
 view, lower arm of epiproct scarcely wider than upper (fig. 59) 19, smithii

*Some specimens of olivacea key here but the process on the 7th tergite is at the
posterior margin of the tergite, not on the anterior half, as in zona.

*If process of 7th tergite is an anterior half of tergite and is very low and shallowly
notched, see aurora.

47
In lateral view, posterior corner of 8th tergite process rounded; in dorsal view, lower arm of epiproct considerably wider than upper (fig. 51) 12, nevica

9. Process of 7th tergite unlobed or humped (figs. 40, 46, 63) 10
 Process of 7th tergite lobed or notched (figs. 38, 43, 54) 12

10. 7th tergite rounded into prominent hump; process of 8th tergite with shelf posterior to rugose lobe; distal part of upper arm of epiproct subequal in length to basal part (fig. 68) 22, zebrata
 7th tergite with definite lobe; hind margin of 8th tergite dropping away from lobe so that no shelf is seen in lateral view, distal part of upper arm of epiproct much shorter than basal part (figs. 40, 46) .. 11

11. Process of 7th tergite closer to hind margin of segment; lobes of process of 8th tergite so widely separated that they appear distinctly apart (fig. 40) .. 3, forbesii
 Process of 7th tergite closer to front margin of segment; lobes of process of 8th tergite separated by a notch (fig. 46) 9, maria

12. Process of 8th tergite projecting posteriorly (fig. 43) 6, ilinacensis
 Process of 8th tergite projecting anteriorly or vertically (figs. 38, 54) .. 13

13. Process of 7th tergite prominent and narrowly notched (fig. 54)
 Process of 7th tergite a low transverse ridge, shallowly bilobed (fig. 38) .. 1, aurora

14. 8th tergite with large posterior process and smaller anterior process (fig. 60) .. 20, virginiana
 8th tergite with a single process or, if it has 2 sets of processes, anterior process is larger than posterior one (figs. 41, 49, 57) 15

15. Principal process of 8th tergite not bilobed 16
 Principal process of 8th tergite bilobed or slightly incurved (if the latter, the tip of dorsal arm of epiproct is sharply upturned) 19

16. Process of 8th tergite broad, subrectangular, or truncate in lateral view (figs. 49, 57) .. 17
 Process of 8th tergite pointed or subtriangular in lateral view (figs. 48, 61) .. 18

17. Process of 8th tergite with apex arcuate and wider than base in posterior view (fig. 49) 11, mohri
 Process of 8th tergite with apex not arcuate and with base shoudered and wider than apex in posterior view (fig. 57) 17, recta

18. Process of 8th tergite narrow, black, transverse, and anterior to hind margin of tergite (fig. 61); only rudiments of wings 21, vinparva
 Process of 8th tergite rounded and continuous with hind margin of tergite (fig. 48); wings short but present 19, minima
19. A pair of smaller setose lobes beneath or posterior to principal process of 8th tergite: process of 8th tergite U-shaped in posterior view (figs. 41, 42) .. 20
A single bilobed process on 8th tergite: process of 8th tergite rounded or slightly inclined in posterior view 21

20. Rugose process of 8th tergite shield shaped in dorsal view (fig. 41) .. 4, freatoni
Rugose process of 8th tergite not shield shaped in dorsal view (fig. 42) .. 5, primitiva

21. Broad, deep notch separating lobes of process of 8th tergite (figs. 38, 50) .. 23
Shallow notch separating lobes of process of 8th tergite (figs. 42, 62) .. 22

22. Upper arm of epiproct with sharply upturned tip (fig. 45) .. 18, inshado
Upper arm of epiproct rounded at distal end (fig. 62) 22, awazi

23. Notch separating lobes of process of 8th tergite wider than width of a lobe (figs. 38, 58) .. 24
Notch separating lobes of process of 8th tergite equal to or less than width of a lobe (figs. 50, 53) .. 25

24. Basal part of upper arm of epiproct one and one half as long as the short apical segments (fig. 58) 18, riceri
Basal part of upper arm of epiproct subequal in length to the apical segment (fig. 38) .. 1, aurora

25. Process of 8th tergite slanting posteriorly: apical segment of lower arm of epiproct notched (fig. 50) 12, mystica
Process of 8th tergite extending vertically: apical segment of lower arm of epiproct generally not notched (fig. 55) 16, pygmaea

1. Allocrypta aurora Ricker (fig. 38)

Fig. 38. Allocrypta aurora male, lateral view of posterior abdominal segments, including posterior views of the raised areas on the tergites (after Ricker, 1952).
Length: 4.5-7 mm.

Description: The male 7th tergite bears a small ridge near its anterior margin. This ridge can be shallowly lobed or even completely absent. There is a large bilobed process on the 8th tergite. These 2 lobes are separated by a deep, wide notch that, in some individuals, has a median tooth. The 7th and 8th sternites are fused in the female. The truncate subgenital plate is intermediate in size between those of vicinio and picea. Adults were figured by Ricker (1952), as well as by Ross and Ricker (1971).

Type locality: Woodrow, North Carolina. Type at Illinois Natural History Survey.

Range: A southern species, extending from Maryland to Alabama. Ross and Ricker (1971) published a distribution map of this species.

2. Allocapnia curiosa Frison (fig. 39)

Fig. 39. Allocapnia curiosa male, lateral view of posterior abdominal segments, including posterior view of raised area on the tergites (after Frison, 1942).

Length: About 6 mm.

Description: The aptly named species is quite distinctive in that the 7th sternite is swollen and the posterior margin extends labialike over part of the 8th. Illustrations of adults were given by Frison (1942) and Ross and Ricker (1971).

Type locality: Kanetown, West Virginia. Type at Illinois Natural History Survey.

Range: New York to eastern Tennessee; distribution maps were published by Frison (1942).

3. Allocapnia forbesi Frison (fig. 40)

Length: 6-8 mm to end of body.

Description: Both the 7th and 8th tergites of the male bear tubercules (as does the 6th on occasional specimens). On the 8th this process is bilobed, without a posterior shelf. On the 7th it is single lobed near the posterior margin. The female has abdominal tergites 8, 9, and 10 darkly sclerotized, with the membranous dorsal
Fig. 40. Allocapnia forbesi male, lateral view of posterior abdominal segments, including posterior views of the raised areas on the tergites (after Ross and Ricker, 1964).

stripes going only through the 7th tergite. The 7th and 8th sterna are not lined. Illustrations of the adult are given by Ross and Ricker (1971).

Ross (1929) found specimens most abundant in late fall. The adults were feeding on algae from stones and posts. They can be found in streams that dry up in summer (Ross and Ricker, 1971).

Type locality: Herod, Illinois. Type at Illinois Natural History Survey.

Range: The Midwest from southern Illinois to West Virginia. Ross and Ricker (1971) published a distribution map of this species.

4. Allocapnia frisoni Ross and Ricker (fig. 41)

Description: The male 7th tergite has neither lobes nor processes. The 8th tergite has a raised process near the hind margin. The tergite gradually rises from the anterior margin to the process. Behind the main process are 2 small acute lobes. A. frisoni is thus closely related to granulata but can be distinguished from that species by the main process of its 8th tergite, which is shield shaped in dorsal view. The females are distinguished with difficulty from those of granulata. Further figures have been published by Ross and Ricker (1964, 1971).

Type locality: Evansville, West Virginia. Type at Illinois Natural History Survey.

Fig. 41. Allocapnia frisoni male, lateral view of posterior abdominal segments (after Ross and Ricker, 1964).

5. Allocapnia granulata (Claussen) (fig. 42)

Capnuma granulata Claussen, 1924, Can. Entomol. 56: 44.

Fig. 42. Allocapnia granulata male, lateral view of posterior abdominal segments (from Ross and Ricker, 1971).

Length: 5-7 mm.

Description: The male of this species is characterized by a raised V-shaped process (when viewed from behind) on the 8th segment and 2 small hair-like lobes below the larger process. The larger rugose process is oval shield-shaped in dorsal view. The female 8th sternite bears a shiny wedge-shaped area medially. There are several species closely related to granulata but the only one of these in the Northeast is fricosi.

The larvae feed on decaying leaves and at least 3 species of diatoms, whereas the adults feed on the alga Protococcus vulgaris (Frison, 1929). Frison observed females roosting and gradually producing numerous eggs in a matrix that was carried beneath the abdomen. However, the abdomen was curled forward so that the eggs appeared to be carried dorsally. The females apparently either fly or crawl to the water and release the eggs, which separate out from the mass and drop to the stream bottom. A. granulata has a wider tolerance of various streams than do most Allocapnia species and can be found in the larger, slower streams. In a laboratory test, 30 percent of the population withstood a temperature of 24°C for 96 hours. However, this species apparently has a larval diapause in summer (Harper and Hynes, 1970).

Ross and Yamamoto (1967) and Ross and Ricker (1971) discussed the morphological variations in the male and gave a phylogenetic analysis of the various populations and their movements following the Pliocene glaciations. Adults were figured by Frison (1929, 1935), Ross and Yamamoto (1967), and Ross and Ricker (1971), larvae by Frison (1929), Hardon and McKee (1952), and Harper and Hynes (1973b).

Type locality: Johnstown, New York. Type at Cornell University.

6. Allocapnia illinoensis Frison (fig. 43)

Length: 6-8 mm.
Fig. 43. Allocapnia illinoensis male, lateral view of posterior abdominal segments, including posterior views of the raised areas on the tergites (after Frison, 1935).

Description: The male has raised bilobed processes on the posterior margins of both the 7th and 8th tergites. Some specimens from New York have raised areas on the anterior half of tergite 8. The posterior margin of the 8th sternite in the female is a bit swollen, with a subtriangular projection. A somewhat membranous area almost divides the sternite into 2 longitudinal parts. Further figures of the adults are by Ross and Ricker (1959) and of the adult and larva by Harper and Rynearson (1976b).

Type locality: Dolson, Illinois. Type at Illinois Natural History Survey.

Range: Found at widely separated points in Ohio, Illinois, Minnesota, New York, Maine, southern Quebec and Ontario. Ross and his associates (1967) presented a distribution map and suggested that, following the Wisconsin glaciation, illinoensis dispersed from the Cumberland Plateau to the northeast and then westward across southern Canada to Wisconsin and Minnesota.

7. Allocapnia indiana Ricker (fig. 44)

Length: 4-5-8 mm.

Description: This species has a process on both the 7th and 8th tergites and is closely related to violacea. It has a trilobed process on the 8th tergite. The process on the 7th tergite is either blunted or with a suggestion of a trilobed condition. The female 7th and 8th sternites are fused on the midline but the posterior margin of the subgenital plate is broader than in violacea. The female 8th sternite can be sclerotized or membranous normally.

Type locality: Moler, Indiana. Type at Illinois Natural History Survey.

Range: Found in scattered regions in Indiana, Kentucky, Ohio, and New York. Ross and Freyne (1967) mapped the distribution of this species and suggested that the Wisconsin glaciation separated it from the closely related oblonga and that each evolved into a separate species. Upon the retreat of the ice sheet, the ranges of these species became sympatric. The more southern records are limited to streams.
Fig. 44. Allocapnia insulanae male, lateral view and cross sections of posterior abdominal segments (from Ross and Ricker, 1971).

of spring or cave origin, which are usually warmer in winter and cooler in summer than other streams.

3. Allocapnia loxohida Ricker (Fig. 45)

Length: 4.5–6 mm.

Description: The male has no tubercle on the 7th tergite, a slightly bilobed projection on the 8th tergite, and a flat shelf behind this process. The projection is small, erect, with a flat notch separating the 2 lobes. The upper arm of the epigynum is upturned at the tip, distinguishing it from the closely related *recta*, which is found in the same area. The posterior margin of the female 8th sternum is slightly produced centrally. Further figures are by Ross and Ricker (1971).

Type locality: Jasper, West Virginia. Type at Illinois Natural History Survey.

Range: Has been collected from West Virginia, Tennessee and Virginia. Ross and Ricker (1971) published a distribution map of this species.

Fig. 45. Allocapnia loxohida male, lateral view of posterior abdominal segments, including posterior view of raised area on the tergites (after Ricker, 1952).
9. Allocapnia maris Hanson (Figs. 46, 47)

Fig. 46. Male, lateral view, including posterior view of the raised areas on the tergites.
Fig. 47. Female, ventral view.

Length: 3.6 mm.

Description: The male has a single lobed process on the 7th tergite and a shallowly bilobed one on the 8th tergite. The female 7th and 8th sternites are fused. The 8th sternite is depressed medially, with a shiny, gibbous subrectangular area. The females are not easily distinguished from marina.

This species, with marina, is the smallest Northeastern specimen. Hanson (1960) has demonstrated interbreeding between these two species and shows that, as the number of marina individuals increases in a given collection, so does the amount of marina-like characters in the marina population. Ross and Ricker (1971) found this species also interbreeding with pachyamol in New Brunswick and Nova Scotia.

Further figures are by Hanson (1942a), Ricker (1952), and Ross and Ricker (1971).

Type locality: East Amherst, Massachusetts. Type in Hanson Collection, University of Massachusetts.

55
10. *Allocapa minima* (Newport) (fig. 48)

Capsella minima Chassen, 1924, Can. Entomol. 56: 45.

Fig. 48. *Allocapa minima* male, lateral view of posterior abdominal segments, including posterior view of raised area on the tergite.

Length: 3.3-5.5 mm.

Description: The male of *minima* has a single posteriorly angled process on the 8th tergite. There is no process on the 7th tergite. The female is very similar to *saria*. In some individuals the median shiny plate of the 8th sternite is somewhat thinner in relation to length than normal for the species; however, there is considerable overlap in this characteristic.

Hanson (1960) found evidence that hybrids between *minima* and *saria* occur. Ross and his associates (1967) state that this is apparently of local occurrence, where small brooks with *saria* meet larger streams with *minima* and that there is probably a natural selection against the hybrids, so that morphological evidence of this crossing is not widespread within the populations. _A. minima_ is the only *Allocapa* found in *Newfoundland* that is also found northward to the tundra. It is found on this continent only on previously glaciated areas. Ross and Ricker (1971) suggest that it survived the Wisconsin glaciation in *Newfoundland* or that it is a result of a hybrid cross between two new animals following glaciation. The former seems more likely, particularly in view of the fact that Ross and Ricker were unable to place *minima* with certainty with any other species group. Following glaciation, Connecticut had a tundra-like flora and at that time *minima* may have become widespread down the East Coast to the south, later to follow the retreat of the glaciation northward. Perhaps competition from other forms of *Allocapa* just south of the glaciated region, as well as restrictions caused by its adaptation to a more northern climate, kept *minima* from expanding its range further south.

Further figures are by Ross and Ricker (1971); larval forms were figured by Harden and Michel (1952) and Harper and Hynes (1971b).

Type locality: St. Martin’s Falls, Albany River, Canada. Type in the British Museum.
Range: Newfoundland and New England west to Ontario and Minnesota.

11. **Allocapnia mahri** Ross and Ricker (fig. 49)

Fig. 49. *Allocapnia mahri* male, lateral view and cross section of posterior abdominal segments (from Ross and Ricker, 1971).

Length: 4.8 mm. to about 6 mm.

Description: The male is close to *recta*. On the posterior part of the 8th tergite is a process which in posterior view is wide and severe at the apex and does not rest on a shortened base. The female 8th sternite is relatively undistinguished and not separable from *recta*. Further figures of the adult were given by Ross and Ricker (1964, 1971).

Type locality: Near Summit, Oklahoma. Type at Illinois Natural History Survey.

Range: Has been found only in Oklahoma. Its distribution was mapped by Ross (1965) and Ross and Ricker (1971).

12. **Allocapnia mystica** Frison (fig. 50)

Length: 6-8 mm to end of body.

Description: The male has a single bilobed projection near the posterior margin of the 8th tergite. The notch between the lobes is narrow but fairly deep. The 8th tergite is considerably produced, with a sloping interior face. The 7th and 8th sternites of the female are not fused. Adults were figured by Frison (1929, 1938), as well as by Ross and Ricker (1971).

Frison (1929) states that this is an early winter species, mating pairs being found as early as November. The females, who cannot fly, crawl to the water to deposit plankton...
Fig. 50. *Alocryptus mysticus* male, lateral view of posterior abdominal segments, including posterior view of raised area on the tergites (after Fitch, 1935).

their eggs, each carrying about 600 eggs. Adult females feed on algae, chiefly from tree trunks. The larvae eat decaying leaves, diatoms, and a few protozoans, the latter presumably gathered in fortuitously. Friesen kept adults alive for 2 weeks in his laboratory.

Type locality: Oakwood, Illinois. Type at Illinois Natural History Survey.

Range: Illinois to Arkansas and east to Ohio and Georgia. Its distribution has been mapped by Ross and Ricker (1971).

13. *Alocryptus nicola* (Fitch) (figs. 51, 52)

Length: 5-7 mm.

Description: The male has processes on both the 7th and 8th tergites, that on the 8th trilobed and that on the 7th trilobed and only slightly raised. There is considerable variation in the relative size of the center lobe of the 8th tergal process and in the presence or absence of extra lobes on the 7th tergal process. The female 7th and 8th sternites are fused and the posterior median part is about one quarter the width of the hind margin. The female cannot be readily distinguished from its near relatives but most of these do not occur in New England. (This is scant comfort to more seawell or southern entomologists.) Further illustrations of the adult are by Hanson (1942a) and Ross and Ricker (1971) and of adult and naiya by Harper and Hynes (1961).

Type locality: New York State. Lectotype in Museum of Comparative Zoology, Harvard University.

Range: Quebec and the Maritimes to North Carolina and west to Wisconsin and Alabama.

Allocopina stenosola: posterior abdominal segments

Fig. 51. Male, lateral view, including posterior views of the raised areas on the tergites.

Fig. 52. Female, ventral view.

Mar. 21, 1966; Mar. 25, 1965 (SWH); Killingworth, Apr. 7, 1969 (SWH); Lyme, Mar. 2, 1964 (SWH); Mt. Carmel, Feb. 27, 1959 (SWH); Newton, Mar. 9, 1962 (SWH); Norfield, Mar. 14, 1962 (SWH); Plainfield, Mar. 19, 1964 (SWH); Redding, Mar. 24, 1964 (SWH); Storrs, Feb. 15, 1956, J. Slater (UC); Winchester, Mar. 14, 1962 (SWH).

14. _Allocopina ohiensis_ Ross and Ricker (fig. 53)

Length: 5-8 mm.

Description: _A. ohiensis_ is very closely related to _indiana_; but the middle point of

Fig. 53. _Allocopina ohiensis_ male, lateral view and cross sections of posterior abdominal segments (from Ross and Ricker, 1971).
the trilobed process on the 8th tergite is smaller than the lateral points. The process on
the 7th tergite appears somewhat trilobed. Furthermore, the lower member of the
epiproct in dorsal view tapers almost evenly, forming a subtriangular apex. In speculae
the lower member is long and tonguelike. The margin of the female of abeirotae forms
a short, wide, infolding flange. Further illustrations are by Ross and Ricker (1971).

Ross and Freytag (1967) gave a distribution map of this species and stated that,
during the Wisconsin glaciation, it probably became isolated from the population that
ultimately became abeirotae. The two species are now sympatric.

Type locality: Cooville, Ohio. Type at Illinois Natural History Survey.

Range: Kentucky and Ohio into New York.

15. Allocapnia peckanai Ross and Ricker (fig. 54)

Fig 54. Allocapnia peckanai male, lateral view of posterior abdominal seg-
ments, including posterior views of the raised areas on the tergites (after Ross and
Ricker, 1964).

Length: 5-6 mm.

Description: A. peckanai belongs to the group of species whose males have ter-
gal processes on segments 7 and 8. The process on the 7th tergite is on the anterior half
of the segment with the apex cleft. The process of the 8th is high, with 2 distinct lobes.
The female is similar to maria. Figures of the adult are given by Ross and Ricker
(1971). They found peckanai hybridizing with maria where the two species overlap
on the northern edge of their range. Harper and Hynes (1971b) figured the adult

and larva.

Type locality: Starkville, New York. Type at Illinois Natural History Survey.

Range: Found in New York, Quebec, and the Maritimes. A distribution map of
this species was published by Ross and Ricker (1971).

16. Allocapnia pygmaea (Burmeister) (figs. 28, 55, 56)

Sembé pygmaea Burmeister, 1839, Handbuch der Entomol, 2: 874.
Allocopria pygmaea

Fig. 55. Male, lateral view of posterior abdominal segments, including posterior view of raised area on the tergite.

Fig. 56. Female, ventral view of posterior abdominal segments.

Length: 5-8 mm.

Description: In the male, only the 8th abdominal tergite bears a process—a bilobed structure near the posterior margin. The female 7th and 8th sternites are fused along a dark line. The subgenital plate is broad and truncate, and separated from the remainder of the segment by membranous area. Further figures of the adult are by Hanson (1942b) and Rosa and Ricker (1971). The larva is illustrated by Claassen (1931), Harden and Michel (1952), and Harper and Hynes (1971b).

Hanson (1942a) observed mating in this species and found that the upper arm of the epigynum was inserted into the female, the sperm flowing through a duct on the underside of this part. The lower arm was inserted under the posterior part of the male’s own 8th segment, forcing the bilobed tergal process to press against a protuberance on the female’s 7th sternite. Harden and Michel (1952) suggested that mating and copulation may sometimes take place beneath the ice over frozen streams. Coleman and Hynes (1975) found that males can detect females within a radius of 15 cm and also noted that, after emergence, adults move away at right angles to the stream. One individual was followed for 73 m. In the laboratory, adults fed on algae and lichens and oviposited 4 to 5 weeks after emergence. A female produces one batch of eggs and dies a few days thereafter. Eggs start to hatch after 21 days at 10°C. Bishop and Hynes (1969) found larvae of this species moving upstream in some numbers in winter and Harper and Hynes (1970) recorded a dispersive stage during the summer. Willey (1936, 1937) discussed variations in wing venation and noted that adults are preyed on byichthydees.

Type locality: Pennsylvania. Type in Zoological Museum, Halle, Germany.
Range: Quebec south to Virginia and, in the mountains, almost to Alabama; west to Minnesota and Missouri but not through the tier of states from Iowa to Ohio.

Ross (1965) and Ross and his associates (1967) surmised that, following the last glacial retreat, this insect spread northward from the Appalachians to the St. Lawrence River plain and the Great Lakes and from thence to Minnesota and Wisconsin. A relict population in the Missouri Ozarks apparently did not spread northward. An alternative explanation (Ross and Bärker, 1971) is that the Missouri population was pushed southward by an earlier glaciation from Minnesota and Wisconsin. The present Wisconsin population is an extension of the Appalachian population, once again spreading westward and northward.

17. Allocapnia recta (Clasen) (fig. 57)

Caprella recta Clasen, 1924, Can. Entomol. 56: 44.

Length: 5-6 mm.

Description: This is a common eastern species, the male distinguished by a large single process on the 8th tergite only, which is broad in lateral view and, in some individuals, with suggestions of knobs. The female 7th and 8th sternites are not fused.

Fig. 57, Allocapnia recta male, lateral view of posterior abdominal segments, including posterior view of the raised area on the tergites.
and the subgenital plate is not well differentiated from the remainder of the segment.

In posterior view, the projection of the 8th tergum is shouldered. Illustrations of the
adult were given by Needham and Chassen (1925), Frison (1929), and Ross and

This is the earliest appearing Connecticut stenophylly and is found in both permanent
and temporary streams.

Frison (1929) found adults active when the air temperature was 20°F. He also
observed that adults fed on blue-green algae and that larvae fed on diatoms and
decaying leaves. Females did not fly but crawled into the water to deposit their eggs.

Hamilton (1931) found chickweed and kingtong feeding on eggs. An anonymous report
(1960) describes the nuisance caused by great numbers of rocia individuals crawling
into dairy equipment inside buildings. Ross (1965) and Ross and Ricker (1971) pub-
lished distribution maps.

Type locality: Ithaca, New York. Type at Cornell University.

Range: Quebec and New England south to North Carolina and west to Mississippi
and Illinois.

Connecticut records: East Morris, April 1, 1959 (SWH); Easton, Jan. 6, Apr. 5,
1966 (SWH); Hamden, Jan. 9, 1945, H. Macmill (YU); Killingworth, Feb. 26, 1959
(SWH); M. Carmel, Dec. 6, 1968, Feb. 27, 1970 (SWH); Plainfield, Mar. 19, 1964
(UC).

18. Allocapnia rickeri Frison (fig. 58)

Fig. 58. Allocapnia rickeri male, lateral view of posterior abdominal segments,
including posterior view of the raised area on the tergite (after Frison, 1942).

Length: 4.5-5.5 mm.

Description: The male has a bilobed process on the 8th abdominal tergum, with
a broad notch separating the lobes. The female has the 7th and 8th sternites fused,
and is not readily separable from relatives with the same characteristic. Further figures of

63
adults were published by Frison (1942) and Ross and Ricker (1971). The larva was illustrated by Harper and Hynes (1971b).

Type locality: Golconda, Illinois. Type at Illinois Natural History Survey.

Range: Southern Ontario and New York to northern Georgia and west to Minnesota and Oklahoma. The species is most widely distributed south of the glaciated area, with scattered records to the north. Ross (1965) and Ross and Ricker (1971), who published distribution maps of this species, found that it had penetrated only slightly into the glaciated area, except along the Mississippi River into Wisconsin and along other streams into New York and southern Ontario.

19. Allocapnia smithi Ross and Ricker (fig. 59)

![Image of Allocapnia smithi](image)

Fig. 59. Allocapnia smithi male, lateral view of posterior abdominal segments, and cross sections of abdominal segments (after Ross and Ricker, 1971).

Length: About 6 mm.

Description: The male of this species is very close to sivicolus, with a dorsal process on both the 7th and 8th tergites. That on tergite 7 is a flat ridge, scarcely raised; that on tergite 8 is bulbous. In lateral view, the corners of the 8th tergal process are wedged (rather than rounded, as in sivicolus), with the top surface appearing flattened rather than rounded. The female is said to be similar to sivicolus.

Type locality: South Hill, Kentucky. Type at Illinois Natural History Survey.

Range: Has been collected in Alabama, Kentucky, Ohio, and Illinois.

20. Allocapnia virginiana Frison (fig. 60)

Length: About 6 mm.

Description: The male has 2 processes on the 8th tergite, a smaller single-
Fig. 60. Allocynia virginiensis male, lateral view of posterior abdominal segments, including posterior view of the raised areas on the tergites (after Prisun, 1942).

lobed anterior one and a larger, slightly cleft posterior one that is broad and long in dorsal view. There is no tubercle on the 7th tergite. The female subgenital plate of the 8th sternite is broad and rounded and connected to the 7th by a narrow strap. Other illustrations of the adult are by Prisun (1942) and Ross and Ricker (1971).

Type locality: Shelby, Virginia. Type at Illinois Natural History Survey.

Range: Apparently collected, as yet, only in Virginia.

21. Allocynia vitripennis (Classem) (fig. 61)

Fig. 61. Allocynia vitripennis male, lateral view of posterior abdominal segments (after Prisun, 1935).

Length: 4.5-8 mm.

Description: The male process on the 8th tergite is single and pointed, and rises before the posterior edge of the tergite. The male lacks wings and the female ranges from brachypterous to macropterus. The larvae eat decaying leaves and at least 3 species of diatoms. The adults feed on Protocerus vulgaris. Males emerge first and then mate with the females very soon after their emergence. Unlike many Allocynia, the female, when carrying eggs, does not curl her abdomen so that the eggs appear uppermost. She crawls into the water to deposit the eggs, varying from 211 to 412. Eggs
hatch in about 19 days but the larvae do not grow appreciably until fall. The adults are active when the air temperature is as low as 20°F. Females can live 3 weeks or more (Prison, 1929). Ross and Ricker (1971) state that this species is often found in streams bearing considerable organic matter, including those with barnyard pollution.

Clasen (1924) claimed that females of this species are ooviviparous, a statement challenged by Prison (1929), who had excellent evidence against it. Clasen (1931) reiterated his claim but Harden and Nickel, writing in 1952, supported Prison. It is possible, of course, that sibling species may be involved.

Further figures of the adult are by Ross and Ricker (1971), Harper and Hynes (1971), and Prison (1935). The last two works also figure the larvae.

Type locality: Lake Forest, Illinois. Type at Cornell University.

Range: Quebec south to Virginia (omitting the New England states) and west to Minnesota and Oklahoma.

22. Allocapnia urayi Ross (fig. 62)

Fig. 62. Allocapnia urayi male, lateral view and cross section of posterior abdominal segment (from Ross and Ricker, 1971).

Length: 5-6.5 mm.

Description: The male of this species appears intermediate between mystica and zehri. Like those two species, it has a high process on the 8th tergite, ending with a bilobed structure. Unlike mystica, the apical segment of the upper arm of its epiproct is as long as the basal segment. Unlike zehri, it lacks a large bump on the 7th tergite. The female is indistinguishable from mystica. Figures of the adult were given by Ross and Ricker (1971).

Type locality: Richmond, Virginia. Type at Illinois Natural History Survey.

Range: Has been collected from the District of Columbia to Georgia. Ross and Ricker (1971) published a distribution map of this species.
23. *Allocapnia zehia* Ross (fig. 63)

![Diagram of Allocapnia zehia](image)

Fig. 63. Allocapnia zehia male, lateral view of posterior abdominal segments, including posterior view of the raised areas on the tergite (after Ross, 1964).

Length: 5.6-5.5 mm.

Description: This species is known only from the male. The 7th tergite lacks a distinct process but the posterior two thirds of the tergite forms a round, prominent hump. The 8th tergite bears a bilobed process similar to that of *myatica*. However, unlike the latter, the apical segment of the upper arm of the opisthosoma is longer than the basal segment. Ross and Ricker (1971) figured the adult and stated that it may be only a variant of *zehia*.

Type locality: La Plata, Maryland. Type at Illinois Natural History Survey.

Range: Has been found only in Maryland.

24. *Allocapnia zola* Ricker (fig. 64)

![Diagram of Allocapnia zola](image)

Fig. 64. Allocapnia zola male, lateral view of posterior abdominal segments, including posterior view of the raised areas on the tergites.

Length: 1.5-6.5 mm.

Description: The male has tergal lobes on abdominal segments 7 and 8. The 8th tergite bears 2 processes, the posterior one in the middle of the segment, the anterior one near the margin. The 7th tergite bears a bilobed process in the middle and a suggestion of another at the anterior edge. The female has the 7th and 8th sternites fused and the 8th produced partway over the 9th. Further figures are by Ricker (1932) and Ross and Ricker (1971).

This is apparently the only Allocopina that has persisted east of the Hudson River valley, yet has not become widely distributed in New England. In Connecticut it has been found only in a very small, clear stream in the northwestern part of the state.

Type locality: Ash Cave, Ohio. Type at Illinois Natural History Survey.

Range: Eastern Tennessee to western New York, with outlying collections from Connecticut and New Brunswick. Ricker (1932) and Ross and Ricker (1971) published a distribution map of this species.

GENUS Paracopina HABSON

Paracopina Hanson, 1946, Am Midl. Nat. 35: 225, 236

This genus has but 2 species, both found in eastern North America. Superficially it resembles the other Capniidae but, as described by Hanson (1946), it can be distinguished from other genera of that family because the mesothoracic postfurcasternal plate is united with the furcasternum and the spinasternum; the mesofurcasternum and metafurcasternum are transverse and almost rectangular; R3 of the forewing is bent caudally beyond its base; the apical portion of Cu1 of the hindwing is generally missing.

Type of genus: Chloroperla opta Newman

KEYS TO NORTHEASTERN SPECIES

MALES

1. Epiproct in lateral view strongly angulate at base (fig. 65)
 .. 1, angulata
 Epiproct in lateral view smoothly curved at base (fig. 67) 2, opta

LARVAE

(from Harper and Hynes, 1971d)

1. Middle and distal segments of cerci each with a long intermediate bristle at ventral base of segment; bristles on inner surface of the tibiae short, half as long as width of the tibia 1, angulata
 Cercal segments without intermediate bristles; bristles on the inner surface of the tibiae long, as long as width of the tibia 2, opta

68
1. *Paraepineuria angulata* Hanson (fig. 65)

![Image](image)

Fig. 65. *Paraepineuria angulata* epigroct, with ventral view of posterior margin of epigroct (modified from Hanson, 1961).

Length: 4.0-8.5 mm.

Description: This species is very closely related to *P. opis* and is differentiated only on the basis of the shape of the male epigroct. In dorsal view the epigroct of *angulata* is thicker, whereas that of *opis* is evenly tapered. The *angulata* epigroct is broadened once in dorsal view and then tapered to the tip but that of *opis* is enlarged at two different places. The females are indistinguishable, *P. angulata* is sympatric with *P. opis* over much of its range. Figures of adults and larvae were published by Harper and Hynes (1976); of the adult by Hanson (1961).

According to Harper and Hynes (1970), this insect, unlike other stoneflies, does not have a larval diapause during the summer.

Type locality: Metham, Massachusetts. Holotype in Hanson Collection, University of Massachusetts.

Range: Until all previously identified species have been rechecked, no geographic range can be given.

Connecticut records: Hadham, Apr. 7, 1969 (SHW); Mansfield, Mar. 29, 1955, L. Miller (UC); Monroe, Mar. 27, 1938, G. Plumb (CAS); Staffordville, Mar. 23, 1964 (SHW); West Goshen, Apr. 14, 1967 (SHW).

2. *Paraepineuria opis* (Newman) (figs. 66, 67)

Length: 4.5-6.5 mm.

Description: This species has had a peculiar history in the taxonomic literature. Originally described in 1839, it remained unrecognized for many years. Needham and Claassen (1921), in their monograph on North American species, passed over the name and redescribed the species under the name *Cepnia versalis* Newport. Ridler (1938), after examining the type specimens, determined that Needham and Claassen's *versalis* is Newman's *opis*, and that the true *versalis* Newport was an entirely different species. Hanson (1946) then described a new species, *curvata*, as distinguished from *opis* as used by Fritson (1942). Finally, Hanson (1961), on re-examining the
Paracapnia opis male

Fig. 66. Dorsal view of posterior abdominal segments.
Fig. 67. a. Lateral view of posterior abdominal segments; b. ventral view of posterior margin of epiproct.

types of opis Newman, decided that curvue = opis and that what had been called opis in this country was therefore without a name. Subsequently, he renamed opis anchora as angulata Hanson.

P. opis can be distinguished only in the male, by means of the posterior extension and basal curve of the epiproct. It follows Allacapnia phenologically, emerging in March and April. Harden and Mickel (1952) and Harper and Hyman (1971b) published figures of the larva.

In Quebec, the small larvae of this species were first found during the last part of June. Growth was slow until the fall, when the size increased rapidly until February. There was little further growth until emergence as adults in April. Probably the females are long lived, as ovipositing females were present from the last of April to early June (Harper and Magnin, 1969).

Type locality: Chilton (?), Newfoundland. Type in University Museum, Oxford, England.

Range: As this species was not clearly differentiated from angulata until 1961, no definite geographic range can yet be given.

Connecticut records: Brooklyn, Mar. 19, 1964 (SWH); Eastford, Mar. 28, 1963 (SWH); East Willington, Apr. 28, 1963 (SWH); Enfield, Mar. 25, 1959 (SWH); Harwinton, Apr. 1, 1959 (SWH); Mansfield, Mar. 25, 1963 (SWH); Meriden, Apr. 11, 1957 (UC); Montville, Mar. 2, 1964 (SWH); Montours, Apr. 4, 1959 (UC); Warrenville, Mar. 28, 1963 (SWH); Woodstock, Mar. 28, 1963 (SWH).

GENUS Nemocapnia Banks

As with other Capniidae, the present generic differentiation is the result of Hanson's (1946) studies. Nemocapnia is distinguished by the following characteristics: its prosternum is united to the basisternum on each thoracic sternite, its mesoand prothoracic prothoraciscum is large and united to the spinisternum and furcasternum, vein A1 of the forewing is slightly bent just beyond the origin, and there is no costal crossvein beyond Sc in the
forewing.

There is only 1 North American species.

Type of genus: *Nemocapsia carolina* Banks.

1. *Nemocapsia carolina* Banks (figs. 13, 68)

![Fig. 68. Nemocapsia carolina male, lateral view of posterior abdominal segments, with posterior view of projection on 9th tergite (from Harper and Hynes, 1971).](image)

Family Leuctridae

These small stoneflies occur in North America, Eurasia, and northern Africa. The wings are rolled around the body at rest, cu-a and intercalary crossveins of forewing are present, in most genera the medias of the hindwing is simple and the cubitus forked. There are no gills. The adult cerci are single segmented and simple in most genera. The male epiproct is generally inconspicuous. Richer and Rosén (1969) have made a comparative study of the genitalia parts of the various leuctrid genera. They state that the leuctrids are peculiar in having a long median process or submedian probe between the paraprocts. In the genera under consideration here, *Pareulectra* demonstrates this most clearly, with the median process bending posteriorly and then recurving (fig. 50b). The paraprocts have been reduced.
in this genus to suspensorium bars on each side of the median process. In Leuctra, the median process has divided into 2 broadened specilia (the "sub-anal lobes" of Needham and Claassen, 1925) and the paraprostoma have become narrow and elongate (the "distilators" of Needham and Claassen, 1925). In figure 9, pp would represent the specilia, and t the paraprostoma ("distilators") for this genus. In Zealeuctra, the paraprostomum and median processes are fused together for much of their length.

The Leuctridae have been divided into various groups, some of which have generic status, some only subgeneric. The considerable differences in morphology necessitate a greater division than has usually been accorded. I have here followed Richer and Ross (1965) for the Northeastern species, considering Paraleuctra and Zealeuctra to be separate genera, although a possible alternative is to consider Zealeuctra a subgenus of Paraleuctra. The phylogeny of the generic groups within this family has been discussed by Karsch (1952), Berthold (1959) and Richer and Ross (1965). Hitchcock (1966) keyed the males of Northeastern Leuctra spp.

GENUS Leuctra STEPHENS

These are small, brownish, inconspicuous sternes that may, at times, be exceedingly numerous. Generally they seem to favor the smaller, slower streams and are among the few adult sternes that are found from spring until autumn. The adults are characterized by their subequal in size to the paraprostomum; no slanting crossvene beyond the costa, cerci of 1 segment, wings rolled around the body when at rest, and Rs and M of forewing originating at different points on the radius. It is separated from the closely related Paraleuctra and Zealeuctra by having the m-cu crossvein of the hindwing proximal to the dichotomy of CuJ. In most species the prothoracic basisternum has no line of division from the proternum but is separate from the furcasternum (fig. 16). The male cerci are unmodified.

Specific differentiation is usually based on the shape and number of processes of the male 7th and 8th tergites. These differences are not always clear cut and there may be some additional synonymy involved when collections are made from the intervening areas between type localities.

Proposed type of genus: Paraleuctra fuscata L. This species has been proposed as the type of the genus (Bull. Zool. Nomen. 22[2]: 108-109) but by March 1973 the International Commission had taken no action on the matter.

KEYS TO NORTHEASTERN SPECIES

MALES

1. Processes on both tergites 7 and 8 or on neither (figs. 70-72, 75) ... 2
2. Process on either tergite 7 or 8 but not on both 4

Male of babblchta not known.
2. No process on either tergite 7 or 8; or a single, rounded barely raised process on each segment (figs. 71, 72) 3, ferruginea
Process on both tergites 7 and 8; that on 8 either bi- or trifoliate (figs. 70, 76) .. 3

3. Process bilobed on both tergites 7 and 8 (fig. 70) 2, duplicata
Process trifoliate on tergite 8; single, rounded, and barely raised on 7 (figs. 73, 76) .. 4, laura

4. Process on tergite 7 only (figs. 82, 84) 5
Process on tergite 8 only (figs. 81, 88) 9

5. Process on tergite 7 distinctly trifoliate (figs. 86, 89a) 6
Process on tergite 7 not trifoliate (figs. 83, 85, 89b) 7

6. No spines on apices of specula; paraprostomites slightly curved or straight .. 11, variabilis
Specula finely spinulose apically; paraprostomites well curved ... 9, triloba

7. Process of tergite 7 reaching anterior margin of tergite 8 (figs. 85, 89) .. 8
Process of tergite 7 not reaching more than halfway across tergite 7 (figs. 86, 89a, b) 7, tenebrotella

8. Sclerotized process long, extending out over tergite 8; vesicle longer than wide (fig. 84) 8, temminckii
Sclerotized process not extending over tergite 8; vesicle as wide as long (fig. 89) .. 11, variabilis

9. Tergite 8 with a single process (figs. 87, 88) 10
Tergite 8 with 2 processes or a single bifurcate or trifurcate one (figs. 79, 81) .. 11

10. Process truncate (fig. 88) 10, truncata
Process rounded and barely raised (fig. 72) 5, ferruginea

11. Tergite 8 with trifurcate process (if it is questionably trifurcate, with lateral lobes rounded, go to Couplet 12) (fig. 76) 4, laura
Tergite 8 with 2 processes or single bifurcate one 12

12. Process on tergite 8 with 2 slender processes widely separate and several times as long as wide (fig. 81); specula without trough ... 6, zibbeyi
Process of tergite 8 with 2 lobes close together; trough in specula (fig. 79) ... 5, mariae

LARVAE
(from Harper and Hynes, 1971a)

1. Whorls of bristles on cercal segments bushy 6, zibbeyi
Whorls with fewer bristles .. 2

1Larvae of laura, triloba, and variabilis not known.
2. In side view, all abdominal tergites covered with short, stout bristles
4
Only the last 3-4 abdominal tergites with short, stout bristles 3

3. Anterior angles of mesonotum with many short, stout bristles
7. tenella
Few very short, stout bristles on anterior angles of mesonotum;
late-summer species 10. tronacea

4. As seen in profile, some abdominal sternites, at least the 9th, bear
short, stout bristles
5. ferruginea
No stout bristles on abdominal tergites; however, a few long bristles
on posterior margins of last segments

5. Short, stout bristles on nearly all sternites, at least on sternites 4-5
6
Short, stout bristles numerous only on sternite 9, although there may
be a few on preceding sternites
8. fumosa

6. Pronotum with many short bristles on margin; no long bristle on an-
terior angle; a few short, stout bristles at base of anterior margin
of fore wing-pad
2. duplicata
Pronotum with at least 1 long bristle on anterior angle; no short,
stout bristles at base of anterior margin of fore wing-pad
5. maria

1. Leuctra baddecka Ricker (Fig. 69)

Length: 8.5-9.0 mm.

Description: This species, known only from the female, bears no abdominal
sclerotized stripe similar to that of the Psephoecren but otherwise would seem to
belong to the Leuctra. The submedian plate is broadly produced, with a medial notch
and is emarginate on each side of the notch. Ricker (1965) illustrated the female.

Fig. 69. Leuctra baddecka female, ventral view of posterior abdominal seg-
ments (after Ricker, 1952).
Type locality: Baddeck Forks, Nova Scotia. Type in Canadian National Collection, Ottawa.

Range: Found only at the type locality.

2. *Leuctra (Leuctra) duplicata* Claassen (Fig. 70)

Fig. 70. *Leuctra duplicata* male, lateral view of posterior abdominal segments.

Length: 6-9 mm.

Description: This species is easily distinguished from other eastern *Leuctra* because *duplicata* is the only species whose males have bladed raised processes on both tegites 7 and 8. The female is also distinctive because of a raised tubercle just anterior to the genital opening. Further figures of the adult genitalia were given by Needham and Claassen (1923), of the larvae by Harper and Hynes (1971a).

In Connecticut, I have found it in muddy, slow-moving streams in swamps, as well as in clear little brooks in wooded areas.

Type locality: Labrador Lake, New York. Type at Cornell University.

Connecticut records: Bethany, May 19, 1969 (SWH); Beacon Falls, May 17, 1961 (SWH); Branford, May 10, 1951, J. Kriger; Canaan, June 10, 1965 (SWH); East Hartford, May 14, 1966 (SWH); Groton, June 7, 1962 (SWH); Griswold, June 14, 1967 (SWH); Guilford, June 28, 1967 (SWH); Killingworth, May 21-26, 1965, D. Leonard; Lyme, May 17, 1962 (SWH); Madison, June 18, 1963 (SWH); New Haven, May 21, 1962 (SWH); North Plain, May 20, 1943, S. Ball (YU); Plymouth, May 19, 1961 (SWH); Salem, May 29, 1967 (SWH); Suffield, June 9, 1966 (SWH); Sterling, June 1, 1969 (SWH); Stoners, May 11, 1954, W. Davis (UC); June 8-10, 1954, J. Shuter (UC); Thomaston, May 5-26, 1961 (SWH); Union, June 9, 1966 (SWH); Voluminous, June 14, 1967 (SWH); Wolcott, May 14, 1969 (SWH); Woodbridge, May 12, 1946, May 27, 1950, C. Hemmington (YU); Woodstock, June 9, 1966 (SWH).

75
3. *Leuctra (Leuctra) ferruginea* (Walker) (Figs. 16, 31, 71-74)

Leuctra ferruginea

Fig. 71. Male, lateral view of posterior abdominal segments.

Fig. 72. Male, dorsal view of posterior abdominal segments.

Fig. 73. Female, ventral view of posterior abdominal segments.

Fig. 74. Adult labium.

Length: 6.85 mm.

Description: The synonym aptly describes this species, as the male is variable in appearance. Generally it has a small process on the anterior margin of the 8th abdominal tergite but in some individuals it appears to be missing. In occasional specimens, the 7th tergite also has a dark sclerotization that resembles a process but is not raised. The female subgenital plate is produced into 2 rounded lobes, separated by a membranous area extending anteriorly onto the 8th sternite. Figures of the adult (under *decipia*) were given by Needham and Chassen (1923), Richer (1938), and Frison (1942); and of the larvae by Chassen (1931) and Harper and Hynes (1973a).

Frison (1942) stated that the larvae show the delicate setal gills that he figured in 1935 for *chauseni* but, as discussed under that species, it is possible that these are fungal growths rather than gills. *L. ferruginea* has been taken from late April to fall; it is sometimes attracted to lights.
Type locality: Nova Scotia. Type in the British Museum.

Range: Unusually broad: from Quebec and the Maritimes south to Florida and west to Minnesota and Illinois.

Connecticut records: Bethany, June 6, 1961 (SWH); June 26, 1999, V. Nelson; Canaan, June 19, 1968, Aug. 31, 1962 (SWH); Chester, June 18, 1965 (SWH); Eastford, June 9, 1966 (SWH); Easton, May 27, 1968, Sept. 1-9, 1964 (SWH); Glastonbury, Apr. 22, 1959 (SWH); Goshen, June 7, 1962 (SWH); Hamden, Oct. 26, 1963, S. Ball (YU); Harwinton, June 4, 1965 (SWH); Killington, June 18, 1965 (SWH); Lebanon, June 12, 1959 (SWH); Madison, June 18, 1963 (SWH); Nampa-
tuck, June 3, 1969 (SWH); North Goshen, August 17, 1960 (SWH); North Haven, at lights, June 24, 1973, C. Remington (YU); North Madison, June 18, 1963 (SWH); North Plain, Apr. 20, 1935, S. Ball (YU); Portland, May 23, 1963 (SWH); Sterling, June 11, 1939 (SWH); Storrs, at lights, Sept. 24, 1959, M. Sweet (UC); Voluntown, June 14, 1967 (SWH); Washington, at light, Sept. 24, 1961, S. Hessel (YU).

4. Leuctra (Leuctra) laura Hitchcock (figs. 75-77)

Length: about 8.5 mm.

Description: The male has a trifurcate process on the 8th abdominal tergite. The 2 lateral points are raised, whereas the center one is not. The 7th tergite bears a single rounded, sclerotized area that is barely raised above the surface of the segment. The female is unknown, although Hitchcock (1969) illustrated the possible female of this species, a specimen swept from the shore of a rapid, rocky stream.

Range: Has been found only in the type locality.

5. Leuctra (Leuctra) maria Hanson (figs. 70, 79)

Length: 6-9 mm.

Description: Males of this species are distinctive in having the specula grooved into a trough. This occurs in no other North American Leuctra. The 8th tergite has a short, bilobed process. The female is less distinctive but has a median hump on the 8th sternite and a bilobed subgenital plate (Ricker, 1952) somewhat like that of L. duplex but with more widely separated lobes. Hanson (1941) and Ricker (1952) have figured the adults and Harper and Hanson (1971) the nymph.

This species has been rarely collected, so it may be of interest to add records from Jefferson, New Hampshire, June 21, 1965 (A. H. Mason and W. J. Morse, University of New Hampshire collection), and Londonderry, Vermont, June 21, 1965 (SWH).

Type locality: Barrington, New Hampshire. Type in Hanson collection, University of Massachusetts.

Range: Has been recorded from northern New England, Quebec, and Ontario.

77
6. Leuctra (Leuctra) sibletyi Claassen (Figs. 80, 81)

Leuctra sibletyi Claassen, 1925. Can. Entomol. 55: 262

Length: 8.11 mm.

Description: The male 8th tergite bears 2 elongate, broadly separate processes. There seems to be some variation in the length of the lobes. In a few individuals, the sclerotized arm between the lobes is expanded posteriorly, thus giving the lobes
Leuctra maria male: posterior abdominal segments

Fig. 78. Lateral view.

Fig. 79. Dorsal view.

A shorter appearance and, in some cases, suggesting a small median lobe between them. The female subgenital plate is somewhat produced into 2 lobes with a notch between. In some individuals, a lighter membraneous area extends slightly anterior of the notch. This is one of the larger and lighter colored *Leuctra*. Further figures are by Ricker (1965) and Harper and Hynes (1971a). The adult emergence pattern was graphed by Harper and Pilon (1970).

Type locality: Moore's Brook, Ithaca, New York. Type at Cornell University.

Range: The Maritimes to southern New England and west to Ontario and New York.

Connecticut records: Backhamsted, May 20, 1960 (SWH); Bethany, May 31, 1962 (SWH); Clinton, May 20, 1960 (SWH); Cheshire, May 21, 1959 (SWH); North Granby, June 1, 1957 (SWH); Woodbridge, June 2, 1959, C. Remington (YU).

7. *Leuctra* (*Leuctra*) teolle Provancher (figs. 82, 83)

Length: 6.5-9 mm.

Description: The male bears a bluntly pointed process on the 7th tergite. This process is variable in dorsal view, in some individuals approaching the suggestion of a trilobed condition and in some the sides are impressed. The female subgenital plate is produced into 2 lobes with a narrow notch between them. The adult was illustrated by Needham and Chasnier (1925) under the name himala and the larva by Harper.
Laeuctra sibleyi male: posterior abdominal segments

Fig. 80. Lateral view.

Fig. 81. Dorsal view.

and Hynes (1971a). Harper and Fillos (1990) graphed the adult emergence pattern and found that, unlike most stoneflies, the females can emerge earlier than the males at the start of the emergence period.

Type locality: Near Quebec City, Quebec. Type in Provancher Collection, Quebec Provincial Museum, Quebec City.

Range: Labrador south to New Jersey and west to Minnesota.

Connecticut records: Bethany, June 26, 1969, V. Nelson; Beacon Falls, May 17, 1961 (SWH); Granby, June 2, 1963 (SWH); Newington, May 21, 1962 (SWH); Shelton, June 19, 1962 (SWH); Simsbury, June 14, 1967 (SWH); Voluntown, June 14, 1967 (SWH).

8. *Laeuctra (Laeuctra) tenax* (Pictet) (figs. 84, 85)

Nemoura tenax Pictet, 1841, Perides: 375.

Length: 6.5-8 mm.

Description: The male 7th abdominal tergite bears an elongate truncate process that projects part way onto the 8th tergite. The female subgenital plate is slightly
Leucira testa male, posterior abdominal segments

Fig. 82. Lateral view.
Fig. 83. Dorsal views; a and b show variations in the dorsal lobe.

produced into 2 lobes separated by a notch and a membranous area. Prion (1942) and Needham and Clasen (1935) figured the adult genitalia. However, the female figure in the latter work appears to be ferruginea rather than testa. Harper and Henson (1971a) figured the larva. Harper and Pilny (1970) graphed the adult emergence pattern.

Prion (1942) stated that this species, like claussi and ferruginea, has delicate anal gills but as mentioned above, I believe these to be fungal growths rather than gills. This is one of the few species of Leucira that appears as an adult in late summer and fall.

Although Slosen (1985) captured a specimen of testa at the summit of Mt.
Washington, the small amount of water available there probably does not provide a breeding area. I have found *L. tessela* on the lower forested slopes of Mt. Washington and it would seem likely that *tessela* would be found in the same places. Although Needham (1904) did not observe that this species flies, most *Luctra* do fly readily and I have captured them half a mile from the nearest stream. The strong winds on Mt. Washington could easily carry specimens to the summit, where Mrs. Shouson made her collections (Hitchcock, 1959).

Type locality: Philadelphia, Pennsylvania. Type in the Berlin Museum.

Range: The Maritimes south to New Jersey and west to Minnesota and Missouri.

9. *Luctra (Luctra) triloba* Clausen. (fig. 96)

Length: 6.5-8 mm.

Description: The male bears a tubercled process on the 7th abdominal tergite that, in many individuals, extends over the anterior part of the 8th. The female subgenital plate is produced into 2 lobes, separated by a narrow membranous notch. This is another late summer and fall species. It was illustrated by Needham and Clausen (1947).
Fig. 86. *Leuctra trivittata* male, dorsal view of posterior abdominal segments; a, b, and c show variations in the dorsal lobe.

Type locality: McLean, New York. Type at Cornell University.

Range: This uncommon species apparently ranges from Quebec south to Florida.

10. *Leuctra (Leuctra) truncata* Claassen (Figs. 87, 88)

Length: 6.5–9 mm.

Leuctra truncata male, posterior abdominal segments

Fig. 87. Lateral view.

Fig. 88. Dorsal view.

83
The male 8th abdominal tergite bears a single truncate process that reaches only part way across it. The female subgenital plate is somewhat produced, with a notch between the lobes. It was illustrated by Needham and Claassen (1925). Harper and Myres (1971a) illustrated the larva. The adult emergence pattern was graphed by Harper and Plumb (1970).

This species appears to be very close to some variations of ferrugineus and may be conspecific with it. However, in most truncata individuals the process of the 8th segment is raised and more obvious than in ferrugineus.

Type locality: Old Forge, New York. Type at Cornell University.

Range: Quebec to southern New England and west to New York.

Connecticut records: Bethany, Apr. 14, 1900 (SWH); Granby, June 7, 1962 (SWH); Killingworth, June 18, 1905 (SWH); Suffield, June 9, 1966 (SWH).

11. Lecrita (Lecrita) variabilis Hanson (Fig. 89)

Lecrita variabilis Hanson, 1941, Bull. Brooklyn Entomol. Soc. 36: 62.

Length: 7.9 mm.

Description: The male 7th abdominal tergite bears a process that is truncate in most individuals but rounded or slightly tubed in a few. The female subgenital plate is somewhat produced into 2 lobes that slightly converge apically and have a narrow, shallow notch between them. Hanson (1941) figured the adult genitalia.

![Fig. 89. Lecrita variabilis male, dorsal views of posterior abdominal segments; a and b show variations in the dorsal lobe (b is drawn from the paratype).](image-url)
wings, prothoracic sternum, and larval labium. This species has been captured above timberline at the outlet to Lakes of the Clouds on Mt. Washington, as well as further south in Massachusetts. It is an autumn species, having been collected from late August to late November.

Type locality: Sunderland, Massachusetts. Type in Hanson Collection, University of Massachusetts.

Range: Has been collected in New Hampshire, Vermont, Massachusetts, and Virginia.

GENUS *Paraleuctra* HANSON

Paraleuctra Hanson, 1941, Bull. Brooklyn. Entomol. Soc. 36: 57

This genus is closely related to *Lectra* and is separated from other genera in the Plecoptera by means of the characters listed under that genus. It differs from *Lectra*, however, in having the scru crosvein reach Cu4 after it has divided and, in most species, by having the prothoracic basiternum partially or completely separated from the prosternum and united to the furcasternum (fig. 17). The male cerci are heavily sclerotized and modified, with various projections. The dorsum of the female has a longitudinal sclerotized stripe bordered on each side by a membranous longitudinal stripe (fig. 93).

Type of genus: *Lectra occidentalis* Banks.

1. *Paraleuctra sura* (Chasser) (figs. 6, 17, 50, 90.00.03)

Length: 7-10.5 mm.

Description: The male is distinctive among eastern species of Leuctridae in having a strongly sclerotized, 2-pronged cerci. Each prong bears a smaller process halfway down its length, although the process on the lower prong is on the inner edge of the cerci and somewhat difficult to see. The epiproct is recurved, the specula project anteriorly beneath the cerci before recurving from behind the 9th sternite into a long, fused process that reaches over the epiproct. The female subgenital plate is produced into 2 lobes with a broad notch between. Chasser (1937) and Hanson (1962) illustrated the adult. Hanson (1941) figured the adult prosternum and wings and the larval labium and terminalia; Harper and Hynes (1971a) various larval parts.

There was some question as to whether the eastern sura has a transcontinental distribution until Hanson’s (1962) paper clearly differentiated the eastern and western species.

Type locality: Ringwood Lloyd Preserve near Ithaca, New York. Type at Cornell University.

Range: Quebec and New England south to Virginia and west to Ontario and New York.

\textit{Paraleuctra} arena

Fig. 90. Male: a, lateral view of posterior abdominal segments; b, lateral view of epiproct (to the left) and median process (to the right).

Fig. 91. Male, dorsal view of posterior abdominal segments.

Fig. 92. Female, ventral view of posterior abdominal segments.

Fig. 93. Female abdomen, dorsal view.

\textbf{Genus} \textit{Zealeuctra} \textbf{Ricker}

This genus is separated from the closely related \textit{Paraleuctra} by the
broad depression on the 9th tergite of the male (figs. 96, 100) and by the shape of the paraprosternum (fig. 94). The female lacks dorsal sclerotization on the abdomen and (except in *Z. narfi*) bears a median lobe on the 7th sternite.

Type of genus: *Lenotre* *classensi* Frison.

Fig. 94. *Zelallectra* male epiproct: a. *classensi*; b. *fraxina*; c. *narfi* (after Ricker and Ross, 1909).

KEY TO NORTHEASTERN SPECIES
(from Ricker and Ross, 1909)

1. Male epiproct terminating in simple tapered cusp (figs. 94a,c); female 7th sternite with hind margin straight (except for median lobe)—an area of reduced sclerotization can mask the straightness (fig. 97) —------------------------------- 2
 Male epiproct with secondary cusp near tip of main cusp (fig. 94b); female 7th sternite with hind margin notched to contain median lobe (fig. 99) ---------------------------- 2. *fraxina*

2. Mesal margin of male central depression of 9th tergite minutely and irregularly serrate anterior to subterminal spine (fig. 96); base of epiproct rounded and as long as wide (fig. 94a); female median lobe of 7th sternite thick, white, and as broad as long in most specimens; posterior marginal hairs of 7th sternite numerous and long 1. *classensi*
 Mesal margin of male central depression of 9th tergite smooth except for rounded terminal and subterminal projections (fig. 100); base of epiproct half as long as wide (fig. 94c); female median lobe of 7th sternite brown, about twice as broad as long; posterior marginal hairs few and short 3. *narfi*

1. *Zelallectra classensi* (Frison) (figs. 94a, 95-97)

Length: 8-10 mm.

Description: The male 9th tergite has a longitudinally depressed area open to the rear; this cleft is bordered by sclerotized toothlike projections, terminating in a conspicuous projection on each side. The male epiproct has a single sharp tooth on a broadly rounded base. Each cercus has a rounded bump on the upper side. The
paraprocts are broad. The female subgenital plate is not produced but there is a medial lobe on the posterior margin of the 7th sternite. Illustrations of adults were given by Frison (1942) and Ricker and Riss (1969).

†Z. classoni emerges early in the spring (Frison, 1935) and can be found even in streams that dry up in midsummer (Ricker, 1927). Frison (1927) examined the gut of one larva and found it to contain decaying vegetation. The larvae have been figured with delicate anal gills (Frison, 1935) but, as similar structures have been observed in larvae of other genera, I believe them to be a fungal growth rather than gills.
2. Zealectra frosina Ricker and Ross (Figs. 98, 99, 100)

Length: 8-10 mm.

Description: This species is the only Northeastern Zealectra that has a secondary tooth behind the point of the male epiproct. The sclerotized margins of the male tergal depression terminate in a sharp point and a smaller subterminal projection. The female 7th sternite is strongly notched. The female median lobe is rounded and white. Adulte were illustrated by Ricker and Ross (1969).

Type locality: Herod, Illinois. Type at Illinois Natural History Survey.

Range: West Virginia to Tennessee and eastern Illinois.

3. Zealectra nori Ricker and Ross (Fig. 104c, 100)

Length: 6-7.5 mm.

Description: Male epiproct of nori has a single tooth on a base that is wider than long. The sclerotized margins of the 9th tergal depression terminate in a rounded point and rounded subterminal tooth. The female median lobe is brown and...
Fig. 100. Zelandra warf, male 9th tergite (after Ricker and Ross, 1939)

wider than long. Additional figures of the adult are shown by Ricker and Ross (1939).

Type locality: Otter Creek, Sauk County, Wisconsin. Type at Illinois Natural History Survey.

Range: Arkansas to Wisconsin.

Family Nemouridae

These are small, inconspicuously colored stones found in North America, Eurasia, and northern Africa. Gills are either absent or in the cervical region. The shortening and reduction of the abdominal ganglia are greatest in this family with only 5 or 6 ganglia visible upon dissection. The male epiproct and paraphyses are well developed and function in mating. A ventral vesicle is present in most genera and the adult cercus has only 1 segment.

Genus Nemoura Latreille

This is a very large genus which European workers have broken into a considerable number of smaller genera. I am here following the more conservative pattern of North American workers and consider that all species belong to a single genus, Ricker (1952) has monographed the North American species, and in the following keys and discussions I have generally followed his concepts.

The adults, with a few exceptions, have a slanting crossvein between the costa and vein R1 in the forewing (fig. 140), and have the terminal segment of the labial palpus subcircular in ventral view. The wings are well developed in most species and lie flat over the back when at rest. The media of the wings is not forked but the cubitus is not. Some species have gills and can thus be identified immediately as to genus. Some larvae are difficult to identify; the first attempt to key Northeastern species was by Harper and Hynes (1971c).

Type of genus: *Perla cinerea* Retzius (Opinion 653, ICZN, 1963).
1. Remnants of gills present under neck (fig. 24) ... (Amphigenura) 2
 No gills .. 6

2. Outer (upper) division of paraprocts (subanal lobes) long, recurved, spinulose; inner (lower) division about half as long, unarmed (fig. 145) 17, was
 Outer division of paraprocts no longer than the inner, which is spinulose (fig. 141) 3

3. Paraprocts short, not recurved onto 10th tergite, inner members armed with only 4-6 spines (fig. 111) 5, linda
 Paraprocts long, recurved over at least part of 10th tergite, inner members armed with at least 8 spines (figs. 46, 141) 4

4. Tip of outer member of paraprocts expanded and bearing a group of large spines separately from inner member (fig. 141) 15, varahara
 Tip of outer member slender, bound to inner member, with few short spines or no spines (fig. 115) 5

5. Inner member of paraproct much produced rearward at bend, where it is thin and compressed; its tip unsclerotized and not recurved (fig. 109) 7, nigrata
 Inner member not compressed at the bend; its tip recurved at least on inner side (fig. 115) 7, nigrita

6. Vesicle present on 9th sternite 7
 No vesicle on 9th sternite 8, (Paragenus) perfecta

7. A₁ and A₂ of forewing united a little before their outer ends (fig. 140) .. (Sayedina) 8
 A₁ and A₂ of forewing separate at tip 9

8. Anterior margin of paraproct straight near narrow truncate tip; no suggestion of a process; tergite 7 elevated posteriorly (fig. 137) 14, vallaticularia
 Anterior margin of paraproct concave near tip, commonly but not invariably with distinct anterodorsal projection; tergite 7 not elevated (fig. 148) 16, washingtoni

9. Cercus elongated and heavily sclerotized on at least outer surface, tip sharp or with processes (fig. 101, 131, 134) 10
 Cercus weakly sclerotized, tip blunt or rounded (figs. 105, 128) 14

10. Cercus little elongated, membranous on inner surface, with terminal spines; all abdominal segments completely sclerotized and of approximately equal width (figs. 130, 131) .. 12, (Nemoura) trimaculosa
 Cercus long and slender, completely sclerotized, pointed at tip; 9th and 10th abdominal segments more heavily sclerotized and much
11. Cerri definitely bent in side view; vesicle of 9th sternite attached at front margin of sternite (figs. 105, 120) .. 11
 Cerri almost straight in side view; vesicle of 9th sternite attached behind front margin (figs. 102, 133) 13

12. Cerri with subterminal notch on the inside (fig. 107) ... 3, complexa
 Cerri without subterminal notch (fig. 120) 9, prolongata

13. Tip of subgenital plate rather broad, with sharply pointed paraprocts (fig. 134) .. 15, truncata
 Tip of subgenital plate slender, divided medially by rather deep notch; spars paraprocts 1, ulbidipennis

14. Sides of 10th tergite produced into erect, incurved, spiny processes (fig. 125); wings with alternate clear and pigmented bands 10, (Shizoa) rotunda
 Sides of 10th tergite not as above; wings banded or uniformly colored ... 15

15. Epiproct slender, completely recurved along 10th and 9th tergites, with slender process on each side at base (figs. 104, 127) 16, (Prostoa) similis
 Epiproct short, thick, complex in structure, only slightly bent forward, with no basal processes (fig. 113) ... 6, (Podnata) macedonngaith

16. Basal processes of epiproct twisted, divergent, and more than half as long as epiproct (figs. 127, 128) 11, similis
 Basal processes of epiproct short (less than one sixth as long as epiproct), appressed and easily overlooked (figs. 104, 105) 2, completa

FEMALES
(modified from Ricker, 1952)

1. Gills present under neck or head (fig. 24) 2
 Gills absent ... 7

2. Gills are simple filaments; 7th sternite produced completely over a very weak 8th sternite 18, (Zapada) Nemoura sp.
 Gills branched; 7th sternite moderately or little produced, not covering all of 8th; 8th sternite bears distinct terminal or subterminal notch (Ephemeromura) 3

3. Tip of subgenital plate (8th sternite) not exceeding level of sides of 8th segment 4
 Tip of subgenital plate considerably exceeding the 8th segment (fig. 146) .. 17, unci

4. Border of subgenital plate with median notch and small but definite V- or U-shaped lateral notch on either side (fig. 110) ... 4, delesa
 Border of plate merely sinuate laterally or, less commonly, with broad

92
5. Northern and northwestern species, ranging southward to Michigan

Range elsewhere 6

6. Range in Middle West: Indiana, Illinois 15, varshava or, rarely, 7, nigrita
Range from eastern Ohio to eastern Tennessee and from Quebec to
Florida .. 7, nigrita

7. A1 and A2 united near margin of forewing (fig. 140) ; a large species;
7th sternite produced over the full length of 8th (figs. 138, 144)
.......................... (Syedina) 13, tallicata, 16, washingtoni
A1 and A2 not united in forewing 8

8. Wings mostly dark, with clear or relatively clear band across middle
of outer field 9
Wings entire clear, or with some or all veins margined with brown,
or with marginal or central dark spot at level of the cord 13

9. Terminal costal crossvein running between Sc and C, proximal of the
cord 8, (Paracemora) perfecta
Terminal costal crossvein running between R4 and C, beyond cord
(fig. 140) 10

10. Sternite 7 sclerotized and produced over full length of 8, its bind mar-
gin straight to broadly rounded (fig. 132)
.......................... 12, (Nemora s. a.) trispina
Sternite 7 produced only slightly or not at all over 8 (narrowly
rounded margin of subgenital plate of 8th sternite in Shippe can be
mistaken for 7th sternite) (figs. 106, 126, 129) 11

11. Sternite 8 with subgenital plate terminating anterior to well developed
hind margin and bearing contrasting dark and light bands (fig. 126)
.......................... 10, (Shippe) rotunda
Sternite 8 with terminal subgenital plate not separated from hind
margin of sternite and uniformly colored (figs. 106, 129)
.......................... (Proboesia) 12

12. Sternite 8 distinctly produced laterally and with large notch medially
(fig. 129) 11, similis
Sternite 8 little or not at all produced; median notch small or absent
(fig. 106) 2, complexa

13. Sternite 8 very weak and un sclerotized medially; sternite 7 produced
over full length of 8 and not laterally excavated (fig. 132)
.......................... 12, (Nemora s. a.) trispina
Sternite 8 sclerotized medially, at least near posterior margin; sternite
7 produced only slightly or not at all (except in Ostroberca prolata
where it is excavated laterally) 14

14. Sternite 8 with narrow median sclerotized band, contrasting sharply
with un sclerotized field on either side (fig. 114)

8. (Pseudastus) maderaspatens
Sternal 8 without median stripe, uniformly sclerotized in most in-
dividuals (Ostrocerus) 15

15. 7th sternite lacking sclerotization, its hind margin not produced; mar-
gin of 8th sternite somewhat produced and broadly and almost
rectangularly excavated (fig. 155) 13. truncata

7th sternite somewhat sclerotized along its hind margin, at least near
the middle (inconspicuous in albidipennis); 8th sternite not as
above ... 16

16. 7th sternite produced over most of 8th, its hind margin broadly rounded
(fig. 123) ... 9. prolongata

7th sternite less produced (generally little produced), terminating in
distinct nipple (best seen in side view) 17

17. Nipple of 7th sternite parallel sided, prominent; hind margin of 8th
sternite straight, with little extra sclerotization at middle (fig.
108) ... 3. ? complexes

Nipple of 7th sternite blunted, weak, very easily overlooked in
ventral view; hind margin of 8th very broadly notched or ex-
cavated, without extra sclerotization near middle (fig. 103)
.. 1, albidipennis

LARVAE
(modified from Harper and Hynes, 1971d)

1. 4 prosternal gills .. 2

2. Prosternal gills simple (unbranched); femora with distinct transverse
line of bristles 18. N. (Zapata) sp.

Prosternal gills branched Amphimemura 3

3. All gill tufts containing about equal number of filaments; marginal
bristles of pronotum long and pointed 4

Lateral gill tufts containing about half as many filaments as median
tufts; marginal bristles of pronotum short and round tipped
.. 17, uwa

4. Bristles of apical whorls of middle cerical segments about half as long
as corresponding segment 7. nigra
Bristles at least three quarters length of the segment 5

5. Spring species, mature larvae found from April to early July; larger
bristles on femora and tibiae same color as leg or only slightly
darker 4, delicat

Autumn species, mature larvae found from late July to October;
larger bristles on femora and tibiae definitely darker than re-
mainder of leg 5, linda

6. Pronotum with well defined lateral fringe 7
Pronotum without definite fringe; in some species bristles on lateral margins of pronotum are longer than dorsal bristles but never set in distinct line ... 8

7. Legs short, hind femora in side view about 3 times as long as broad; pronotum with shallow notch laterally; 2 longer setae in pronotal fringe, 1 on anterior angle, the other near posterior angle .. 11, vallicularis

Legs longer, hind femora about 4 or 5 times as long as broad in side view; pronotum without notch; pronotal fringe without longer setae .. 12, tripinnata

8. Femora bearing continuous fringe of long silky hairs 9

Femora without fringe; in some species, there may be a few interspersed long hairs .. 11

9. Both dorsal and ventral bristles of cercal whorls longer than lateral bristles; legs not banded; marginal bristles on abdominal terga longer on distal segments than on proximal segments .. 10, prostata

Only ventral bristles longer than other bristles; legs banded; marginal bristles on abdominal terga about same length on all segments .. 10, rotunda

10. Longest marginal bristles on apical abdominal terga about three-quarters as long as corresponding tergum; intermediate hairs on cercal segments well developed; white spots on head, covering both sides of Y ecdysial line .. 2, compacta

Longest marginal bristles on apical abdominal terga about one-third as long as corresponding tergum; intermediate hairs on cercal segments poorly developed or not developed; white spots on head restricted to area posterior to Y ecdysial line .. 11, similis

11. Thorax and abdomen with distinct mid-dorsal stripe; intermediate hairs well developed throughout cercus, their length greater than diameter of corresponding segment 8, porrecta

No distinct mid-dorsal stripe; intermediate hairs inconspicuous and short or present only on distal segments .. 12

12. Dorsal and ventral bristles of cercal whorls longer than lateral bristles on distal joints; intermediate hairs on cerci long, especially the ventral hairs on the distal segments; developing genital organs in mature male larva not producing large apical protuberance .. 6, macedonae

Dorsal bristles of cercal whorls of apical segments longer than other bristles; intermediate hairs inconspicuous throughout; developing genital organs in mature male larva producing large apical protuberance .. (Oxterocercus) 13

13. Longest marginal bristles on abdominal terga about one sixth or one fifth as long as mid-dorsal length of corresponding tergum; abdominal bristles light; cerci not banded; protuberance of genitalia in mature male larva longer than broad in dorsal view
1. *Nemura (Ostrocerca) albifrons* Walker (Figs. 101-103)

Nemura albifrons, posterior abdominal segments

Fig. 101. Male, lateral view.
Fig. 102. Male: a, dorsal view; b, cercus.
Fig. 103. Female, ventral view
Length: 6-7 mm.

Description: The males are most easily distinguished by the large female epigynum and the sharp hooks on the paraprocts. The female 7th sternite has a small nipple on the posterior margin and the 8th sternite is produced and emarginate. Ricker (1965) and Needham and Classen (1925) figured the adult, the latter authors under the name serrata. Harper and Hynes (1971) illustrated the larvae.

Type locality: Nova Scotia. Type in the British Museum.

2. Nemoura (Prostola) completa Walker (figs. 104-106)

Length: 6-9.5 mm.

Description: The male paraprocts on this species are unmodified and the recurved epigynum has a short process on each side at the base. These processes are difficult to see in some individuals but there are very few North American Nemoura with simple, triangular paraprocts and a relatively smooth, unornamented epigynum. The 8th sternite of the female is only slightly produced but has a slight notch and darker sclerotization at the center of the hind margin. The 7th and 8th sternites are fused at their midline with a glabrous, somewhat shiny area extending from midway on the 7th to the notch of the 8th. N. completa is closely related to the western N. bavestrana; Ricker (1964) gave a distribution map showing the geographic relationship between these two species. Harries and Minton (1952) and Harper and Hynes (1971) figured the larva, Needham and Classen (1925) and Ricker (1982) the adult.

Type locality: Nova Scotia. Type in the British Museum.

Range: The Maritimes south to North Carolina and west to Minnesota and Arkansas.

3. Nemoura (Ostrocerus) complexa Classen (figs. 107, 108)

Length: 6-7.5 mm.

Description: This actively named species has a complicated genital structure in the male that can be seen in the accompanying figures more easily than described. The 9th and 10th abdominal segments are wider and more heavily sclerotized than the preceding segments. The paraprocts are broadened distally. The subgenital plate (9th sternite) is elongated, with a notch at the end. It is probably most easily distinguished from closely related species by the subterminal tooth on the curved cercus. Figures of the male are shown by Classen (1937).

A female has never been unquestionably associated with the male of this species.
Normea complex, posterior abdominal segments

Fig. 104. Male, lateral view.
Fig. 105. Male, dorsal view.
Fig. 106. Female, ventral view of posterior abdominal segments.

However, scattered collections of an unknown female over the Northeast probably represent this species (Ricker, 1952, 1965). This female has a central protrusion on the posterior margin of the 7th sternite and a broadly but slightly produced margin on the 8th sternite.

Type locality: Artists Brook, Essex County, New York. Type in Cornell University collection. It has been collected in New England, Quebec, Ontario, and New York.

Connecticut records: Voluntown, adult male and female, June 14, 1967 (SWH); East Hartford, June 14, 1966 (SWH).
4. *Nemoura (Amphinemura) delosa* Ricker (figs. 109, 110)

Length: 8-9.5 mm.

Description: This species is closely related to *nigritta*. The shape of the paraprocts in the male is different, however, the inner member is not recurved at the tip. The female resembles *nigritta* except that some individuals have an additional notch at each side of the subgenital plate. The female and male were illustrated by Ricker (1932), the larva by Harper and Hynes (1971c).

The larva feeds on algae and detritus (Minshall, 1967) and frequents the warmer small streams (Ricker, 1932).

Type locality: McCormick’s Creek, Spencer, Indiana. Type at Illinois Natural History Survey.

Range: Western Quebec, south to Georgia and west to Oklahoma, Missouri, and Illinois.

5. *Nemoura (Amphinemura) linda* Ricker (figs. 111, 112)

Length: 5.5-10.5 mm.

Description: Closely related to other *nigritta*-like species, *linda* is distinguished in the male by smaller paraprocts, not recurved forward and by having both parts of its epiproct divided and armed with spines. The female is similar to *nigritta* and varigata.
Fig. 109. Male, paraproct.
Fig. 110. Female, ventral view of posterior abdominal segments.

Ricker (1952) illustrated the male and female genitalia; Harper and Hynes (1971) the larva.

Type locality: Hunt Creek, Montmorency County, Michigan. Type at Illinois Natural History Survey.

Range: This is the northern member of this complex and extends across Canada from British Columbia to Labrador. Its range extends southward to Michigan.

6. *Nemoura (Podmosta) macdonnoughi* Ricker (figs. 113, 114)

Length: About 6 mm.

Description: This species of small Plectoptera is closer to various western species than to any other eastern one. The male paraprocts are simple. The epiproct is recurved and complicated in shape, with the middle member sharply bent. The female 8th sternite is only slightly produced but heavily sclerotized on the midline. Ricker (1947, 1952), figured the adult; Harper and Hynes (1971) the larva.

Type locality: Baddeck, Cape Breton Island, Nova Scotia. Type in the Canadian National Collection, Ottawa.

Range: Canada, from Newfoundland to western Quebec.

7. *Nemoura (Amphinemura) nigrita* Provancher (figs. 24, 25, 115-117)

Nemoura lineolata, ventral views of posterior abdominal segments (after Ricker, 1952)
Fig. 111. Male. Fig. 112. Female.

Nemoura secedens n. sp., posterior abdominal segments
Fig. 113. Male, lateral view (after Ricker, 1952).
Fig. 114. Female, ventral view (after Ricker, 1947).
Nemoura nigrita

Fig. 115. Male: a, lateral view of posterior abdominal segments; b, lateral view of paraproct; c, medial view of paraproct.

Fig. 116. Male, dorsal view of posterior abdominal segments.

Fig. 117. Female, ventral view of posterior abdominal segments.

Length: 6.5-8 mm.

Description: This is probably the commonest Nemoura in the Connecticut area and is closely related to a number of other species (N. bidentata, N. bella, N. aphidica, N. variegata) found in neighboring states. The wings are dusky and there are remnants of the brachial cervical gills. The male's distinctive divided paraprocts easily separate it from closely related species. Ricker (1952) illustrated the variations in this character. The female
7th sternite is produced in a broad rounded lobe that partly covers the 8th sternite, which is notched; with 2 projections on each side. Chasser (1931) illustrated the larva under the species name Eumor. Harper and Hynes (1974) also figured the larva. This is a very common species in Connecticut from early May to mid-June and has been taken in blacklight traps at night.

Type locality: Near Quebec City, Quebec. Type at Quebec Provincial Museum, Quebec City.

Range: This is the eastern member of the complex; it ranges from the Maritimes southward to Florida and westward to southern Illinois and southern Quebec.

Connecticut records: Bethany, Mar. 5, 1961; May 31, 1962; June 3-4, 1959; June 8, 1962; June 26, 1961 (SWH); Burlington, June 4, 1961 (SWH); Canaan, June 1, 1961 (SWH); Chester, May 21-23, 1959 (SWH); Clinton, Apr. 7, 1969 (SWH); Cornwall, May 20, 1960; June 4, 1964 (SWH); East Haddam, May 3, 1967 (SWH); East Hartford, June 1-6, 1967; June 14, 1966 (SWH); Eastford, June 9, 1966 (SWH); Easton, May 14-22, 1968; May 26, 1964 (SWH); Ellington, June 7, 1967 (SWH); Franklin, May 20-June 5, 1967 (SWH); Griswold, June 14, 1967 (SWH); Hamden, May 20, 1959 (SWH); Hartford, June 14, 1966 (SWH); Harwinton, June 4, 1965 (SWH); Killingworth, June 18, 1963 (SWH); Lebanon, May 22, 1965; June 6, 1960 (SWH); Madison, June 11, 1965 (SWH); Milton, June 4, 1964 (SWH); Moscow, May 27, 1968 (SWH); Mt. Carmel, in UV light trap, May 20-24, 1960; J. B. Klang: Nagshead, June 3, 1969 (SWH); Newington, May 25, 1962 (SWH); Norwich, June 1, 1969 (SWH); Plainfield, June 14, 1967 (SWH); Portland, June 14, 1963 (SWH); Salem, May 29, June 15, 1967 (SWH); Shelton, June 19, 1962 (SWH); Somers, June 9, 1966 (SWH); Stafford, June 9, 1966 (SWH); Sterling, June 14, 1967 (SWH); Thomaston, May 5, 1964 (SWH); Union, June 9, 1966 (SWH); Voluntown, May 23-25, 1966; June 14, 1967 (SWH); West Cromwell, June 4, 1964; June 7, 1967 (SWH); Woodstock, June 9, 1966 (SWH).

8. Nemoura (Paranemoura) perfecta Walker (figs. 118, 119)

Length: 6.5-7.5 mm.

Description: This small species is the only Nemoura of eastern North America that does not bear a vesicle (ventral lobe) on the 9th sternite of the male. The paraphyses are submarginal and the forewing does not bear the usual slanting crenation between R and C. In perfecta this slanting crenation runs between the costa and subcosta. The 7th sternite of the female is produced over the 8th sternite, which bears a Y-shaped sclerotized area. The adult genitalia and wings were illustrated by Needham and Chasser, under the species name punctipennis, the larva by Harper and Hynes (1974). I have taken specimens from streams that dry up during the summer as well as from permanent streams.

Type locality: Nova Scotia. Type in British Museum.

Range: The Maritimes west to New York and Ontario and south to North Carolina.

Connecticut records: Clinton, Apr. 7, 1969 (SWH); East Willington, Apr. 5, 1968 (SWH); Easton, Apr. 5, 1966 (SWH); Killingworth, Apr. 1-8, 1963 (SWH);
Nemura perfesta, posterior abdominal segments
Fig. 118. Male, dorsal view.
Fig. 119. Female, ventral view.

Manfield, Apr. 2, 1964, N. Duquette (UC); Old Lyme, Apr. 29, 1961, J. Fitzgerald (UC); Redding, Apr. 2, 1963 (SWH); Redding Ridge, Mar. 30, 1964, C. Remington (UC); Gladesville, Apr. 30, 1964 (SWH); Stoves, Apr. 8, 1958, C. Charter (UC); Volanston, Apr. 23, 1966 (SWH); Wulcott, May 13, 1959 (SWH).

9. Nemura (Ostrocera) prolongata Claassen (figs. 120-123)

Length: 7.5-9.5 mm.

Description: As with other members of the subgenus Ostrocera, Nemura prolongata males have complicated genital structures. The species can best be distinguished by its long, narrow subgenital plate and curved cerci. The female 7th sternite is rounded and produced over the 8th. Adult genitalia were figured by Needham and Claassen (1923). The females illustrated by these authors may be a misidentification. Male prolongata in the collection of the U.S. National Museum are associated with several females much like abalumnus.

Type locality: Bretton Woods, New Hampshire. Type at Cornell University.

10. Nemura (Shipus) rotunda Claassen (figs. 124-126)

Length: 7-11 mm.

Description: The male of this species is characterized by a 10th tergite produced into a pair of curved spiny lobes. The female 7th sternite is slightly produced. The 8th sternite bears a subgenital plate that reaches to the anterior margin of the 9th sternite. This plate originates near the base of segment 8, but is free only on the distal half. Hülsemann and Mücke (1952) and Harper and Hyres (1971d) illustrated the larva; Needham and Claassen (1925) the adults.
Nemaura prolongata

Fig. 120. Male, dorsal view of posterior abdominal segments, showing cercus.
Fig. 121. Male, lateral view of posterior abdominal segments.
Fig. 122. Epiproct, lateral and dorsal views, showing variation.
Fig. 123. Female, ventral view of posterior abdominal segments (after Needham and Chaassen, 1967, but see text).

Type locality: Walledown, Maine. Type at Cornell University.

Range: Canada, from Alaska to the Maritimes, and south as far as Minnesota, Michigan, and, in east, to Maryland.

11. **Nemaura (Protoa) similis** (Hagen) (figs. 127-129)

Length: 6.5-8.3 mm.

Description: The simple paraphrocts and the processes at the base of the epiproct relate this species to *complete*. However, the processes in *similis* are long and slender and more easily visible. The female 8th sternite is more produced than that of *complete* and has a deeper median notch. The 7th and 8th sternites are fused along the midline and only the midline of the 7th and following sternites is strongly sclerotized. Needham and Chaassen (1925) figured the adult genitalia under the name *diversigena*. The larva was illustrated by Harper and Hynes (1976).
Nemura varabilis (after Ricker, 1932)

Fig. 141. Male paraproct.
Fig. 142. Female, ventral view, showing subgenital plate.

Ricker (1932).

Type locality: Near Warsaw, Indiana. Type at Illinois Natural History Survey.

Range: Found in cool spring streams in Illinois, Indiana, and Kentucky.

16. Nemura (Soyolina) washingtoni Claassen (Figs. 143, 144)

Length: 8.3-11 mm.

Description: This species has veins A₁ and A₂ of the forewing fused just before the wing margin; it has no projections or humps on the abdominal tergites of the male. The females are not easily distinguishable from N. varabilis. Adults were figured by Neldham and Claassen (1925).

Type locality: Mt. Washington, New Hampshire. Holotype at Cornell University.

Range: This subspecies has been collected only in New England; N. washingtoni carolinensis is recorded from the mountains of North Carolina and Tennessee.

17. Nemura (Amphicrenaria) wui Claassen (Figs. 145, 146)

Length: 7.5-9 mm.

N. wui has remnants of the larval cervical gills. Related to N. nigrita, it is paler and less robust than that species. The male is characterized by divided paraprocts, their upper parts long and spinulose. The female subgenital plate extends farther posteriorly than in nigrita. Illustrations of adults and larva are by Neldham and Claassen (1925) and Claassen (1931), under the species name wui. Further figures
Nemoura australis, posterior abdominal segments

Fig. 143. Male, lateral view; also showing epiproct.
Fig. 144. Female, ventral view.

Nemoura australis, posterior abdominal segments

Fig. 145. Male, dorsal view.
Fig. 146. Female, ventral view.
of the larva were given by Harper and Hynes (1971d). The adult emergence pattern was graphed by Harper and Pilson (1976).

Type locality: Idaho, New York. Holotype at Cornell University.

Range: The Maritime south to Georgia (in the mountains) and west to Quebec and New York.

Connecticut records: Chestertown, June 18, 1965 (SWH); Eastford, June 9, 1966 (SWH); Hartford, June 14, 1966 (SWH); Mt. Carmel, July 2, 1962, July 2, 1965 (SWH); North Haven, at light, June 24, 1953, C. Remington (YU); Thomaston, June 20, 1961 (SWH); Voluntown, May 22-25, 1966 (SWH); West Cornwall, June 4, 1964 (SWH).

18. *Nemura* (Zapada) sp.

Female or larva of this western subspecies has been found in Quebec and New Hampshire (Ricker, 1954; Ricker and his associates, 1968). Possibly this is the western N. ateri, however, a male must be collected before an exact identification can be given. Harper and Hynes (1971d) illustrated the larva.

Family Taeniopteridae

This family of medium-size stoneflies is found in North America, Eurasia, and northern Africa. The tarsal joints are subequal in length and the glossae and paraglossae are also subequal. The male epiproct is prominent and the paraprocts are greatly modified, although concealed in many species. There are cu-m and intercalary crossveins. The overall form of the members of this family are similar but there are a number of differences between species. Single, unnotched thoracic gills are present in some genera. Cerci are single or consist of several segments. C10 of the forewing has several branches or only a few. There can be a vesicle on the male 9th sternite.

Genus Taeniopteryx Pictet

Adults of this genus are distinguished by glossae and paraglossae subequal in length, tarsal segments subequal, and a membranous circular area on each coxa. These membranous areas are the scars of the larval coxal gills. A small pore on this membranous area, which was interpreted by Adams (1958) as being a coxal gland, more likely represents the remnant of the ligament of muscle that serves to retract the larval coxal gill. The male paraprocts are concealed and the 9th sternite must be peeled back to examine them. Usually there are 2 membranous lobes behind the subgential plate of the female but in some species these are withdrawn and are not visible. The larvae are distinct from all other larval stoneflies in having a 3-segmented, telescopical gill on each coxa. The larvae cannot yet be separated to species but the *maura-horai-nivalis* larvae have a white mid-dorsal stripe extending from the head to the end of the abdomen that other members of the genus apparently lack.
The *Tarsiopteryx* emerge in late winter and early spring and, because of their size and their habit of crawling on bridges, are often collected. Ricker and Ross (1968) have recently revised the genus and described several new species.

Type of genus: *Phryganea nebulosa* L. (Opinion 652, ICZN, 1963)

KEYS TO NORTHEASTERN SPECIES

MALES

(modified from Ricker and Ross, 1968)

1. Distal part of paraprosternal lobes hooked at tip (figs. 161, 163) .. 2
2. Distal part of paraprosternal lobes rounded or bluntly pointed (figs. 149, 156) 3
3. Vesicle absent .. 7, *parvus*
4. Vesicle present 8, *spina*
5. Paraprosternal lobes narrowed distally but with broad base (fig. 156); vesicle present in most individuals ... 4
6. Paraprosternal lobes straight and bluntly pointed (fig. 148); vesicle absent ... 6
7. Hind femur with spur half as long as wide (fig. 147a) .. 4, *maura*
8. Hind femur without spur or with only a slight thickening equal to less than half the width of spur (fig. 147b) ... 5

![Diagram](image)

Fig. 147. Hind femur of adult; a, *Tarsiopteryx mauro* and b, *T. burkii.*

5. Hairs at hind margin of 9th sternite pointing downward and forward; generally much shorter than anterior hairs on sternite; 6, *mauro*
6. Hairs at hind margin of 9th sternite pointing mainly backward, much longer than anterior hairs on sternite; 7, *burkii*
7. Distal part of paraprosternal lobes broad and flat, with apex broadly rounded or subtruncate (fig. 149); cerci modified .. 8, *spina*
8. Distal part of paraprosternal lobes narrow (fig. 156); cerci globular .. 5, *metequei*
7. Cerci (dorsal view) longer than breadth of their bases, appearing twisted (fig. 151); posteroventral surface of 9th sternite a low flattened cone, not membranous, although, in some individuals, lighter colored than remainder of sternite …………… 3, lonicera
Cerci no longer than their bases, chalcosy (fig. 149); posteroventral surface of 9th sternite elevated, pale, membranous, and bearing long, light-colored, twisted hairs ………………… 2, lisa

Females
(modified from Ricker and Ross, 1968)

1. Notch of subgenital plate deep, margined by a broad, U-shaped band of heavy sclerotization (fig. 152) ………………… 2, lisa and 3, lonicera
Notch of subgenital plate margined merely by normal sclerotization or by narrow, V-shaped, dark marginal band (figs. 155, 157) ……… 2

2. Middle part of 8th sternite little sclerotized, light colored, contrasting strongly with central plate and narrow, dark margin of notch (fig. 159) ………………… 7, parvula
Middle part of 8th sternite normally sclerotized, except, in some species, for light anterior spot near the midline ………………… 3

3. Sides of notch, if produced inward and forward, meet at obtuse angle (fig. 155) ………………… 1, burkii and 4, manoa
Produced sides of notch meet at acute angle; generally with strongly sclerotized "shoulders" near hind margin of sternite (fig. 157) ………………… 6, niveolus and 5, metequei

Larvae
(modified from Harper and Hynes, 1971c)

1. With yellow mid-dorsal stripe ………………… 2
Without mid-dorsal stripe ………………… 5

2. Stripe not extending onto head capsule; occipital region of head uniformly dark ………………… 6, niveolus
Stripe extending onto head capsule, although partially obscured in some individuals by dark motting on occiput; at least a light spot between lateral ocelli ………………… 3

3. Stripe very wide on occiput; all bristles on abdominal tergites long and curled ………………… 5, metequei
Stripe narrower; bristles on posterior margin of abdominal tergites short and blunt; others long and curled ………………… 4

4. Inner margin of hind femur of mature male with broad tooth containing developing femoral spur of the adult ………………… 4, manoa
Inner margin of hind femur without tooth ………………… 1, burkii

5. Dorsum uniformly dark; pronotum totally dark; bristles on abdominal tergites long and curled ………………… 7, parvula
Dorsum with light dots on posterior margins of abdominal tergites in many individuals; lateral margins of pronotum yellow; bristles on abdominal tergites short and blunt ………………… 6, niveolus
1. *Taeniopteryx burcki* Ricker and Ross (Figs. 137a, 118)

![Image](image-url)

Fig. 146. *Taeniopteryx burcki*, male paraprocts.

Length: 9-15 mm.

Description: This insect is very closely related to *scurra* and the females are indistinguishable. The males can be separated from those of the latter species because most *burcki* individuals lack a spur on the hind femora. However, on some there is a low swelling or projection there. Although the vesicle is much longer than that of *scurra*, it is minute on a very few individuals. The pointed paraprocts separate *scurra*, *nivella*, and *burcki* from all other *Taeniopteryx* species. Those adult and larval specimens illustrated by Frison (1929, 1933) as *scurra* belong here, according to Ricker and Ross (1968). The larva was figured by Harper and Hyers (1972c); the female genitalia by Ricker and Ross (1968).

Larvae feed on decaying leaves and stems of which Frison (1929) listed some 13 species. The adults rest on the lime-green egg *Fremontia* tent, among trees, stumps, and other surfaces near the water. The female oviposits directly in the water, by slighting and releasing her eggs on the surface. Frison counted 1,807 eggs in one mass. The eggs hatch soon after deposition and the young disperse in the substrate until the fall, when growth resumes (Harper and Hyers, 1970). Adults are the victims of various predators, including the spider *Ptychobothrus physalidonus*, which I captured feeding on a male *burcki*. In Quebec, this species was observed to mate very shortly after emergence. A single female bore 1,280 eggs. Larval growth was rapid from early fall to February. From then until emergence in April there was little or no size change (Harper and Magin, 1969).

Type locality: Urbana, Illinois. Type at Illinois Natural History Survey.

Range: The Maritimes south to Alabama and west to Ontario and Oklahoma.

Connecticut records: Bethlehem, Mar. 13, 1963 (SWH); Bristol, Mar. 9, 1962 (SWH); Brooklyn, Mar. 19, 1964 (SWH); Clinton, Mar. 19, 1964 (SWH); East Grisby, Mar. 14, 1992 (SWH); East Plymouth, Mar. 21, 1900 (SWH); Haddam, Apr. 3, 1969 (SWH); Litchfield, Mar. 16, 1964 (SWH); Lyme, Mar. 2, 1964 (SWH); Madison, Feb. 26, 1939 (SWH); Mansfield, Feb. 7, 15th, 1938 (UC); Mar. 1934, Slater (UC); Marlborough, Mar. 24, 1963 (SWH); Milton, Mar. 16, 1964 (SWH); Oxford, Mar. 21, 1960 (SWH); Redding, Mar. 24, 1964 (SWH); Simsbury, Mar. 14, 1962 (SWH); Southington, Mar. 9, 1962, Mar. 21, 1900 (SWH); Storrs, Feb. 15, 1926, Slater (UC); Mar. 20, 1934, Kimsey (UC); Stratford, Mar. 28, 1960, Jablonsky; West Granby, Mar. 3, 1961 (SWH); Woodstock, Mar. 28, 1963 (SWH).
2. *Taeniopteryx lita* Frison (fig. 149)

![Fig. 149. Taeniopteryx lita, male paraprocts (after Frison, 1942)](image)

Description: This species is very close to *lumicera* and females of the two species cannot be separated. The male lacks a vesicle and its paraprocts are broadened and lobate distally. Its cerci are shorter and thicker than in *lumicera* and, unlike that species, the male lita has the distal part of the 9th sternite swollen, light in color, and bearing long hairs. Additional illustrations of the adult genitalia and wings were published by Frison (1942).

Type locality: Elizabethtown, Illinois. Type at Illinois Natural History Survey.

Range: Illinois and North Carolina to Alabama and west to Arkansas and Illinois.

3. *Taeniopteryx lumicera* Ricker and Ross (figs. 150-152)

Length: 9.12 mm.

Description: The differences between *lumicera* and *lita* are not great. The male cercus of *lumicera* is deeply excavated on the inner surface, giving the cercus the appearance of being more slender and twisted than in *lita*. The 9th sternite is produced into a low cone near the distal margin and does not bear long extra hairs. The females cannot be separated but *lumicera* is more southern than *lita* and reaches the boundary of our area only in Maryland. Illustrations are with the original description.

Type locality: Laurel Fork, south of Blountsville, Alabama. Type at Illinois Natural History Survey.

Range: Maryland south to Georgia and west to Tennessee and Mississippi.

4. *Taeniopteryx musura* (Pictet) (figs. 18, 20, 147, a, 153-155)

Neocera musura Pictet, 1841, Periades: 361.

Length: 8.44 mm.

Description: This species is distinguished from the closely related *burkii* only by the strong projections on the hind femora of the male. It is one of those species with a vesicle on the 9th sternite and straight, pointed paraprocts. The females can-
not be separated from those of *bokshi*. The taxonomic concept of this species was
enlarged by Prion (1942) to include *nivalis* but the specimens included were later
divided among *nivalis*, *berkelii*, and *maura* by Reicher and Ross (1966). Needham and
Chasen (1925) illustrated the adult male genitalia and wings. Harper and Hynes
(1970) the larva.

Gaulin (1958) found *F. maura* the most tolerant of all stoneflies to organic en-
richment in polluted streams. Prion (1929) had earlier noted that the closely related
nivalis (= *berkelii*) was more often found in areas of decaying vegetation than other
stoneflies. Nebecker and Lemke (1968) and Bell and Nebecker (1969) further dis-
covered that 50 percent of a larval test group could withstand a water temperature of
21°C or a pH of 3.25.

Type locality: Pennsylvania. Type missing.

Range. Therilinodes south to Georgia and west to Indiana and Arkansas.

Connecticut records: Bethelburn, Mar. 13, 1963 (SWH); Botsford, Mar. 9, 1962,
Mar. 12, 1965 (SWH); Colby, Mar. 3, 1965, Mar. 14, 1962 (SWH); East Ply-
mouth, Mar. 21, 1960 (SWH); Granby, Mar. 3, 1965 (SWH); Hartford, Mar. 14,
1962 (SWH); Harwinton, Mar. 13, 1965, Mar. 21, 1960 (SWH); Kent, Feb. 20,
1964 (SWH); Marlborough, Mar. 24, 1963 (SWH); Middlebury, Mar. 1, 1963,
Apr. 1, 1959 (SWH); Middletown, Mar. 21, 1959 (SWH); Monroe, Mar. 9, 1961
(SWH); Mt. Carmel, Feb. 19, 1963, Feb. 27, 1958, Feb. 27, 1959 (SWH); Naugatuck,
Taeniopteryx mucov, posterior abdominal segments

Fig. 153. Male, lateral view.
Fig. 154. Male, dorsal view.
Fig. 155. Female, ventral view.

Mar. 1, 1961 (SWH); Newton, Mar. 9, 1962 (SWH); Oxford, Mar. 21, 1960 (SWH); Plymouth, Mar. 12, 1965 (SWH); Southbrey, Mar. 9, 1963, Mar. 21, 1960 (SWH); Sw :) Feb. 11, 1966, Slaner (UC); West Cornwall, Mar. 21, 1960 (SWH); Winchester, Mar. 14, 1962 (SWH); Winsted, Mar. 14, 1962 (SWH); Woodbury, Feb. 27, 1964, Mar. 13, 1965 (SWH).

5. Taeniopteryx metqui Ricker and Ross (fig. 156)

Length: 5.5-11.5 mm.

Description: The parapect of male metqui is shown in Fig. 156. The inner angle is subacute and the hind margin bears a club-shaped process. There is no vesicle. The female is indistinguishable from metqui, although many individuals appear to
Fig. 156. *Taeniopteryx metequi*, male paraprocts (after Ricker and Ross, 1968).

Carry the sclerotized lateral extensions of the V notch of the 8th sternite somewhat forward, rather than slightly posteriorly as does *timax*. Figures of the adult are with the original description; Harper and Hynes (1971c) figured the larva.

Type locality: Hayes Creek, Glendale, Illinois. Type at Illinois Natural History Survey.

Range: Ontario south to Alabama and west to Illinois and Oklahoma.

6. *Taeniopteryx nicolis* (Fitch) (fig. 157)

Fig. 157. *Taeniopteryx nicoly* female, ventral view of posterior abdominal segments.

Length: 11-17 mm.

Description: This species was put into the synonymy of *T. renae* by Frison (1942) but was subsequently separated again by Ricker and Ross (1968). The male bears a vestige that is not as long as in other *Taeniopteryx* species and has no spurs or projections on the hind femur. The hairs on the hind margin of the 9th sternite (unlike those of *renae* and *burkii*) are not noticeably longer than the more anterior...
hairs. The female has a strongly sclerotized, V-shaped notch on the 8th sternite and is very similar to *notorhynca*. The sexes illustrated by Frison (1920, 1935) are actually *notorhynca*, according to Richer and Ross (1969). Necham and Clausen (1935) illustrated the female; Harper and Hynes (1971a) and Claassen (1931) the larva.

Harper and Hynes (1970) determined that the eggs hatch soon after deposition but the larvae enter a diapause stage during the summer. Rapid larval growth occurs from October through the winter months (Coleman and Hynes, 1970).

Type locality: New York state. Type mining.

Range: The Maritimes south to Pennsylvania and west to Minnesota and Illinois. It also occurs in the area bounded by northern California, Oregon, and Idaho.

7. *Taeinopteryx pascala* Banks (figs. 158-161)

![Diagram](image)

Fig. 158. Male, lateral view of posterior abdominal segments.

Fig. 159. Female, ventral view of posterior abdominal segments.

Fig. 160. Male, doral view of posterior abdominal segments.

Fig. 161. Male, paraprocts.
Description: *T. parvula* is distinctive in both sexes. The male lacks a ventral and has pointed, hooked paraprocts. The female 8th sternite is only very slightly sclerotized, in contrast to the dark color of the V notch. Further figures of this species were given by Friese (1943, 1942). Friese stated that the adults feed on blue-green algae. Harden and Michel (1952) observed a male crawling on ice beneath the surface of the water near a cast larval skin from which it had probably emerged. Although widespread, *parvula* is never as common in Connecticut as other *Taeniopyra*.

Type locality: Peach Grove Hill, Virginia. Type in Museum of Comparative Zoology, Harvard University.

Range: Hudson Bay and the Maritimes south to Georgia and west to Manitoba and Arkansas.

Connecticut records: Chaplin, Mar. 19, 1964 (SWF); Colchester, Mar. 3, 1965 (SWF); Madison, Feb. 27, 1959 (SWF); Mansfield, Feb. 27, 1956, Michelson (UC); Mar. 29, 1954, Slater (UC); Storrs, Feb. 15, 1956, Slater (UC), Mar. 20, 1954, Kestner (UC).

8. *Taeniopyra ogola* Ricker and Ross (figs. 162, 163)

Length: 5.1-11.5 mm.

Description: The curved, hooked paraprocts of the male very closely resemble those of *parvula*. However, unlike *parvula*, *ogola* bears a venticle on the 8th sternite. The female appears intermediate between *barkis-miniata* and *nicolai-novi-belga*. There is a larger sclerotized area on the "shoulders" of the V-shaped notch of the 8th sternite than in these other species. Further illustrations were given by Ricker and Ross (1968).
Type locality: Fellowsville, West Virginia. Type at Illinois Natural History Survey.
Range: Has apparently been collected only in Tennessee and West Virginia.

GENUS Brachyptera NEWPORT

These insects are members of the spring and early-summer fauna. Adults feed on the buds and young foliage of trees and shrubs and occasionally have caused slight damage to fruit orchards in the Pacific Northwest. According to Newman (1918) the favored native plants of adults *palida* and *trifasciata* are (in order) thimbleberry, alder, willow, wild rose, serviceberry, and maple.

Brachyptera are recognized by the fact that the glossae are approximately the same length as the paraglossae, the 3 tarsal segments are of subequal length, there are no gills in the larvae and no gill-resembling scars on the adult coxae. Both larva and adults are brown or black, without colorful patterns.

Type of genus: *Neocnemia trifasciata* Pictet.

**Fig. 164. Brachyptera confusa*, 10th tergite and epiproct: a, dorsal view; b, lateral view.
**Fig. 165. *B. palida*, epiproct.
**Fig. 166. *B. abacale*, 10th tergite and epiproct: a, dorsal view; b, lateral view.
**Fig. 167. *B. pacifera*, epiproct.

KEYS TO NORTHEASTERN SPECIES

MALES

1. Vesicle on 9th abdominal sternite (fig. 183) 2
 No vesicle on 9th abdominal sternite (fig. 171) 3

124
2. 10th tergite with 2 long, pointed projections proximally; 9th sternite ending in sickle- or club-shaped structure (figs. 183, 184)……………… 5, rossii
10th tergite without projections proximally; 9th sternite smoothly rounded distally (fig. 164)………………………… 4, contorta

3. 10th tergite with 2 projections near anterior margin, extending backward (in some individuals hidden under posterior margin of 9th tergite) (fig. 180)………………………… 4, pacifica
10th tergite without projections near anterior margin………………………… 4

4. Forewing normal, generally with 2 lobes on posterior margin of the 9th tergite (fig. 172)………………………… 2, fasciata
Forewing less than half as long as hindwing; no lobes on 9th tergite (fig. 176)………………………… 3, glacialis

FEMALES

1. Subgenital plate narrowed posteriorly, sides somewhat concave basally (fig. 173)………………………… 2, fasciata
Subgenital plate rounded or evenly tapered (fig. 177)……………… 2

2. Pronotum and posterior part of head light, with darker rugosities (fig. 182)………………………… 4, pacifica
Pronotum and head dark but many specimens have light spots (figs. 170, 178)………………………… 3

3. Subgenital plate evenly tapered and reaching beyond subanal lobes (fig. 177); size 15 mm or more; head pattern varying from that given in figure 178 to completely dark………………………… 3, glacialis
Subgenital plate rounded (fig. 169); less than 15 mm long; head completely dark or with a light line between the posterior ocelli (fig. 170)………………………… 1, contorta

LARVAE

(from Harper and Hynes, 1971c)

1. Dorsum yellow, with a distinct darker pattern……………… 2, fasciata
Dorsum uniformly brown, in some individuals with indistinct lighter areas………………………… 2

2. All cercal segments with a terminal whorl of very short bristles………………………… 4, pacifica
Proximal cercal segments, with the whorl containing long dorsal bristles………………………… 3, glacialis

1. *Brachyptera (Osmocrypta) contorta* (Needham and Claassen) (figs. 164, 166-170)

Female of rossii not known.
Brachyptera contenta

Fig. 168 Male, ventral view of posterior abdominal segments.
Fig. 169 Female, ventral view of posterior abdominal segments.
Fig. 170 Female, dorsal view of head and pronotum.

Length: 10.115 mm.

Description: The males of this species and of *russi* are the only *Merlinae* in *Brachyptera* males with a lobe on the 9th sternite. However, unlike *russi*, *contenta* does not have 2 pointed projections on the 10th sternite.

As with other *Brachyptera*, the parts of the male genitalia are difficult to homologize without detailed study. The aedagastic lobes are asymmetrical and both are divided into 2 parts. A flat plate (more heavily sclerotized on the right side) bears a small hairy lobe at its base. Connected to the right-hand plate is a membranous corkscrew-like structure. Connected to the left-hand plate is a slightly sclerotized hook. The proximal end of the aedagus protrudes and is recurved, sclerotized, and whip-like.

The 10th tergite narrows posteriorly and then curves upward into 2 small lobes. Another heavily sclerotized plate (the presumed epiproct) is behind and below the 10th tergite, with its posterior margin also curved upward into a spine. A membranous lobe envelops the bases of the epiprocts as well as the base of the "whips."

Touching the posterior corners of the 10th tergite, 2 additional plates end in pointed hooks that almost touch at the midline. Each cercus has a basal lobe.

The female has a broad, rounded, subgenital plate. The genital opening is bordered by 2 lightly sclerotized lobes but does not have strong sclerotization anterior to the opening.

Both sexes are very dark but many individuals have a light-colored line running between the 2 rear ocelli.

Type locality: Jaffrey, New Hampshire. Type at Cornell University.

Range: Apparently of sporadic but widespread distribution; it has been recorded from New Hampshire, Connecticut, and Virginia.
2. Brachyptera (Strophopteryx) fasciata (Burmeister) (Figs. 165, 171-174)

Sembris fasciata Burmeister, 1839, Handb. Entomol. 2: 875.

Length: 10-15 mm.

Description: This is a widespread, numerous, and easily recognized species. Most males have 2 conspicuous lobes on the posterior margin of the 5th tergite and the 9th sternite is abruptly narrowed and recurved distally, ending in a bluntly bifurcate tip. The epigerst, connected to the 9th tergite by 3 sclerotized bands, varies some-

Fig. 171. Male, lateral view of posterior abdominal segments.
Fig. 172. Male, dorsal view of posterior abdominal segments.
Fig. 173. Female, ventral view of posterior abdominal segment.
Fig. 174. Female, dorsal view of head and procutum.
what in shape but is a sclerotized projection, with an unsclerotized portion of variable size on the rear surface. It is possible that this unsclerotized area is inflexible. The female subapical plate ends in a narrow tongue-like protrusion, with the margins subparallel before the tip. The adult head and pronotum are dark brown, except for a light area between each lateral ocellus and the eye. This color pattern seems more consistent than those of other species of Brachyptera. Adults and larvae have been illustrated by Needham and Chassens (1925), Prisig (1929, 1942, 1935), and Harper and Hydes (1951c).

Brachyptera is found over quite a range of stream size but apparently not in small leaf-choked brooklets. Prisig (1929) observed the adults feeding on blossoms in the upper branches of elms. He found that larval segments contained fragments of decaying leaves and 7 species of diatoms. The females hatched soon after emergence. The egg mass was held under the abdomen and released as the female briefly alighted on the water. Harper and Hydes (1950) found that the eggs hatched immediately but the 3rd-instar brine disappeared over the summer.

Type locality: Pennsylvania. The type specimen was probably in Berlin before World War II (Kiefer, 1938).

Range: Quebec south to North Carolina and west to Minnesota and Kansas.

Connecticut records: Bethelton, Apr. 14, 1907 (SWH); Bristol, Apr. 1, 1957 (SWH); Bristol, Apr. 7, 1967 (SWH); East Willington, Apr. 5, 1968 (SWH); Eastford, Apr. 5, 1968 (SWH); Easton, Apr. 5, 1964 (SWH); Grotonville, Mar. 17, 1959 (SWH); Hamden, Apr. 25, 1946, S. Ball (YU); Hartford, Mar. 21, 1960 (SWH); Hotchkissville, Mar. 16, 1964 (SWH); Huntsville, Apr. 2, 1959 (SWH); Killingworth, Apr. 1, 1964 (SWH); Madison, Apr. 5, 1969 (SWH); Middletown, Mar. 25, 1963 (SWH); Newington, Apr. 15, 1964, L. Schauer (UC); Meriden, Apr. 1, 1959 (SWH); Milford, Mar. 16, 1964 (SWH); M. C. Nelson, Apr. 21, 1960 (SWH); New Haven, Apr. 13, 1960 (SWH); North Guilford, Mar. 21, 1969 (SWH); Oxford, Mar. 21, 1960 (SWH); Plymouth, Mar. 21, 1960 (SWH); Redding and Redding Ridge, Mar. 24, 1962, 064, Apr. 1, 3, 8, 1963, Apr. 13, 1960 (SWH); Sharon, Mar. 16, 1964 (SWH); Southington, Mar. 21, 1964 (SWH); Stafford, Apr. 23, 1964 (SWH); Storrs, Apr. 24, 1964. D. DeLoey (UC); Wallingford, Apr. 19, 1959, J. King; West Goshen, Apr. 1, 1959 (SWH); Wilton, Apr. 13, 1960 (SWH); Winchester, Apr. 14, 1967 (SWH); Woodbridge, Apr. 6, 1939, A. DeCaprio (SWH); Apr. 23, 1964, L. Benington (YU); Woodstock, Mar. 28, 1963, Apr. 23, 1964 (SWH).

3. *Brachyptera (Oemopteryx) glacialis* (Newport) (figs. 166, 175-178)

Perla chalcidionia Provancher, 1878, Petite Fontaine, Név. 73.

Length: 9-20 mm.

Description: This is the only Eastern species of *Brachyptera* in which the males have brachypterous forewings. As usual in this genus, the male genitalia are complicated. The lühl tergite narrows posteriorly and then is curved upward, ending in a trifurcate tip. Another plate behind and below, the presumed epiproct, curves

128
Branchyporus glaciatus

Fig. 175. Male, lateral view of posterior abdominal segments.
Fig. 176. Male, dorsal view of posterior abdominal segments.
Fig. 177. Female, ventral view of posterior abdominal segments.
Fig. 178. Female, dorsal view of head and pronotum.

...upward to end in a broadly bilobed structure just behind the 10th tergite. Behind this is the whiplike tip of the presumed nephridia. The cerci bear lobes at their base and are associated with the 2 laterally projecting plates that extend from the posterior-lateral corners of the 10th tergite. These structures are notably similar to those of some genera but the lobes do not have the lobes more symmetrically in profile and different in shape.

The female subgenital plate is quite long, extending beyond the abdominal lobes. The genital opening is just before the hind margin of the 8th sternaite and in most specimens there is a darker, sclerotized, triangular area anterior to it. The color pattern of the head and pronotum ranges from that given in fig. 178 to almost completely dark.
Connecticut specimens are much smaller than those recorded by Hansen (1938). His males were 17 mm and his females 26 mm to the apex of the wings. Mine are about 11 mm and 16 mm, respectively. Species of *glaucia* previously recorded from western North America have been separated as distinct species by Ricker (1965). Harden and Micket (1952) had some evidence that this species can emerge under water. Females possibly feed high up in trees (as do those of *fasciata*), as suggested by the fact that males are notably gregarious in collections of adults. The larva was figured by Harden (1942), Harden and Micket (1952), and Harper and Hynes (1976); the adult by Hansen (1938) and Ricker (1938).

4. *Brachyptera (Taenionema) pacifica* (Banks) (figs. 167, 179-182)

Length: 12-15 mm.

Description: The male is most easily recognized by the 2 projections on the hind margin of the 10th tergite although these are concealed in some individuals by the posterior margin of the 9th tergite. The male epignotum is simple and curved. The female subgenital plate is broadly rounded. In alcohol, the prothorax is light brown with darker cuticle but in life this difference is not so clear cut. Adult genitalia and wings were shown by Newhall and Charson (1922); larva by Harper and Hynes (1971a); egg by Knight and his co-workers (1960b).

This is one of the few beetles found on both coasts and was the first to be implicated in causing economic damage. Newcomer (1911), investigating campers of damage to foliage and flowers of budding fruit trees, found adults of this insect responsible. They are bothersome to picnics, packets, and plums but not to cherries or apples. In uncultivated areas they feed on the young leaves of wild rose, wild cherry, elder, and American elm. They also feed on the leaves and catties of willows. Schuba and Mote (1918) reported them as minor pests, skeletonizing the leaves of raspberries and plums in Oregon.

Type locality: Pullman, Washington. Type in museum of Comparative Zoology, Harvard University.

Range: In the West from British Columbia to California and east to Alberta and Colorado; the East Coast from Labrador to Virginia.

130
Brachyptera pacifica

Fig. 179. Male, lateral view of posterior abdominal segments.
Fig. 180. Male, dorsal view of posterior abdominal segments.
Fig. 181. Female, ventral view of posterior abdominal segments.
Fig. 182. Female, dorsal view of head and pronotum (in alcohol).

5. Brachyptera (Toeniionema) rossi Frison (Figs. 183, 184)

Length: 13 mm.

Description: This is an exceedingly rare species, known only from the holotype. It may be recognized in the male by the 2 narrow posterior projections on the 10th tergite and the irregular lobing of the 9th sternite. It shares with *calcoola* the distinction of being the only eastern *Brachyptera* with a vesicle (subbasal lobe) on the
9th sternite. The female is unknown. Figures of adult genitalia and wings are with the original description.

Type locality: Near Woodstock, New Hampshire. Type at Illinois Natural History Survey

Range: Unknown but may extend into Quebec (Ricker, Maloin, Harper, and Ross, 1966).

Family Peltoperlidae

This is a family of uncertain affinities that is found in North America and southeastern Asia. The larvae are cockroachlike, with a single large tergal and sternal plate on each thoracic segment. Gills are fleshy and fingerlike. There are 8 abdominal ganglia. The adult cerci are many segmented and in some genera have the basal segments modified. The male epiproct is generally sclerotized, but the paraprocts are often inconspicuous. A vesicle is present on the male 9th sternite.

Genus Peltoperla Needham

This is a somewhat aberrant genus that does not appear to be closely related to any other stonefly. Most adults have 2 ocelli and many costal crossveins. The thoracic sterna consist of large single plates, with the metasternal apophyseal pits large and placed centrally on the sternite. The head is generally somewhat withdrawn beneath the pronotum; the glossae are subequal in length to the glossae; and the 3rd tergal segment is longer than the first 2 combined.

The larva is cockroachlike; brown, flattened, with overlapping thoracic shields on both dorsum and sternum. Lestage (1927) has illustrated the various parts of the immature form.

There are only 2 species found in northeastern United States. However, immediately to the south, in the Appalachians, there are several other species. Other species occur in the Far West. Ricker (1952) gives a key to the females of the subgenus *Peltoperla*, including the following 2 species.
Type of genus: *Peltoperla arcuata* Needham.

KEY TO ADULTS OF NORTHEASTERN SPECIES

1. Vesicle (basal lobe) at base of 9th sternite (fig. 187), males 2
 9th sternite unmodified, females 3
2. Cerci abruptly curved a short distance from base (fig. 186) 1, *arcuata*
 Cerci normal and extended posteriorly without abrupt curve (fig. 188) 2, *maria*
3. 8th sternite slightly produced and emarginate (fig. 189) 2, *maria*
 8th sternite rounded and produced over half of 9th sternite 1, *arcuata*

1. *Peltoperla arcuata* Needham (Figs. 185, 186)

Length: 14-18 mm.

Description: Males of this species differ from all other *Peltoperla* by having the cerci sharply curved toward each other a short distance from the base. The female 8th sternite is rounded and considerably produced over the 9th. However, occasional *maria* females also have rounded subgenital plates and are difficult to separate to species in the absence of the male.

Type locality: Ithaca, New York. Type at Cornell University.

Range: Southern Quebec south to Virginia and west to Pennsylvania and New York. Apparently it occurs sparingly, if at all, in New England.
2. *Peloperla maria* Needham and Smith (frontispiece; figs. 19, 27, 187-190)

Peloperla maria Needham and Smith, 1910, Can. Entomol. 48: 82.

Peloperla doricha Needham and Smith, 1910, Can. Entomol. 48: 84.

Length: 12-18 mm.

Description: The male of this species is easily separated from *arvensis* because it does not have the sharply curved cerci of the latter. When compared to males from more southern species, there do not appear to be any consistent distinguishing characters. The female has the 8th sternite produced, with a slight notch on the midline. However, the posterior margin varies from a distinct, broad notch, to a more sinuosity, to a rounded subgenital plate. The female illustrated appears to be the most common form. The larvae cannot be distinguished from those of *arvensis.*
The larvae feed on detritus and decaying leaves in streams. They hatch shortly after the eggs are deposited but grow little until late fall. In the laboratory adults feed avidly on a mixture of honey and water, suggesting that in the field they feed on sap or plant exudates. P. nana is a common species in smaller streams where dead leaves collect. Wallace, Woodall, and Schoenberger (1979) found that the larvae consumed the fallen leaves of elm, alder, sourwood, and dogwood, preferably. Black cohosh, white pine, white oak, and chestnut oak were least preferred. Feeding by *Peltoperla* reduced the organic load of intact leaves within the stream but increased the dissolved organic content, as tannic acid was leached from *Peltoperla* feces. Although Wallace and his co-workers apparently lacked adult stonesflies and thus did not have certain specific identifications, this feeding pattern undoubtedly is generally valid for most, if not all, eastern *Peltoperla*.

Hall and Govers (1965) found that, out of several tested, only 1 trematode cercaria would infect *Peltoperla*. Although they did not indicate the species, it was most likely, sparganum.

Type locality: Pelham, Massachusetts. Type at Cornell University.

Range: Northern Georgia to Vermont but apparently not west of the Appalachian.

Connecticut records: Amenia, A. Rubelassan (UC); Barkhamsted, June 7, 12, 1967 (SWH); Burlington, G. Smith and J. Lewis (UC); Cheshire, D. Bennett (UC); Coventry, D. Pedkham (UC); Ellsworth, June 7, 1967 (SWH); Hartford, June 2, 1965 (SWH); Kent, June 12, 1967 (SWH); Mt. Carmel, June 6, 18, 1968 (SWH); larvae from Norwich, S. White (UC); Salisbury, G. Dater (UC); Simsbury, F. Poston (UC); Staffordville (SWH); Storrs, many student collectors (UC); Vernon, C. Data, J. Ernst, E. Denz, H. Marxier, D. Pedkham (UC); Willington, O. Taylor and J. Ernst (UC); Windsor, P. Leathold (UC); Yantic, Loring (UC).

FAMILY PERLIDAE

This family is characterized by thoracic gills that are finely branched tufts, appearing on all 3 thoracic segments. The paraglossae are broadly rounded. The male epiproct is reduced and inconspicuous; the adult cerci are long; there are 6 abdominal ganglia. There are 2 subfamilies. The Perlinae, occurring in Africa, Eurasia, and eastern North America, have the male 10th tergite cleft and the genital hooks as outgrowths from this tergite. The Acronurinae, occurring in eastern Asia and North and South America, have the male 10th tergite complete, with the genital hooks modified from the paraprocts. Additionally there is commonly an enlarged knob on the 9th sternite, the "hammer".

GENUS Paragnetina Klapalek

Paragnetina Klapalek, 1907, Rozpravy České Akad. 16 (31): 17.

Bimabubia Klapalek, 1921, Ann. Soc. Entomol. Belg. 61: 147 (preoccupied)

Paragnetina is in the subfamily Perlinae of the family Perlidae and is characterized by remnants of trifid thoracic gills, 3 ocelli, no anal gills, a prosternum and mesosternum with a Y-shaped medial ridge, the 10th tergite cleft dorsally in the male, with genital hooks arising from the side.

135
of this cleft and extending anteriorly to the hind margin of the 9th tergite. The larvae, in addition to tufted thoracic gills, have a row of spinules on the occipital ridge.

Ricker (1949) reviewed and keyed all North American species.

Type of genus: *Perla tinctipennis* McLachlan

KEYS TO NORTHEASTERN SPECIES

MALES

1. 5th abdominal tergite produced posteriorly 2
 5th abdominal tergite not produced (fig. 193) 2, *kanzenzi*

2. Process of 5th tergite very shallowly notched or almost smooth; genital hooks rounded apically (figs. 195, 196) 3, *media*
 Process of 5th tergite narrowly and distinctly notched, genital hooks with apical point or spine (fig. 191) 1, *immarginata*

FEMALES

1. Subgenital plate narrowly notched, with produced lip on each side of notch (figs. 194, 197) 2
 Subgenital plate excavated medially, with no produced lip at each side (fig. 192) 1, *immarginata*

2. Subgenital plate unilaterally produced pars way over 9th sternite; yellow median stripe on pronotum (fig. 194) 2, *kanzenzi*
 Subgenital plate scarcely produced past hind margin of 8th sternite; dark median stripe on pronotum (fig. 197) 3, *media*

LARVAE

1. Larvae highly patterned with distinct transverse bands on most or all abdominal tergites 1, *immarginata*
 Abdominal tergites uniformly brown or with a few light spots or indistinct streaks on distal segments or (rarely) with faint median line 2

2. Anterior and posterior margins of dorsum of head light and distinctly contrasting with dark areas; a few light spots on apical abdominal segments 2, *kanzenzi*
 Anterior and posterior margins of dorsum of head not distinctly contrasting with brown background; margins of light areas not clearly defined; abdominal tergites uniformly brown, except rarely a faint, light, median line or faint transverse streaks on distal segments 3, *media*

1. *Paragnathania immarginata* (Say) (figs. 191, 192)

Sticta immarginata Say, 1823. Godman’s Western Quarterly Reporter 2: 164.
Pamynoptera immarginata

Fig. 191, a. Male, dorsal view of posterior abdominal segments; b, genital hooks, three-quarters view.

Fig. 192. Female, ventral view of posterior abdominal segments.

Length: 24-29 mm.

Description: The male has a produced 5th tergite with a narrow notch. The female, unlike other *Pamynoptera*, has the subgenital plate shallowly excavated and little produced. The larva is very cobwebb and might be confused with *P. cephalus*, except that *immarginata* lacks anal gills. There is some variation in larval color and hairiness. There is, in many individuals, a row of thick, light, fluffy hairs on the midline and occipital ridge of the larva but this tends to disappear in older specimens and the amount undoubtably depends on the age and past history of the individual.

Additional figures of the larva are shown by Chase (1911); the adult head, pattern, wings, genitalia, and eggs were figured by Needham and Claassen (1925); and mandibles, egg, and adult genitalia by Smith (1913).

Smith (1913) noted 3 sizes of larvae, which suggested a 3-year life cycle. She found the larvae to be predacious, feeding on stenolines, myrtilles, and diggerwasps, but that they did not feed 8 or 10 days before transforming to adults. Her adults did not take solid food but would drink water. They mated soon after emergence, the male using the genital hooks of the 10th segment and the dorsal protrusion of the 5th in copulation. Mating occurred after egg deposition; up to 4 ovipositions took place. For all 4 egg masses, 1,000 eggs was considered about maximum. As with other stenolines, the egg mass broke apart in contact with the water and the individual eggs became glued to the stream bottom. Length of adult life was 13 days for unmated insects and about 7 days (females) and 10 days (males) for adults kept together.

In late autumn Smith found that some 45 percent of *immarginata* larvae were carrying a phoretic chironomid like that noted below under medus (Steffan, 1905; Nakashima (1915) discussed synopsis; he found that this insect has 10 chromosomes. Adult emergence takes place over an extended period and is sometimes delayed by cold weather (Harper and Pilson, 1970).
Type locality: Ohio River. Neotype (from Ithaca, New York) at Cornell University.

Range: James Bay and the Maritimes south to Georgia.

Connecticut records: Cornwall, Sept. 17, 1929, L. Woodruff (AMNH); Litchfield, Sept. 16, 1903, L. Woodruff (AMNH); Norfolk, June 26, 1951 (SWII); Washington, at light, Sept. 14, 1966, S. Hessell (YU); Sept. 23, 1956, C. Foreman (YU); larvae in UC collection are from Ashford, Beckley, Unatego, Grovelville, Hampton, Mansfield, Middletown, New Hartford, Scharf, Tolland, Vernon, Willington.

2. *Paragnatina kiuseni* (Harms) (Figs. 193, 194)

Paragnatina kiuseni Banks, 1905, Psyche 12: 56.

Paragnatina kiuseni, posterior abdominal segments (from Prion, 1907)

Fig. 193. Male, dorsal view.

Fig. 194. Female, ventral view.

Length: 18–22 mm.

Description: The male of this species lacks a produced 6th tergite. The female subgenital plate is produced halfway over the 5th sternite, with a narrow notch apically. The hem is thicker than *m. arctica* but more distinctly marked than *m. alata*.

Figures of the male and female were published by Needham and Claxton (1925) and Prion (1907). The figures by Prion (1907) are under the name *Tetraphila* sp. a.

Type locality: Doniphan County, Kansas. Type presumably in Museum of Comparative Zoology, Harvard University.

Range: Kansas, Illinois, and Indiana.

3. *Paragnatina media* (Walker) (Figs. 1, 195–197)

138
Paragynata medis, posterior abdominal segments.

Fig. 195. Male, lateral view (near cercus removed).

Fig. 196. Male, dorsal view.

Fig. 197. Female, ventral view.

Length: 18-32 mm.

Description: The male has the produced 5th tergite only broadly excavated. The female subgenital plate is barely produced and narrowly cut. The larvae are dull in color. An occasional individual has whitish marks on the abdomen but they are not clearly defined. Many specimens have long hairs that collect detrital matter and fluorescent material, giving them a dirty appearance. Others seem to lack these hairs—they probably have been worn off. One observed adults larvae lacked the row of spines on the occipital ridge. The eggs and adult of this insect were illustrated by Needham and Clasen (1925), the larva by Clasen (1931), and both adults and larvae by Frison (1935).

This species is found in a wide variety of streams and even in lakes and ponds.
(Claassen, 1931). Olsen and Rueter (1968) stated that, in contrast to other aquatic orders, larger larval specimens of P. media have a higher rate of oxygen consumption than do smaller ones, although the rate is much less than that of some ephemroids, being about 16.9 cm/min/g live weight. Oxygen consumption is greater in the dark (Zidalek and Kayser, 1971).

Stefan (1965) found a species of chironomid larva living phytoctically on larval P. media. The fly larvae lived in gelatinous cases attached to the stems and fed on detritus caught on the long hairs of the host. The percentage of media carrying the chironomids increased from spring to fall.

Tarrer and Krzynow (1971) and Heiman and Knight (1970) summarized much of the known biology of this species and gave the results of their own studies. They found the larva to be carnivorous, feeding principally upon Ephemeroptera (mainly Baetis rhodani), Trichoptera (mainly Hydropsyche and Chironomus), and Diptera (mainly Chironomidae), as well as a few Plecoptera, Coleoptera, and Amphipoda. In March and April the number of diatoms in the gut increased. Almost half of the 473 stamnads examined were empty, particularly in midwinter and early summer. Adults did not feed. Larvae are preyed upon by various fishes and crayfish and required 2 years to reach maturity. There was a 1:1 sex ratio and, based on dissected larvae, females produce from 294 to 1,276 eggs (mean 802). Egg masses formed within 1 hour of mating and had a 30-day incubation period at room temperature. The life cycle was 2 years in Kentucky and adult emergence took place between May 6 and August 12. In Canada, the emergence period (in contrast to that of P. immersa) is quite brief (1-23 days), although the exact time shifts from year to year, depending on the temperature (Harper and Fillon, 1970). This insect is of average susceptibility to DDT in streams. For small P. media the 14-hr LL50 is 0.5 ppm and for large ones, 0.66 ppm (Hinchcock, 1965). Of all species tested by Necker and Lemke (1968), P. media were the most tolerant of warm water: 50 percent survived at 30.5°C for 96 hrs.

Type locality: St. Martin's Falls, Albany River, Ontario, Canada. Type in the British Museum; abdomen of the type specimen is missing and the abdomen of another species has been glued in its place (Ricker, 1938).

Range: The Maritimes south (in the Appalachians) to North Carolina and west to Saskatchewan and Missouri. Ricker (1944) gave a distribution map of this species. In addition to the Connecticut records listed below, there are many larvae from Storrs and Mansfield in the UC collection.

Genus Phaganoephora KLAPALEK

As presently constituted, this genus contains only one North American
species. Adults have remnants of thoracic and anal gills and a Y-shaped ridge pattern on both proternum and mesonotum. The male sexual characteristics are distinctive and described under the species. The larvae are colorful and common. They are identified by a row of spines on the occipital ridge and by the presence of anal gills.

Type of genus: *Perla capitata* Pictet.

1. *Phasganophora capitata* (Pictet) (figs. 20, 190-200, 210)

Perla capitata Pictet, 1841, Perles: 214.

In addition to the above, *Havartiola obscurata* Banks, 1948, (Psyche J. Entomol. 55: 122) is probably also a synonym.

Length: 14-24 mm.

Description: This is a large and widely distributed species. Males are distinguished by the abdominal tergites: tergite 8 is produced over 9, which is somewhat blunted; 7 is unciliated medially, whereas 8 is unciliated on the posterior margin, and 10 is produced forward into 2 long genital hooks that reach the hind margin of segment 7.

The females have a rounded subgenital plate on the hind margin of the 8th sternite. The remains of the anal gills do not show as clearly in all specimens as in the female figured here.

The larvae are quite colorful and the color pattern varies considerably. Generally, specimens from this area appear closest to that figured in Chassens (1931) frontispiece but others are darker and a few have the darker areas expanded until the abdomen is almost all black. In any case, the only other taxa with which it could be confused is *Cynosaena* and the latter does not appear east of the Rockies or south of Hudson's Bay. The larval pattern is also somewhat similar to *Acrisius amurensis* but *amurensis* lacks the occipital ridge. Figures of the adult are found in works by Needham and Chassens (1925) and Frison (1935); an analysis of variation in wing venation was given by Needham and Chassens (1925). Chassens (1931) figured the larva and Frison (1935) the larva and egg.

Frison (1935) stated that the adult is diurnal; he observed females with eggs flying over rapids, presumably to oviposit. He surmised that the larval stage lasted 2 or 3 years and determined that the larvae are carnivorous. Larvae of 2 different sizes have been collected together in Connecticut, so undoubtedly the life cycle is at least 2 years. Larval oxygen consumption is greater in the dark than in the light (Zoladek and Kapoor, 1971).
In the East this insect apparently occurs in smaller streams than it does farther west, where it is restricted to medium and large-size rivers, according to Harden and Mickel (1952).

Type locality: United States. Type missing.

Range: The Maritime provinces to Florida and west to Minnesota and Kansas. Castle (1936) reported collecting a larva in Montana but it apparently was a misidentification (R. Baumann, unpublished correspondence).

Connecticut records: Cornwall, June 4, 1964 (SWH); Easton, June 22, 1965 (SWH); Ellsworth, July 12, 1967 (SWH); Kent Falls, June 17, 1955, C. Remington (YU); Litchfield, May 17, 1924, May 10, 1923, L. Woodruff (AMNH); Mt. Carmel, July 13, 1960 (SWH); Old Lyme, June 1, 1960 (SWH); larvae from Canaan, Cheshire, East Hartford, Granby, Hartford, Litchfield, Mansfield, Milton, Mt. Carmel, New Milford, Salisbury, Sharon, Vernon (UC and SWH).
GENUS *Neoperla* NEEDHAM

Foristora Klugalek, 1913, Suppl. Ent. 2: 117 (preoccupied).

Foristora Klugalek, 1914, Suppl. Ent. 3: 118.

Neoperla is characterized by tufted thoracic gills, only 2 ocelli and, in the male, by a divided 10th tergite, with no "hammer" on the 9th sternite. Two species are presently recognized in North America. *N. hubbsi* Ricker was described from Kansas.

Type of genus: *Neoperla clausena*

1. *Neoperla clausena* (Newman) (figs. 201-204)

Perla clausena Pictet, 1843, Pictet, 254.

Length: 18-18 mm.

Description: There is only 1 species of this genus found in northeastern North America. Only one other genus of the family Perlidae (*Perlimus*) has 2 ocelli and *Neoperla* can be distinguished from that species by its lack of cells in the forewing between veins A4 and A5.

The male has a sclerotized projection at the hind margin of the 7th tergite, a humped medial area on the 9th, and 1 medial and 2 lateral humped areas on the 9th. These areas all bear small, rounded denticles. The 10th tergite is divided dorsally and bears a knob, posteriorly directed process just before the midline on each side.

The female 6th sternite (subgenital plate) of most specimens has little to distinguish it from the other sternites. In the specimen figured, it is slightly expanded and an occasional specimen has the sternite slightly retuse along the hind margin. Hynes (1952) pictured 2 subgenital plates that are somewhat bilobed but generally there is no distinct subgenital plate.

Needham and Clausen (1925) figured the egg and gave an analysis of the variation in wing venation. Knight and his co-workers (1905b) pictured the egg in greater detail. Pratten (1925) stated that the larva is carnivorous, feeding mainly on chironomids.

Type locality: Georgia. Type in the British Museum.

Range: Entire eastern part of North America from Nova Scotia to Florida, west to Minnesota and Texas, and extending to Arizona.

Connecticut records: North Branford, June 15, 1919, M. Zapp (CAES); Stony,
Neogoria chyrella

Fig. 201. Male, dorsal view of posterior abdominal segments.
Fig. 202. Female, ventral view of posterior abdominal segments.
Fig. 203. Male, lateral view of posterior abdominal segments.
Fig. 204. Adult head.

Aug. 15, 1935, J. Slater (UC); larvae from Canaan, Litchfield, Mansfield, Stafford, Simms, Tolland and Willington (UC).

GENUS Acron euria Pictet

Acron euria Pictet, 1841, Perlides: 144.

The Acron euria are large stoneflies that are predacious in the larval stage. Often collected as larvae, they are much less commonly captured as adults. Adult paraglossae are larger than the glossae and there are remnants of the larval tufted thoracic gills. The males have an undivided 15th tergite, a produced "hammer" on the 9th sternite, and the paraprocts are recurved into "genital hooks." Unlike most stoneflies, the species are more

144
easily separated in the adult female and larval stages than in the male adult. The life cycle probably takes more than 1 year for most species. The larvae are carnivorous.

Knox (1965) discussed the abdominal nervous system and musculature of this genus.

Type of genus: *Perla arenosa* Pictet

Keys to Northeastern Species

MALES

1. A₈ of hindwing with many branches (about 12) .. 2. *arenosa*
 - A₈ of hindwing with fewer branches (generally 6 or less) 2

2. Remnants of subanal gills (generally concealed near base of paraprocts (fig. 236) .. 7
 - No remnants of subanal gills .. 3

3. Paraprocts cylindrical, fingerlike (figs. 220, 225) .. 4
 - Paraprocts flattened, somewhat triangular (figs. 215, 228) 5

4. Paraprocts with distinct notch on inner margin at tip (fig. 220) 3. *areta*
 - Paraprocts without notch (fig. 225) .. 7. *internata*

5. Abdominal tergites 9 and 10 without patches of short spines (fig. 234) .. 11. *ruralis*
 - Abdominal tergites 9 and 10 with patches of short spines 6

6. Ocellar triangle completely dark, margins of head behind ecdysial line light .. 9. *carolinensis*
 - Ocellar triangle partially light in most specimens; if all dark, margins of head behind ecdysial line have triangular brown streak from eye to apex of head .. 1. *aborescentia*

7. "Hammer" of 9th sternite triangular, pointed posteriorly, and with transverse grooves on ventral surface .. *georgiana*
 - "Hammer" of 9th sternite subcircular and smooth .. 8

8. Paraproct with obvious brush of hairs on hind basal margin; patches of spines on tergite 10 only (fig. 236) .. 12. *zanthomelas*
 - Paraproct without obvious brush of hairs; patches of spines on tergites 9 and 10 (fig. 232) .. 9

9. Light band extending across head between eyes, making ocellar triangle light; area anterior and posterior to this band dark .. 10. *perforata*

FEMALES

1. A₈ of hindwing with many branches (about 12) .. 2. *arenosa*

145
2. Remnants of subanal gills (fig. 230) .. 3
No remnants of subanal gills .. 9

3. Posterior margin of subgenital plate has large rectangular notch (fig. 237) .. 12, vanhenezi
Posterior margin of subgenital plate emarginate, rounded, or narrowly notched .. 4

4. Subgenital plate extending over full length of 9th segment and deeply notched .. georgiana
Subgenital plate not extending over full length of 9th segment; not deeply notched although it may be emarginate .. 5

5. Subgenital plate compressed at sides so that it appears to have a "waist" (fig. 223) .. 5, evoluta
Subgenital plate tapering or evenly rounded from base to apex .. 6

6. Length of subgenital plate subequal to or greater than width, extending two thirds across 9th segment; posterior margin emarginate (fig. 231) .. 6, mola
Length of subgenital plate less than width, extending one third across 9th segment; posterior margin emarginate or not (fig. 233) .. 7

7. Ocellar triangle light .. 10, perpleix
Ocellar triangle dark .. 8

8. Posterior margin of subgenital plate rounded (fig. 224) .. 6, ficaria
Posterior margin of subgenital plate flattened or emarginate (fig. 229) .. 8, tucaria

9. Posterior corners of subgenital plate with flaplike protrusions (fig. 226) .. 7, internata
Posterior corners of subgenital plate smoothly rounded .. 10

10. With small protuberance on 8th segment anterior to subgenital plate (fig. 235) .. 11, ruralia
Without any protuberances on 8th segment anterior to subgenital plate (figs. 221, 222) .. 11

11. Subgenital plate constricted at base (fig. 221) .. 3, arida
Subgenital plate widest at base (figs. 217, 222) .. 12

12. Subgenital plate emarginate on posterior margin (fig. 222); ocellar triangle completely dark; margins of head behind ec dysial line light .. 4, carolinensis
Subgenital plate rounded on posterior margin (fig. 217); ocellar triangle generally at least partially light; margins of head behind ec dysial line commonly with triangular brown streak from eye to apex of head .. 4, abnormia
LARVAE

1. With subanal gills (figs. 210, 211) 6
 Without subanal gills (fig. 205) 2

2. Head unicolorous, brown, with wavy line of occipital spines continuous across hind (fig. 209) 11, ruralis
 Head variously marked with spots or lines; no spines in center of occiput (fig. 205) 3

3. Abdomen uniformly dark (fig. 205a) 1, abnormis
 Abdomen variously patterned in lateral light and dark bands or spots (figs. 205b,c, 206, 207) 4

4. Posterior margin of abdominal tergites margined by dark markings (fig. 206) ... 4, carolinensis
 Posterior margin of abdominal tergites margined by light markings (fig. 105b,c) 5

5. Light M-shaped band anterior to median ocellus; light area on abdominal tergites varying from almost all dark to light, except for 2 detached lateral dark areas (fig. 205b,c) 7, internata
 Light spots anterior to median ocellus; light area on abdominal tergites bandlike and parallel, with dark bands (fig. 214) 7, internata

6. Head with wavy transverse occipital ridge; thoraces and abdomen uniformly yellowish brown 5, georgiana
 Head without transverse occipital ridge, thoraces and, in some individuals, abdomen patterned 7

7. Large, light-colored patch extending from median ocellus to clypeus (fig. 211) ... 12, sunthene
 Median ocellus separated from clypeus by dark are (figs. 207, 212) .. 8

8. An irregular, light, M-shaped band on head anterior to median ocellus; abdomen generally banded (fig. 206) 9
 No light, M-shaped band but 3 lighter spots anterior to median ocellus; abdomen uniformly dark (fig. 207) 9, mela

9. Posterior margin of abdominal tergites margined with dark markings (fig. 206) .. 8, lyceria
 Posterior margin of abdominal tergites margined with light markings ... 10

10. Dark abdominal bands of approximately equal width across tergite; in some specimens lighter coloring invades posterior margin of dark ocellar triangle (fig. 213) 5, escuta
 Dark abdominal bands expanded posteriorly near median line; ocellar triangle completely dark (fig. 288) 11

*Larvae of arvensis and arida not known.
11. Dark abdominal bands decrease in width laterally, median expansions of dark bands not reaching posterior margin of tergites (fig. 208) Dark abdominal bands not decreasing in width laterally, median expansions of dark bands commonly reaching to posterior margins of tergites, thus causing light posterior margin to be broken into 3 spots (fig. 212)

1. *Acroneuria abnormis* (Newman) (figs. 21, 205, 215-217)
Perla abnormis Newman, 1838, Fruitmos. Mag. 5: 177.

Length: 25-42 mm.

Description: This is a common and widespread eastern species. Its larva is the most variable in appearance of all Eastern *Acroneuria*. There are no anal gills. In the adult, the female subgential plate is broadly rounded by only slightly produced. The male paraprocts are broad and there are spinules on the 9th and 10th tergites. The abdominal color pattern of the larva varies from all dark, to banded, to 2 dark spots per tergite. The difference between larval *abnormis* and *internata*, as given in the key, may not always be clear but generally those *abnormis* with a head pattern resembling *internata* have a uniformly dark abdomen. Very young larvae are uniformly light brown but have neither anal gills nor occipital line.

The larvae are carnivorous and probably require more than a year to reach maturity. After a drought I have captured small larvae when the streams once more start to flow. Steffan (1967) described a phoretic relationship in which a chironomid lived in a broodworm case on *A. abnormis* and fed on the detritus which collected on the long hairs of its host. The percentage of *abnormis* carrying these chironomids increased from spring to fall, reaching 96 percent in October. Steffan also observed *abnormis* active at water temperatures of 0-5°C.

Figures of the egg and larva, as well as additional figures of the adult, are by Needham and Claassen (1925), Claassen (1931), and Frison (1935). Harper and Frison (1970) graphed the adult emergence of this species. They found a 1:1 ratio in their traps, although more females were captured on shore.

Larval

Fig. 205. *Acroneuria abnormis*, showing variation in dorsal coloration. Thoracic pattern on b and c is similar to that on a. (c is after Frison, 1935).

Fig. 206. *Acroneuria cardinellae*.

Fig. 207. *Acroneuria nobilis* (after Frison, 1935).

Fig. 208. *Acroneuria erythrocephala* (after Frison, 1937).

Fig. 209. *Acroneuria rugulifrons* (after Frison, 1935).

Fig. 210. *Phaenophora capitata*.

Fig. 211. *Acroneuria annulipes*.

Fig. 212. *Acroneuria filicina* (after Frison, 1942).

Fig. 213. *Acroneuria tesselata* (after Frison, 1935).

Fig. 214. *Acroneuria internata* (after Frison, 1935).
Aconuraia obscura, posterior abdominal segments
Fig. 215. Male, dorsal view.
Fig. 216. Male, lateral view.
Fig. 217. Female, ventral view.

Type locality: Trenton Falls, New York. Type in the British Museum.

Range: Northern Quebec and the Maritime south to Florida and west to Manitoba and Illinois. Reports of this species in Idaho, Montana, and Colorado by Hagen (1838) and Banks (1894) are probably in error.

2. Aconuraia arenosa (Pictet) (figs. 218, 219)

Pera arenosa Pictet, 1841, Perididae: 178.

Length: 23-37 mm.
Acornia argus, posterior abdominal segments
Fig. 218. Male, dorsal view.
Fig. 219. Female, ventral view.

Description: The adults of both sexes are easily identifiable by the many-branched 2nd anal vein of the hindwing, a characteristic apparently peculiar to this species. The genial hooks of the male are large. The 9th and 10th tergites bear many short, stout spines and the 8th a few scattered ones. The female subgenital plate is broad and produced.

Claassen (1931) described a larva that was identified as this species on the basis of the venation of the wing pads. However, he did not figure the specimen and it is now so faded in the preservative that neither color pattern nor venation can be seen. Needham and Cleaver (1926) illustrated the egg and adult.

The adults of this species are nocturnal and can live for about 5 days if water is provided (Arnold, 1904). When disturbed, they occasionally release drops of blood from the anal joint. Arnold (1904) illustrated the course of blood circulation in the wings and (1906) discussed and figured the haemocytes.

Type locality: Philadelphia, Pennsylvania. Type in Zoologisches Museum der Universität, Berlin.

Range: Up the East Coast from Florida to Maine and Ontario.

3. Acornia argus (Hagen) (figs. 220, 221)

Acronema arida (from Frison, 1942)

Fig. 220. Male, dorsal view of posterior abdominal segments with enlarged view of cercus (from Frison, 1942).

Fig. 221. Female, ventral view of subgenital plate.

Length: 23-28 mm.

Description: The adults have no anal gill remnants. The male genital hooks have a notch just before the tip. The 9th and 10th tergites bear a few short, stout spines. The female subgenital plate is constricted basally, so that the narrowest width is at the base. The larva is not known. Frison (1942) figured the adults.

Type locality: Philadelphia, Pennsylvania. Type in the Museum of Comparative Zoology, Harvard University.

Range: Georgia north to Pennsylvania.

4. Acronema carolinensis (Banks) (figs. 206, 222)

Length: About 28-34 mm.

Description: The larva has anal gills and the adults bear the remnants of these gills. The ocular triangle of the adult is dark but the head is light behind the ocellar line. The female subgenital plate is emarginate.

Hall and his co-workers (1969) infected larvae with cercariae shed by snails. The host response of the stolidly was slight. The entry lesion healed over and encapsulated some parasites. Except for some fat-body depletion, there was no apparent harm to the host. Frison (1942) and Classen (1951) figured the larva, the latter under the species name Ictyurus.

Type locality: Black Mountain, North Carolina. Type in Museum of Comparative Zoology, Harvard University.
Range: Quebec to Tennessee and Virginia.

Connecticut records: Larvae from Barkhamsted (UC), East Canaan (UC), Litchfield (UC).

5. *Acroneuria evoluta* Klapálek (figs. 213, 223)

Length: 22-37 mm.

Description: This species has anal gills. The female is best distinguished by the elongate subgenital plate. The lateral margins of the plate are compressed, so that its

Fig. 222. *Acroneuria evoluta* female, ventral view of subgenital plate (after Needham and Claassen, 1920).

Fig. 223. *Acroneuria evoluta* female, ventral view of posterior abdominal segments.
narrowest part is in the middle third. Frison (1935) illustrated female subgenital plates that are rounded apically, rather than emarginate as pictured in Figure 223. The male cannot at present be clearly differentiated from its close relatives.

The adults are nocturnal and mating takes place at night (Frison, 1935). The specimens illustrated by him as arida are erubescens. Clark (1934) described and illustrated the external morphology of the adult but neglected to note the remnants of larval gills.

Type locality: New Orleans, Louisiana. Type in Naturhistorisches Museum, Vienna.

Range: Ohio and Illinois south to Kansas and Louisiana. Chasser's prolonga, which was declared a synonym of erubescens (Frison, 1947), was collected in Montana. Despite considerable further collecting in that state (Gazin, 1944), it has apparently not been recaptured. Because of its known range in the Midwest, the collection data on prolonga probably is in error or another species is involved.

6. Acronoeura filica Frison (figs. 212, 224)

Fig. 224. Acronoeura filica female, ventral view of subgenital plate (after Frison, 1942).

Length: 27-31 mm.

Description: The adult bears anal-gill remnants, a dark ocellar triangle, and a somewhat produced and rounded subgenital plate. The male paraphyses are pointed and somewhat curved but offer little to separate this male from its near relatives.

Type locality: Pineville, Kentucky. Type at Illinois Natural History Survey.

Range: Kentucky, Ohio, and Tennessee.

7. Acronoeura internata (Walker) (figs. 214, 225, 226)

Length: 28-35 mm.

Description: The larva has no anal gills, so the adults show no gill remnants.
Acroneuria interrata

Fig. 225. Male, dorsal view of posterior abdominal segments (from Prson, 1935).
Fig. 226. Female, ventral view of posterior abdominal segments.

The female subgenital plate is unique in being produced and having a lobe at each distal corner. The male parameres are cylindrical (rather than flattened) and not strongly hooked. The adults were illustrated by Needham and Clausen (1929) and Prson (1935), the larva by Prson (1935).

Type locality: North America. Type in the British Museum.

Range: Midwestern states in Ohio and West Virginia west to Missouri and Minnesota, with an extension to Colorado.

8. **Acroneuria lycoris** (Newman) (figs. 227-230)

Perla sculp Provancher, 1876, Nat. Can. 8: 212.
Perla ephippia Provancher, 1876, Nat. Can. 8: 218.

Length: 18-35 mm

Description: This species has anal-gill remnants and a dark ocellar triangle. The female subgenital plate is produced but flattened or emarginate spirally. If the anal-gill remnants are not observed, it might be confused with a female *A. acerosa*; however, *lycoris* has the dark ocellar patch more clearly defined than does that species. The males are not easily separated from near relatives. However, most individuals have parameres (genital hooks) which are much shorter than those of other species and are directed more anteriorly, without a definite terminal hook. They abrupt-
Aeromorpha lycorae

Fig. 227. Male, lateral view of posterior abdominal segments.
Fig. 228. Male, dorsal view of posterior abdominal segments.
Fig. 229. Female, ventral view of posterior abdominal segments.
Fig. 230. Female, dorsal view, showing remnants of larval anal gills.

ly narrow before the sharply pointed end. The larva described under this name by Claassen (1931) is actually Aeromorpha. Occasional larval specimens have the abdomen mostly dark, with only a light streak across the tergite. Needham and Claassen (1925) studied the variations in ventral branching in this species.

A. lycorae larvae appear resistant to higher temperatures, a temperature of 30°C for 96 hours being necessary to kill 50 percent (Neudecker and Lennre, 1963). Likewise 50 percent were able to survive water acidity of pH 3.32 (Bell and Neudecker, 1969).

Range: Northern Quebec to Florida and west to Saskatchewan and Tennessee—a widely distributed species.

Connecticut records: Barkhamsted, May 22, 1930, W. Samuelson (CAES); East...
9. *Acroneuria nola* Frison (figs. 207, 231)

Fig. 231. *Acroneuria nola* female, ventral view of subgenital plate (after Frison, 1937).

Length: About 27 mm.

Description: The adult has remnants of anal gills. The female subgenital plate extends more than halfway across the body and tapers to a broad apex that is emarginate distally. The male parapods are curved and the 9th and 10th tergites bear patches of small spines. The male is not easily distinguished from its near relatives. The term is described as *Acroneuria sp. a* by Frison (1935).

Type locality: Petersburg, Indiana. Type at Illinois Natural History Survey.

Range: Ohio to Georgia and west to Illinois and Oklahoma.

10. *Acroneuria purpurea* Frison (figs. 208, 232, 233)

Length: About 27 mm.

Description: This is another species whose adults bear remnants of anal gills. The female subgenital plate is somewhat produced and either rounded or slightly emarginate. The male, as usual with this genus, has no parapods and the 9th and 10th tergites bear patches of small spines. The most distinctive character is an area of lighter coloring that extends from eye to eye across the scutellar triangle. Further illustrations are with the type description.

Type locality: Petersburg, Indiana. Type at Illinois Natural History Survey.

Range: At least the area circumscribed by the District of Columbia, eastern Pennsylvania, Ohio, and Illinois.
Acroceria perplexa (from Frison, 1937)

Fig. 232. Male, dorsal view of posterior abdominal segments.
Fig. 233. Female, ventral view, showing variation in the subgenital plate.

11. Acroceria ruralis (Hagen) (Figs. 209, 234, 235)

Perla attenuata Banks, 1905, Psyche J. Entomol. 12: 35.

Length: 20-33 mm.

Acroceria ruralis, posterior abdominal segments
Fig. 234. Male, dorsal view (after Frison, 1935).
Fig. 235. Female, ventral view.
Description: In all stages this species is somewhat different from other *Acremonia* and was placed by Ricker (1954) in the subgenus *Attimocera*, which Illies (1966) raised to generic rank; however here it is retained in *Acremonia*.

There are no anal-gill remnants. The male paraprocts are short, triangular, and flattened. The "hammer" on the 9th sternite is oval and there are no spines on either the 9th or 10th tergite. The female subgenital plate is produced partly over the 9th sternite and is emarginate apically. There is a transverse protrusion in the middle of the plate. The larva is a uniform brown, with a wavy row of spines on the ocipital ridge. The egg, as figured by Needham and Claassen (1921) differs from most other *Acremonia* in lacking a cap but does bear a produced equatorial ridge. The larva is predacious, feeding on chironomids and caddis larvae. The larval stage probably lasts 2 or 3 years. The adults are nocturnal (Frison, 1935).

Further figures are by Needham and Claassen (1925), Claassen (1935), and Frison (1935).

Type locality: St. Louis, Missouri. Location of type specimen unknown.

Range: The published range is from New York to Florida and west to Minnesota and Kansas. There is one record from Colorado. Ricker and his co-workers (1968) thought that the synonymy of Provancher's *parvula* with *rufula* was in error and that *rufula* does not appear in Quebec.

12. *Acremonia saucdens* (Newman) (figs. 211, 236-238)

Length: 22-34 mm.

Description: The adults bear remnants of anal gills. The female is easily identified by the large rectangular notch in the subgenital plate. The male has a small but distinct oval "hammer" on the rear margin of the 9th sternite and a brush of hairs on the hind basal margin of the paraprocts. Needham and Claassen (1923) correctly stated that there are peglike spines on the 9th tergite only, although their figures indicate otherwise. The larva is distinctive in having a large light area anterior to the median ocellus. Needham and Claassen illustrated the egg and adult, Frison (1942) the larva.

Type locality: Georgia. Lectotype in the British Museum.

Range: Connecticut south to Florida and west to Ohio and Georgia. Banks (1894) reports a specimen from Kansas but this may be a misidentification.

Connecticut records: Bethany, June 8, 1962 (SW31); Mt. Carmel, UV light trap, June 18, 1962. A. Dettinger: Schoen, June 15, 30, 1967 (SW31); larvae from Bethany, Ellington, Portland, Salem (UC, SW31). In addition, there are many larvae from Mansfield and Storrs in the student collections at UC.

GENUS Perlesta BANKS

Perlesta Banks, Can. Entomol. 38: 222.

Adult members of this genus, like the other Perlidae, show the remnants
Acrocentrus panthenes

Fig. 236. Male, three-quarters view; suprabasal gill.
Fig. 237. Female, ventral view of posterior abdominal segments.
Fig. 238. Wings.
of the larval gills hot, in this genus, the gills are small and inconspicuous in most species. The adult males are separated from other genera of the family by lacking a raised "hammer" on the 5th sternite and by the unclef 10th tergite. Both sexes are distinguished by 3 ocelli, no anal crossveins except those forming the anal cell, and the yellowish-white costal margin of the forewing. There are 2 species presently described from North America, although P. frisoni Banks from the Great Sandy Mountains may be merely a color variant of the common P. placida.

Type of genus: Perla placida Hagen

1. *Perla placida* (Hagen) (figs. 239,242)

Perla cobitis Klepekis, 1921, Ann. Entomol. Belg. 41: 150.

Length: 8.5-14 mm.

Description: The larva, with its many gills and speckled appearance, is quite distinctive. Adult males have the typical peridial hooks and may be identified by the characters described for the genus. In many individuals, the genital hooks slant posteriorly and have a slight projection just before the tips. The female has a slightly produced subgenital plate that is notched at the midline. The hind margin of the subgenital plate is semitransparent in many specimens and difficult to distinguish unless the segments are separated. The head pattern is distinctive but variable (fig. 239).

Superficially, *placida* can be confused with some *Isoperla* but the time of emergence, the light coloring on the costal region of the wing, the remnants of gills, and a long single ventral hair on each cercal segment help separate it. Other species of the larva are by Claassen (1931); Knight, Nebecher, and Goflin (1958); Stewart, Airner, and Solon (1969) figured the egg, and Frisoni (1935, 1942) the egg, larva, and adult.

Stewart and his co-workers (1969) gave a detailed description of the reproductive system, mating, and egg of this species. Mating occurred the first day after adult emergence, probably in high vegetation or trees near the stream. Sexual recognition seemed to depend on chance encounters or visual recognition. Males lived 4 to 6 days, females 7 to 8 days and both mated several times during this period. Females mated in the first 6 days of life. The male reproductive hooks connect with the female subgenital lobes, locking the two individuals together. The male subgenital plate then evaginates from beneath the posterior part of the 9th sternite and is inserted into the genital opening of the female.

P. placida has a wide tolerance for different sorts of streams, including intermittent ones (Harden and Michel, 1932). It is also one of the few stoneflies that emerge in midsummer and late summer. The larvae are carnivorous, feeding particularly on chironomids (Frisoni, 1933). Frisoni also saw rivers preying on adult *P. placida*.

Stewart and his co-workers (1970) found algae being carried on adults, providing a means of dispersal for these plants.

The adults come readily to lights and all the Mt. Carmel collections listed below.
Perodicus macula

Fig. 239. Adult head patterns, showing variation.
Fig. 240. Male, dorsal view of posterior abdominal segments.
Fig. 241. Male, lateral view of posterior abdominal segments.
Fig. 242. Female, ventral view, showing subgenital plate.

were captured by this means.

Type locality: Washington, D.C. Type in Museum of Comparative Zoology, Harvard University.

Range: Widely distributed from Nova Scotia to Florida and west to Manitoba, Wyoming, and Texas.

162
GENUS *Perlinella* Banks

This genus has more than one crossvein between *A*1 and *A*4 in the forewing. The male has sharply pointed and recurved paraprocts and bears a "hammer" on the 9th sternite. Zwick (1971) recently revised the genus.

Type of genus: *Isogryna drymo* Newman

KEY TO ADULTS OF NORTHEASTERN SPECIES

1. 3 ocelli; pronotum with broad yellow or reddish band on each side of median dark band .. 1. *drymo*
 2 ocelli; pronotum concolorens 2

2. Clypeus yellow; male penial sclerites with fine serrations but without sclerotized hook (fig. 245) 2. *lunatipennis*
 Clypeus darker; male penial sclerites finely serrated and with sclerotized hook (fig. 246) 2. *ephyre*

1. *Perlinella drymo* (Newman) (figs. 32, 243-245)

Length: 10-19 mm.

Description: The male paraprocts are relatively small but well sclerotized. The

Perlinella drymo

Fig. 243. Male, dorsal view of posterior abdominal segments.
Fig. 244. Penial sclerites (from Zwick, 1971).
Fig 245. Female, ventral view of posterior abdominal segments.

163
10th segment is distinctly narrower than the 9th. The head pattern is distinctive, with a dark ocular triangle, a light 3d line, and a dark triangular spot in front of the 3d line. The ocular spot has dark arms reaching toward the margin of the head before the eyes. Further figures of the adult are by Needham and Chassan (1925), Priss (1935); of the larva by Chassan (1931) and Priss (1935).

Type locality: Georgia. Type in the British Museum.

Range: This widely distributed but uncommon insect ranges from Nova Scotia to Florida and west to Tennessee, Illinois and Minnesota. Priss (1935) suggested that further collecting will include other states of the Mississippi basin within its range.

2. *Perlinella aphyre* (Newman) (figs. 246, 247)

Length: 5-16 mm.

Description: The male genital sclerites have a distinct hook at the inner distal angle. The female subgenital plate has a broad, light-colored notch medially. Not all specimens have more than 1 anal crossvein. In a collection from Ludlowville, New York, 2 out of 16 females lacked the extra anal cell. This species, although widely distributed, does not seem to be common. The adults are nocturnal and come to lights at night. The larva is presumably carnivorous and is found in larger streams with fast currents and gravely or rocky bottoms (Priss, 1935; Harden and Minkel, 1952). Figures of the adult are given by Needham and Chassan (1925), Priss (1935), and Zwick (1971), larval figures by Chassan (1931) and Priss (1935).
Type locality: Georgia. Type in the British Museum.

Range: Widespread over eastern North America from New Hampshire to Florida and west to Arkansas and Minnesota.

3. *Perlinella fumipectis* (Walsh) (fig. 248)

![Illustration](image)

Fig. 248. Perlinella fumipectis, penial sclerites (from Zwick, 1971).

Length: 0-12 mm.

Description: This species has recently been removed from synonymy by Zwick (1971). It is best distinguished by the shape of the male penial sclerites, which are finely serrated but without hooks or sharp points. The head is yellowish with a black patch over the 2 ocelli. Further figures are by Zwick (1971).

Type locality: Rock Island, Illinois. Type missing.

Range: If Zwick (1971) is correct, and his specimens from Florida are the same as Walsh's *fumipectis*, this insect is widely distributed over the eastern United States.

Family Chloroperlidae

This family of small- to medium-size stoneflies is found in North America, eastern Asia, Europe and western Asia. The wing venation is reduced, with a small anal area in the hindwing; the glossae are much shorter than the paraglossae; there are 7 abdominal ganglia; the adult cerci are long. The male epiproct is well developed but the paraprocts are unmodified. There are no lobes on any male sternites. The male 10th tergite is cleft.

Genus Chloroperla Newman

This genus is distinguished from *Hastoperla* by having the anal area of
the forewing separated by a fold from the remainder of the wing. It differs from *Alloperla* in not having vein A2 of the forewing branched, although there can be a small stub on A2 that probably represents the remnants of this vein.

Zwick (1967) analyzed the European members of this genus, basing his study on the male genitalia. It is uncertain where our Northeastern *C. terna* fits into his scheme; *C. terna* was separated to the subgenus *Rasovae* by Ricker (1952) on the basis of a single anal vein in the hindwing. However, Zwick includes the European *C. brevicauda* (= *himinna*) in the nominate subgenus *Chloroperla* s.s. on the basis of the male aedeagus, even though, according to Despax (1951), there is only 1 anal vein in the hindwing. This leaves the status of *C. terna* uncertain and it possibly is closer to *Alloperla* than to *Chloroperla*. The genera *Alloperla* and *Chloroperla* seem very close in North America and the species now separated into these 2 genera may eventually be found to be congeneric. Alternatively, new separations based on genitalia or other characters may divide the species into new groupings.

There are only 2 species of *Chloroperla*, as now accepted, in North America. Only 1 of these is found in our area. *C. aestivus* Ricker, from northern Canada, can be recognized because it has 3 anal veins in the hindwing.
Type of genus: *Phryganea tripauciata* Scopoli

1. *Chloroperla terna* Frison (figs. 250a, 250-252)

Length: 6.6-8 mm.

Description: This is the only species of this genus found in northeastern North America. It can be distinguished from closely related species by its folded anal lobe, the single anal vein in the hindwing, and (in most individuals) an unbranched vein A_2 in the forewing. It can be separated from eastern (but not western) *Alloperla* by

Chloroperla terna

Fig. 250. Male, lateral view of posterior abdominal segments.

Fig. 251. Male, dorsal view of posterior abdominal segments.

Fig. 252. Wings.

167
having U-shaped marks and a longitudinal line on the meso- and metathorax.

Type locality: Waits River, West Topsham, Vermont. Type at Illinois Natural History Survey.

Range: New Hampshire west to Wisconsin and south to Tennessee.

GENUS *Hastaperta* RICKER

This genus is distinguished from other Chloroperlidae genera by the lack of a fold separating the anal area from the remainder of the inner wing. There are 3 species, 2 of them found in our area.

Type of genus: *Hastaperta calcarea* Ricker (= *brevis* Banks)

KEYS TO NORTHEASTERN SPECIES

ADULTS

1. Abdomen with dorsal stripe (fig. 249b); male epiproct quadrate in dorsal view; female subgenital plate subtriangular and somewhat flattened apically .. 2. *orpha*

 No dorsal abdominal stripe; epiproct rounded or pointed apically in dorsal view (fig. 254); female subgenital plate broadly rounded .. 1. *brevis*

LARVAE

1. Pronotum with 4 corners dark, making a light diamond-shaped center .. 2. *orpha*

 Pronotum mostly uniform in color .. 1. *brevis*

 1. *Hastaperta brevis* (Banks) (figs. 253-255)

 Length: 5.5-9 mm.

 Description: Green in life, this species fades to yellow when preserved. It is distinguished from *Hastaperta orpha* by lacking a dorsal abdominal stripe and having the male epiproct and female subgenital plate both rounded. *Brevis* larvae are terrestrial and found among dead leaves. Adults have been figured by Needham and Clausen (1923), Ricker (1935), Frison (1935, 1942), and Griffin, Neeler, and Sessions (1956), the larvae by Frison (1935).

 Harper and Magnus (1969) first found the young larvae in October. Growth was regular until January, when it slowed. In May, somewhat before adult emergence, larval growth increased rapidly.

 Type locality: Sherbrooke, Quebec, Canada. Type in Museum of Comparative Zoology, Harvard University.
Hastapella hscrì

Fig. 253. Male, lateral view of posterior abdominal segments.
Fig. 254. Male, dorsal view of posterior abdominal segments.
Fig. 255. Wings.

Range: Nova Scotia south to Georgia and west to Oklahoma and Manitoba.

2. Hastapella orpha (Frison) (figs. 248b, 256, 257)

Length: 7-8 mm.
This species, given its life, is distinguished from species by having a dorsal abdominal stripe and dark lateral margins on the pronotum. The male genitalia in dorsal view and the female genital plate in ventral view are both somewhat similar. The adult was figured by Friese (1937), and also by Harden and Michel (1952), who found that *orpha* inhabits larger streams than does *brevis*.

Type locality: Namakagon River, Spooner, Wisconsin. Type at Illinois Natural History Survey.

Range: This species is known only from Minnesota, Wisconsin, and New Brunswick.

Genus Alloperla Banks

This genus is characterized by parallel lines larger than glossae, no gills, a folded anal lobe on the hindwing, and vein A2 of the forewing branched. The genitalia of the males offer several diagnostic characters for specific determinations, although, as usual with stoneflies, female characteristics do not. Some species resemble *Chloroperla* but are at present separated on the basis of wing venation. Kickert (1943, 1952) has divided this group into several subgenera which illies (1966) has raised to generic rank. I consider all these species to fall within the one genus *Alloperla*, and recently (1968) have reviewed and keyed the Northeastern species and given new collection records for several New England states.

The adults are yellow or green and emerge in late spring and early summer, when they may be swept from foliage over the streams. The larvae are presumably predacious.

Type of genus: *Sialis imbecilla* Say
Allogera sp.
Fig. 258. Larva, showing maxilla.
Fig. 259. Larva.

KEYS TO NORTHEASTERN SPECIES

MALES

1. With dorsal abdominal stripe (fig. 249c) 2
 Without dorsal abdominal stripe (fig. 249c) 7

2. Inward-pointing process at base of each cercus (fig. 273) 9. _marginalis_
 No process at base of cercus .. 3

3. Epiproct bifurcate at tip (fig. 279) _12, maxima_
 Epiproct not furcate .. 4

4. Epiproct in lateral view with circular base and upturned process at tip (fig. 274); prothorax with obscure center stripe, not margined with black line (fig. 249c) .. 5
 Epiproct not as above (figs. 269, 277); prothorax margined with black line (fig. 249d) .. 6

5. Proximal end of epiproct in dorsal view has 4 lobes _14, omkas_
 Epiproct in dorsal view smoothly margined or notched (fig. 276) 10. _mediana_

Male of _quadrata_ not known.
6. Epiproct long, slender, upturned (fig. 268) 7. lateralis
 Epiproct flattened, broad in dorsal view, almost pestle shaped (fig. 278) 11. setica

7. Epiproct recurved, slender, sclerotized, gradually tapering to a point
 (figs. 266, 267) ... 6. tuberculata
 Without above characters; epiproct variously shaped from oval to
 reniform, commonly lifted by an inflated body (figs. 251, 253) 8

8. Epiproct with 2 rounded, triangular projections extending ventrally
 near distal end (fig. 265) 5. dixi
 Epiproct variously formed but not as above 9

9. Sclerotized part of epiproct slender, with parallel sides, truncate distal-
 ly, with 2 sharp laterally directed projections (fig. 271)
 Epiproct rounded or elongate oval and without 2 laterally directed
 projections distally .. 10

10. Sclerotized part of epiproct much broader than long, reniform (fig.
 284) ... 16. ovase
 Sclerotized part of epiproct at least as long as broad (figs. 263, 285)
 .. 11

11. Epiproct in dorsal view more than twice as long as wide and with
 terminal tuft of hairs (fig. 260) 1. bankia
 Epiproct not more than twice as long as wide or, if twice as long,
 without terminal tuft of hairs 12

12. 9th tergite notched posteriorly; epiproct somewhat pear shaped in
 lateral view (fig. 265) .. 17. costabilis
 9th tergite not notched; epiproct not pear shaped (figs. 261, 264,
 280) .. 13

13. Epiproct subtriangular in dorsal view (fig. 263) 3. chloris
 Epiproct oval or subrectangular in dorsal view (fig. 281) 14

14. Epiproct, except for glabrous circular area at distal end, covered with
 fine appressed hairs, giving silky sheen (fig. 252) 2. camdata
 Epiproct without silken sheen 15

15. In lateral view, epiproct evenly narrowed to tip, somewhat resembling
 the head of a duck (fig. 264) 4. concolor
 In lateral view, epiproct subparallel on margins, tip rounded, resem-
 bling a "hot dog" in shape (fig. 280) 13. neglecta

 FEMALEs14

1. With dorsal abdominal stripe (fig. 249c) 2
 Without dorsal abdominal stripe (fig. 249e) 6

14Female of idem not known.
2. Pronotum with dark lateral margins (fig. 249d) 5
 Pronotum without dark lateral margins but with obscure pronotal center stripe (fig. 249c) 3

3. Subgenital plate with 3 lobes 14, onubus
 Subgenital plate single lobed or bilobed 4

4. Subgenital plate rounded, flattened, or bilobed; basal width of subgenital-plate protrusion three quarters width of segment 10, mediana
 Subgenital plate V shaped; basal width of subgenital-plate protrusion only slightly more than half width of segment 12, maculata

5. Subgenital plate with narrow tongue-like protrusion 7, lateralis
 Subgenital plate broadly rounded 6

6. Brown coloring extending from posterior ocelli to clypeus (fig. 249d) 11, macca
 No coloring in occellar triangle or anterior to it (fig. 249c) 9, magninata

7. Subgenital plate scarcely projecting beyond hind margin of 8th segment, very similar to hind margins of other segments 2, chloris
 Subgenital plate projecting well beyond posterior margin of 8th segment or with narrow median projection extending beyond margin 8

8. Subgenital plate with small quadrate projections, less than one tenth width of segment (fig. 282) 15, quadrata
 Subgenital plate without small quadrate projection 9

9. Subgenital plate with narrow tongue-like protrusion 10
 Subgenital plate rounded, without narrow tongue-like protrusion 11

10. Basal width of subgenital protrusion about one third width of segment and extending posteriorly halfway across following segment 6, imbecilla
 Basal width of subgenital protrusion less than one fifth width of segment and extending posteriorly one third distance across following segment 8, leonardii

11. Subgenital plate long, reaching posterior margin of 9th sternite 17, vestalii

1. Alleperla bashi Frison (fig. 260)

Length: About 9 mm.

Description: This species, green in life, has no dorsal abdominal stripe. In dorsal view the epiproct is longer than wide and is distinguished from that of close
Fig. 280. *Alloperla bimaculata*: a. male, dorsal view of posterior abdominal segments; b. dorsal view of epiproct (from Frison, 1942).

Type locality: Flat Creek, New York. Type at Illinois Natural History Survey.

Range: Nova Scotia to Michigan and south to Illinois and New York. It is apparently one of several *Alloperla* found throughout the St. Lawrence River plain but not farther south in New England.

2. *Alloperla caudata* Frison (figs. 261, 262)

Fig. 260. Lateral view of posterior abdominal segments.
Fig. 261 a, Lateral view, with epiproct extended; b, dorsal view of distal end of epiproct.
Length: About 9 to 10.5 mm.

Description: This species has no dorsal abdominal stripe. The male epiproct has a brown, silvery sheen caused by fine suppressed hairs. There is a glabrous circular area at the distal end of the epiproct. Further illustrations of both adults and larvae are by Prisner (1934, 1942).

Type locality: Adair County, Oklahoma. Type at Illinois Natural History Survey.

3. Alleperla chloris Prisner (fig. 263)

Length: 7.5-9 mm.

Description: This species, green in life, can be recognized by its lack of a dark dorsal line on the abdomen and by its triangular epiproct. Further figures are by Prisner (1934).

Type locality: Caroline, New York. Type at Illinois Natural History Survey.

Range: Found in New York, Quebec, and western New England.

Connecticut records: Easton, June 55, July 14, 1965 (SWH); Kent, July 1, 1953, July 9, 1954, C. Remington (YU); Salisbury, June 29, 1960 (SWH); West Cornwall, June 29, 1960 (SWH).

Fig. 263. Alleperla chloris male, dorsal view of posterior abdominal segments.

4. Alleperla concolder Ricker (fig. 264)

175
Fig. 204. Allogera concolor male; a, lateral view of posterior abdominal segments; b, lateral view of distal end of epiproct.

Length: 12-14 mm.

Description: This species was, for some time, synonymized with *A. neglecta* but can be separated by the shape of the epiproct and the sclerotization on the anterior half of the 10th tergite. The epiproct is somewhat “d-shaped” in lateral view and tilted higher on the supra-anal body than in *neglecta*. The anterior sclerotization on the 10th tergite is emarginate, forming a wide V that does not reach the anterior margin of the segment. It is green in life but fades to whitish yellow in alcohol. Additional figures of the adult are by Risser (1925) and Hitchcock (1968). Harper and Pilson (1970) graphed adult emergence and found a 1:1 sex ratio.

Type locality: Horning’s Mills, Ontario. Type in Royal Ontario Museum, Toronto.

Range: Quebec and Newfoundland south to Pennsylvania.

Connecticut records: Barkhamsted, May 20, 1960, June 1, 1967 (SWF); Ellsworth, June 7, 1967 (SWH); Hartland, June 14, 1966 (SWH); Sterling, June 11, 1959.

5. *Allogera ideti* (Risser) (Figs. 33, 265)

Length: About 7 mm.

Description: *A. ideti* is a green species without a dorsal stripe. It can be recognized in the male by the epiproct, which is produced ventrally as a pair of triangular

Fig. 205. Allogera ideti male; a, lateral view of 7th, 8th, and 9th segments; b, lateral view of distal end of epiproct.

176
projections. Further information on the type specimen was given by Hitchcock (1968). The female is undescribed. Further illustrations of the male are by Richer (1955) and Hitchcock (1968).

Type locality: South Bolton, Quebec. Type in Royal Ontario Museum, Ottawa.

Range: Has been found only in Quebec.

6. *Alioperla imbicilla* (Say) (figs. 266, 267)

Say's imbicilla* Say, 1823, Godman's Western Quarterly Reporter 2: 165.

![Image of *Alioperla imbicilla* male, posterior abdominal segments](image)

Fig. 266. Lateral view. Fig. 267. Dorsal view.

Length: 8-10 mm.

Description: This is another green species without a dorsal stripe but is distinguished by having an epiproct which is recurved and tapers to a point. The female subgenital plate is narrow and extends posteriorly across the following sternite. Unlike most stoneflies, this species has more females than males captured and graphed from adult-emergence traps (Harper and Pilon, 1970). Further figures of the adults are by Needham and Claxton (1925) and the mouthparts of the larva were figured by Hardin and Mikkel (1952).

Type locality: Cincinnati, Ohio. Type specimen missing.

Range: Labrador and the Maritimes south to Georgia and east to Minnesota.

Connecticut records: Kent, July 1, 1933, C. Remington (YU); Lebanon, June 6, 1960, June 12, 1939 (SWH); Storrs, June 18, 1954, J. Slater (UC); Union, June 9, 1960 (SWH).

7. *Alioperla lateralis* Banks (figs. 268, 269)

177
Allergala lateralis male

Fig. 268. Lateral view of posterior abdominal segments.
Fig. 269 a, Dorsal view of posterior abdominal segments; b, angled view of the epiproct, showing sclerotized projections at its base.

Length: 9-13 mm.

Description: *A. lateralis* is the only Eastern *Allergala* with an abdominal dorsal spine and a slender, tapering, recurved epiproct. On the anterior margin of the 9th tergite are 3 lobes. Near the base of the epiproct there are projections of various types, from a slight bump to small sclerotized wings. The epiproct is somewhat broadened in some individuals, reinforcing the suggestion that *lateralis* is closely related to *mediana*. The female subgenital plate is narrow and tonguelike. Additional figures of the adult are by Needham and Claassen (1923).

Type locality: Black Mountain, North Carolina. Type in Museum of Comparative Zoology, Harvard University.

Range: Maine to Georgia in the Atlantic tier of states.
8. *Alloperla leonardia* Ricker (figs. 270, 271)

![Alloperla leonardia male, posterior abdominal segments (from Harden and Mickel, 1952).](image)

Fig. 270. Lateral view. **Fig. 271.** Dorsal view.

Length: 7.5-10 mm.

Description: *A. leonardia* is separated from other species of green *Alloperla* by the male epiproct, which is subrectangular, with a sharp projection at each distal corner. The female subgenital plate is quite narrow and projects only a short distance over the following sternite. Figures of the abdomen are found in the two references in the heading above.

Type locality: North Branch of the Otter River, Houghton County, Michigan. Type at Illinois Natural History Survey.

Range: Has been found in Michigan and Minnesota.

9. *Alloperla marginata* (Banks) (figs. 272, 273)

Length: 8-10 mm.

Description: This species is easily distinguished by the inward-pointing process at the base of each cercus, a characteristic shared by the Western *A. pulchra* but by no other Eastern species. Additional figures of the adult are by Needham and Chessen (1923). Adult emergence was graphed and sex ratio determined as 1:1 by Harper and Pillon (1970).

Type locality: Cohoes, New York. Type in Museum of Comparative Zoology, Harvard University.
10. *Alloperla mediana* Banks (Figs. 274c, 275a-b)

Length: 9-20 mm.

Description: *A. mediana* is quite a variable species but can be distinguished from all other Eastern species except *okavio* by its yellow color, dorsal abdominal stripe, median dark stripe on the pronotum, and the recurved epiproct that, in lateral view, are flattened at the base. The 9th segment can have a dorsal lobe which varies considerably in size between specimens. In dorsal view, the male epiproct is either smooth or notched. The female subgenital plate is smoothly rounded, or somewhat truncate, or bilobed. Ricker (1954) gave a distribution map of *A. mediana* and *A. okavio* but probably most of his records apply to *mediana* alone. Hitchcock (1968) discussed and illustrated variation within this species. It is quite possible that *A. okavio* represents only the extreme of a variable population and is therefore a synonym of *mediana*. Additional illustrations are by Needham and Chassan (1925).

Storer (1935) recorded hank swallows feeding on this species.

Type locality: Black Mountain, North Carolina. Type in Museum of Comparative Zoology, Harvard University.

Range: Down the East Coast from Labrador and the Maritimes to North Carolina and west to Ohio and Ontario.

Connecticut records: Barkhamsted, May 20, 1960, June 1, 1967 (SWH); Bethany, May 5, 1961 (SWH); Burlington, May 23, 1967 (SWH); Canaan, June 1, 1961 (SWH); Canton, May 20, 1960 (SWH); East Hartford, May 5, 1967 (SWH); East Hartford, June 5, 1967 (SWH); Ellsworth, June 7, 1967 (SWH); Hamden, May 20, 1959 (SWH); Lebanon, June 12, 1959 (SWH); North Granby, June 1, 1967 (SWH); North Gifford, May 27, 1967 (SWH); Portland, May 22, 1963
11. *Alloperla naica* (Poncet) (Figs. 249d, 277, 278)

Perla naica Poncet, 1876, *Nat. Cam.* 8: 314
Mer. 2: 110.

Length: 8.10 mm.

Description: This species, with a dorsal abdominal line, is distinguished in the male by the large, flattened epiproct and by an exaruncate lobe on the anterior margin of the 9th segment. The head pattern differs from other eastern *Alloperla* in being dark over, and anterior to, the ocular triangle. Frobenius (1942) has illustrated the female and Needham and Clausen (1928) the male. Both of these illustrations are under the species name *naica varnaica*.
At Pinkham Notch in New Hampshire, I have observed hundreds of females flying downstream, with only a scattering of males on the wing.

Type locality: Near Outter, Quebec, Type in Quebec Provincial Museum, Quebec City.

Range: Labrador to eastern Pennsylvania and New York. Ricker (1954) presented a map showing the distribution of this species.

12. *Alloperla nanina* Banks (fig. 279)

Fig. 279, *Alloperla nanina* male: a, lateral view of posterior abdominal segments; b, epiproct, dorsal view; c, dorsal view of posterior abdominal segments (from Frison, 1935).
Length: 9-10 mm.

Description: This species has a dorsal abdominal stripe and is separated from other species by a bifurcate tip on the elongated epiproct. It was illustrated by Prisner (1935) under the name *lodgei*.

Type locality: Black Mountain, North Carolina. Type in Museum of Comparative Zoology, Harvard University.

Range: According to Gauhin (1964), found from New York to Georgia and westward to Tennessee.

13. *Allopelta neglecta* Prisner (figs. 219e, 220, 221)

![Diagram of *Allopelta neglecta* male, posterior abdominal segments](image)

Fig. 280. Lateral view Fig. 281. Dorsal view.

Length: 11-12 mm.

Description: This species has no dorsal abdominal stripe and the epiproct is a recurved, rounded tab, appearing oval as viewed from above. Prisner (1935, 1942) and Hitchcock (1946) figured the adults.

Type locality: Newfound Gap, North Carolina. Type at Illinois Natural History Survey.

Range: The southern Appalachians in Tennessee and North Carolina, possibly extending slightly northward.

14. *Allopelta andrillae* Ricker

183
Length: 10-12 mm.

Description: This species was first described from Ontario but later its range was shown to extend further south and it was distinguished from *mediana* on the basis of the shape of the male and female genitalia (Ricker 1952, 1964). However, there is much variation in these characters and what possibly represents only the extreme of a quite variable *mediana* population (Hitchcock, 1968). The original description stated that the male epiproct is four lobed basally and the female subgenital plate trilobed. Until further study is made, corks should include only those insects with the above characters and consequently has been found only at the type locality. Harper and Pilan (1970) described this species as having more females than males and grouped adult emergence.

Type locality: Hornings Mills, Ontario. Type in the Royal Ontario Museum of Zoology.

Range: Part of Ontario.

15. *Alloperla quadra* Harden and Mickel (fig. 292)

![Image of Alloperla quadra](image)

Fig. 292. *Alloperla quadra* female, ventral view of subgenital plate (from Harden and Mickel, 1952).

Length: 10 mm.

Description: A. *quadra* is known only from the female. The subgenital plate is a narrow, squarish projection of the posterior margin of the 8th sternite. It was illustrated by Harden and Mickel (1952).

Type locality: Hinckley, Minnesota. Type at University of Minnesota.

Range: Has been found only in Minnesota.

16. *Alloperla toimae* Ricker (figs. 203, 204)

Length: 8-10 mm.

Description: As named by Ricker (1947), this species, like other *Alloperla* *s.s.*, is green in life. The sclerotized part of the epiproct is conical in dorsal view and does not closely resemble any other Eastern *Alloperla*. The adult male was illustrated by Ricker (1947). I have collected a female with male characters and presume it to be that species. The subgenital plate appears similar to that of *concater* but the latter is larger and is cloaked with fewer bristles than is *toimae*.
Alloperla vestitti male, posterior abdominal segments

Fig. 283. Lateral view. Fig. 284. Dorsal view.

Type locality: Baldeck, Nova Scotia. Type in Canadian National Collection, Ottawa.

Range: Has been found from Nova Scotia up the St. Lawrence River plain in Quebec and Vermont and westward to New York state.

17. Alloperla vestitti Ricker (fig. 285)

Length: 9-10 mm.

Description: The epiproct of *A. vestitti* is brown, densely hairy, subcircular in dorsal view and somewhat pear shaped in lateral view. The posterior margin of the 9th dorsal tergite has a conspicuous notch. Both sexes were illustrated by Ricker (1947).

Fig. 285. *Alloperla vestitti* male: a. dorsal view of posterior abdominal segments; b. lateral view of epiproct (from Ricker, 1947).

185
Type locality: Harborscreek, Pennsylvania. Type at Illinois Natural History Survey.

Range: This species is another *Alloperla* whose range extends from Nova Scotia through the St. Lawrence River plain into western New York and Pennsylvania.

Family Perlodidae

This is a family of Plecoptera of varied size and structure that is found in North America, Eurasia, and northern Africa. There are few features that characterize the family as a whole. The gillae are generally reduced; gills, if present, are single and unnotched; the paragenae are pointed, rather than rounded like those of Perlidae. The number of crossveins and the size of the anal area of the wing vary by genus. The male 10th tergite is cleft and the epiproct well developed in the Isogeninae but not in Isoperlinae or Perlodinae. The paraprocts are poorly developed in Isogeninae but modified, in many genera, into recurved hooks in the Isoperlinae or projecting upward or backward in the Perlodinae. There can be 1 or more lobes on the distal male sternite.

Genus Isoperla Banks

Chloroperla Needham and Clausen, 1925, Monog. Flea, Am. No, Mex.: 137.
Occiperta Banks, 1947, Psyche J. Entomol. 54 : 280.
Nalaperta Banks, 1947, Psyche J. Entomol. 54 : 283.
Wesobola Banks, 1947, Psyche J. Entomol. 54 : 284.

The male of the genus is distinguished from other Perlodidae by its unclift 10th tergite, lack of gills and epiproct, and variously modified paraprocts. There is a lobe on the hind margin of the 8th sternite of the male but not on the 7th, except in *Maxima*, which has lobes on both, and the western *Ehria*, which is without lobes. The females cannot be definitely distinguished from the genus *Isogenia* but most species do not have the subgenital plate produced as greatly as does *Isogenia*. Most larvae have longitudinal stripes on the abdomen.

The genus is very rich in need of revision and there is probably considerable synonymy in the following list of species. The keys, drawn largely from Prison (1942) and Harden (Harden and Miel, 1952), are not definitive; also, variations in color patterns makes them inoperative for some specimens. However, these keys appear to be the best possible under present circumstances. Although there appear to be several new species in Connecticut, I have refrained from describing them until more is known of the variation within the genus—until adegal characters are determined.

An occasional *Perlesta picta* specimen may key out here, as the gill remnants are obscure on many adult specimens. These individuals may be
checked by observing the head pattern and by noting the lighter coloring on the costal area of the forewing, as well as the cercal and femoral seta-
tion.

The food habits are diverse; the adults of some species feed and those of others do not. Probably most of the larvae are carnivorous. Some larvae
are host to cercariae.

Type of genus: *Stilbe bilineata* Say.

KEYS TO NORTHEASTERN SPECIES

MALES

1. Ocelli connected with black V or enclosing more or less dark area 4
 Ocelli not connected with black V nor enclosing more or less dark area; dorsum of head mostly yellow except for black areas im-
 mediately around ocelli .. 2

2. Vesicle of 8th abdominal sternite longer than broad .. 3
 Vesicle of 8th abdominal sternite broader than long ... 18

3. Vesicle of 8th abdominal sternite deeply recessed, long and narrow 7, *dicala*
 Vesicle of 8th abdominal sternite merely a small knob in middle of posterior margin 6, *dexcela*

4. Paraprocts little modified, scarcely sclerotized, projecting caudal, up-
curved little or not at all ... 14
 Paraprocts modified, sclerotized, recurved upward and, in some specimens, forward 5

5. Paraprocts long, cylindrical, slender, sharp .. 10
 Paraprocts short, flattened ... 6

6. Longitudinal dark stripes on abdomen .. 7
 Abdomen uniformly brown or yellow ... 8

7. Light spot in ocellar triangle broadly open caudally, forming a U or
 a broad V; dark markings on the head form a rough X 19, *nomata*
 Light spot in ocellar triangle tapered behind, narrowly opening caud-
 ally; dark markings on head not forming an X ... 26, *transmarina*

8. Dorsum of head, thorax, and abdomen predominantly yellow, ocellar
 triangle completely dark .. 12, *holocladia*
 Brownish or yellowish; ocellar triangle has light spot in center in
 most individuals ... 9

9. Dorsum of abdomen uniformly brown; paraprocts well developed and
 recurved upon 10th tergite; color pattern dark brown; lobe on 8th

12 Males of *conspicua* and *conspicua* not known.
sternite very broad and low; most specimens have crossvein in forewing beyond cord between radial sector and M₁ and M₂

Dorsum of abdomen uniformly yellow; paraprocts only partially sclerotized and recurved but little past margin of 10th tergite; lobe of 8th sternite almost as high as broad; 2 dark, sclerotized subtriangular points on penis showing through 9th sternite

10. Length of apex of wing tips less than 7 mm; predominantly dark brown, except for prothoracic stripe and (in most specimens) light ocellar spot

11. Ocelli connected by dark V, which is main color pattern of head; mainly yellow above

12. Diameter of ocellar spot less than half the distance between lateral ocelli; subcircular light spot in front of median ocellus

13. Over 11 mm long; without dark patches or setae on 9th and 10th abdominal tergites

14. Ocellar triangle completely dark

15. Terminal ridge on margin of 10th tergite; length to apex of wings more than 15 mm

16. Dark color of ocellar triangle extends unbroken to labrum, with extensions toward antennal bases and toward back of head

17. Light area in dark V over ocelli touches black pigment of median ocellus

18. Light area in dark V over ocelli separated from median ocellus by a distance at least equal to diameter of ocellus

25. Luesannae
18. Dorsal median stripe on abdomen; caudal projection of 9th sternite quadrate .. 22, richardsoni
No dorsal median stripe on abdomen; caudal projection of 9th sternite rounded ... 1, bilineata, 2, burkei, 11, gibbosa

19. Lobe present on posterior margin of 7th abdominal sternite; this lobe much smaller than that on 8th sternite 16, maxima
No lobe on 7th abdominal sternite ... 20

20. Terminal ridge on hind margin of 10th tergite; length to apex of wings greater than 15 mm .. 6, decepta, 9, francisco, 11, orata
No terminal ridge on hind margin of 10th tergite; length to apex of wings less than 15 mm .. 21

21. Abdomen brown above, much brown coloration on mesonotum and metanotum .. 5, cotula, 9, francisco, 21, orata
Abdomen yellow above, with faint darker stripes in many specimens; mesonotum and metanotum mainly yellow 10, frisoni, 17, novi

FEMALES10

1. Ocelli connected by black V or enclosing a more or less dark area ... 5
Ocelli not connected by black V nor enclosing a more or less dark area; dorsum of head yellow, except for dark areas around ocelli in some specimens; very faint line connects lateral ocelli with median ocellus in some specimens ... 2

2. Subgenital plate very slightly produced caudad; broadly rounded ... 6, decepta, 22, richardsoni
Subgenital plate much produced caudad; subtriangular ... 3

3. Subgenital plate subcylindric at apex; head wider than 2.0 mm ... 8, emarginata
Subgenital plate not emarginate at apex or very slightly so; head less than 1.8 mm wide ... 4

4. Margins of subtriangular subgenital plate somewhat incurved before apex ... 7, decipax
Margins of subcylindrical subgenital plate straight or somewhat outcurved before apex; apex slightly emarginate in some specimens ... 1, bilineata

5. Species mainly yellow, with lateral ocelli connected to median ocellus by a dark-brown V ... 6
Most species fusca to brown, ocellar triangle all dark or with only a central light spot; this spot sometimes slightly open caudad ... 14

6. Margins of subgenital plate subparallel just before apex; apex truncate and turned downward away from body ... 10, frisoni
Subgenital plate subtriangular, rounded, or emarginate behind; apex ... 19

10Female of maxima not known.
7. Subgenital plate about half as wide as anterior width of 8th abdominal
 segment, evenly rounded behind and reaching about one third
 across 9th sternite; apex darkly sclerotized 14, longicornis
 Width of subgenital plate more than half that of 8th abdominal seg-
 ment; not sclerotized more than remainder of segment 8

8. Apex of subgenital plate turned downward away from body 12
 Apex of subgenital plate not turned downward away from body ... 9

9. Light area in ocellar triangle touching pigment of anterior ocellus
 .. 10
 Light area in ocellar triangle separated from anterior ocellus by a dis-
 tance at least equal to diameter of ocellus 19, namata

10. Subgenital plate subtriangular 1, bimaculata
 Subgenital plate rounded behind 11

11. Subgenital plate little produced, broadly rounded 22, richardsoni
 Subgenital plate produced about halfway or more across 10th stern-
 ite .. 17, gibbosa, 18 montana

12. Head anterior to median ocellus dark (except for M line) 13
 Head anterior to median ocellus light 19, francisca, 21, arata

13. Range, Illinois and Indiana .. 4, burkii
 Range, Michigan, Ontario, and Quebec 5, cotta

14. Subgenital plate triangular, reaching almost to posterior margin of
 9th segment .. 12, holochlora
 Subgenital plate rounded, truncate, or notched, reaching halfway or
 less across 9th segment 15

15. Subgenital plate truncate; width of base less than half width of 8th
 abdominal segment ... 26, transmarina
 Subgenital plate broadly rounded or notched; width of base more than
 half width of 8th abdominal segment 16

16. Ocellar triangle completely dark; area immediately anterior to median
 ocellus dark ... 24, similis
 Ocellar triangle has light spot in center or light intrusion from rear of
 bead extending between lateral ocelli; if all dark has a light spot
 in front of median ocellus 17

17. Length to tip of wings less than 8 mm; abdomen uniformly dark on
 all sides .. 29, nana
 Length to tip of wings greater than 8 mm; abdomen variously marked
 with yellow or orange; if dark dorsally is predominantly yellow
 ventrally .. 18

18. Ocellar triangle dark, without light spot in center of triangle ... 3, elo
 Ocellar triangle with light spot in center 19
19. Subgenital plate deeply notched. 4, conspicua
Subgenital plate rounded or emarginate 20

20. Dorsum of abdomen with 9 longitudinal rows of minute black spots; on the 2 middle rows and the lateral rows of spots, the spots are paired 17, mehri
Dorsum of abdomen variously marked but not as above 21

21. Subgenital plate low, broad and scarcely produced behind; light spot in front of median ocellus transversely rectangular; abdomen predominantly yellow below 23, sigmata
Subgenital plate considerably produced behind; light spot in front of median ocellus quadrate, crescent-shaped, or subcircular 22

22. Light spot in front of median ocellus quadrate; subgenital plate broadly emarginate; abdomen brown below; in most specimens, light spot in ocellar triangle nearly touching lateral ocelli, an additional elongate crescent beyond the cord 23, obscurata
Light spot in front of median ocellus crescent shaped or subcircular; in most specimens, light spot in ocellar triangle less than half as wide as the distance between lateral ocelli; subgenital plate may or may not be emarginate 23

23. Subgenital plate emarginate; abdomen predominantly yellow below; light spot in front of median ocellus crescent shaped or semicircular 15, marlyana
Subgenital plate evenly rounded behind; abdomen fuscosus below; light spot in front of median ocellus subcircular 13, kata

LARVAE

1. Maxilla with 1 or 2 prominent teeth on lacini; pattern of abdomen variable 2
Maxilla without a prominent tooth on lacini; abdominal tergites speckled 6, decepta

2. Lacini with single tooth 3
Lacini with 2 teeth (fig. 4) 4

3. Abdominal tergites speckled; lacinal tooth a continuation of outer margin of lacini, outer margin essentially glabrous; mandibles with several cups 20, mehri
Abdominal tergites each with about 6 dark dots; lacinal tooth inset from outer margin of lacini, outer margin with setae; mandibles each with 2 prominent cups divided at tips 27, mehri

4. Both lacinal teeth long, largest subequal in length to the sclerite that bears it; a tuft of hairs on margin below 2nd tooth 5
Lacinal teeth shorter, equal to half or three quarters the length of

* Larva of conspicua, margarita, and marlyana not known; larval montanus said to have pattern of richardsonii.
scattered that bears them; either a tuft or (more generally) a row of hairs on margin .. 7

5. Lateral dark lines on dorsum of abdomen 2, burkii
Longitudinal dark lines on dorsum of abdomen 6

6. Dark markings on head posterior to ecdyssal line
... 5, cotta
Head light behind ecdyssal line, except for faint markings on ecdyssal line and on hind margin of head; occipital region essentially light
... 9, francisco, 21, orata

7. Dorsal abdominal segments uniformly brown; an occasional specimen has a few light spots .. 8
Dorsal abdominal segments with alternating transverse or longitudinal light-and-dark stripes or bands .. 10

8. Transverse stripe connecting lateral ocelli with eyes; large, pale spot extending from lateral ocelli forward past anterior ocellus ... 3, cloe
No transverse stripe between ocelli and eyes; ocellar triangle partly dark and dark areas connected laterally to side of head 9

9. Irregular light central stripe of varying width on pronotum; margins of pronotum light; a narrow, dark line on outer edge of wing pad beside the central broad, dark band of the wing pad 24, similis
Uniformly brown above dark phase of 25, marlyvnia

10. Pale median longitudinal stripe on brown abdomen; ocellar triangle completely dark 24, similis
Abdomen with more than 1 stripe (transverse or longitudinal); a light spot in ocellar triangle of most specimens 11

11. Abdominal tergites with transverse stripes 12
Abdominal tergites with longitudinal stripes 13

12. Both anterior and posterior margins of abdominal tergites dark; middle portion light, although this middle portion is interrupted in some specimens; 10th tergite with dark markings .. 15, marlyvnia
Posterior half of abdominal tergites dark, anterior half light; extreme anterior margin somewhat darkened in some specimens; 10th tergite light .. 23, signata

13. Light area within ocellar triangle completely enclosed by darker area .. 14
Light area within ocellar triangle not completely enclosed by darker area .. 17

14. In most specimens, dorsal pattern light on a dark background; ocellar spot very small or lacking; abdomen decidedly speckled above 7, decala
Dorsal pattern essentially dark on light background; ocellar spot large, in most specimens its diameter is more than half the distance between the lateral ocelli; each abdominal tergite with 6 to 8 dark
15. Abdominal stripes generally indistinct; 6 to 8 dark dots on each abdominal tergite; white stripes on wing pads.
16. Abdominal stripes distinct; no dark dots or freckling on abdominal tergites; stripes on wing pads narrow and show venation darker than stripes.

17. Dark transverse band across head through anterior ocellus without extensions back to lateral ocelli, although a much lighter brown extension can be present.
18. Dark transverse band across head through anterior ocellus, with extensions back to or through lateral ocelli.

19. 2 lacinal teeth followed by a tuft of hairs.
20. Very little dark color on pronotum, mesonotum, or metanotum—dark spots on these 3 areas form 2 lines; 3 dark stripes on abdomen, uniform in width, narrow.

21. Lateral stripes of abdomen distinctly wider than median stripe.
22. Lateral stripes of abdomen subequal or only slightly wider than median stripe.

23. Sides of head, from labrum to eyes, dark; dark line from each lateral ocellus forward to front edge of clypeus.
24. Paleochloris Area on side of head, from labrum to eyes, mostly light; lateral ocelli not connected to front edge of clypeus by dark areas.

1. Ineplexa bilineata (Say) (fig. 296)
S. bilineata Say, 1823, Gooden's Western Quarterly Reporter 2: 168.

Length: 10-14 mm.

Description: This widely distributed species is somewhat variable in appearance but most specimens have the ocelli connected with a dark V-shaped mark. The abdomen lacks dark markings. The female subgenital plate is triangular and long. The male paraprocts are somewhat recurved. The tube of the 8th male sternite is broad and rounded. Larvae are longitudinally striped on the abdomen and have a light spot in the ocellar triangle.

Nedham and Chasen (1923) and Frison (1935) figured the adults, genitalia, wings,
Fig. 286. *Isoperla filiformis* larva (from Frison, 1942).

...and eggs; Frison (1935) and Claassen (1931) the larva. Needham and Claassen (1926) gave an analysis of the variation in wing venation in this species.

The adults are principally nocturnal. The larvae grow most rapidly from January to April and probably are hibernaculums (Frison, 1935). Huxley noted that the post contents of larvae were principally Chironomidae. He also noted that eggs oviposited in June and kept in the laboratory did not hatch until October (Huxley and Mclnnes, 1924).

The egg figured by Frison (1935) is quite different from that drawn by Needham and Claassen (1926).

Type locality: Near Cincinnati, Ohio. Type specimen missing.

Range: Quebec south to North Carolina and west to Maine and Colorado.

Connecticut records: Franklin, May 31, 1960 (SWH); Lebanon, June 6, 1960 (SWH); Mt. Carmel, UV light trap, July 31, 1961, A. Decapio; Sartis, June 11

18, 1914, J. Slater (UC); larvae from Easton (SWH); Groton, J. Krause (UC); Maloney, D. Grant (UC); Vernon, E. Dennis (UC).

2. *Isoperla burkii* Frison (fig. 287)

Length: About 11 mm.

Description: The male has little to distinguish it from *I. filiformis*. In the female, the subgenital plate is produced over the 9th sternite and isolated at the tip. In lateral view, the tip of the plate turns down. The larva has lateral stripes on the abdomen but can be separated by the head pattern and shape of the maxilla from the few other Eastern species that also have lateral stripes. Frison (1942) figured the adult genitalia and head pattern, as well as larval body pattern and mouthparts.

Type locality: Edinboro, Illinois. Type at Illinois Natural History Survey.

Range: Has been found in Illinois, Indiana, and Ohio.
3. *Isoperla clia* (Newman) (Fig. 283)

Length: 16-20 mm.

Description: This is one of the larger *Isoperla* and the only Eastern species which has a ridge along the posterior margin of the male 8th tergite. Frison (1935) illustrated the adult genitalia, larva, and larval mouthparts under the species name *confusa*. Needham and Chaseen (1925) pictured the adult genitalia and wings.

Fig. 283. Isoperla clia* larva (from Frison, 1935).
Frison (1935), Minshall and Minshall (1960), and Minshall (1967) stated that the larval diet of this species is primarily animal material and that the larvae are usually found in packets of dead leaves. Minshall and Minshall (1960) noted that *L. ciliata* are chironomids, mayfly larvae, *Aeshna*, and *Phaenocladina* but it did not feed on *Gomphus*. They observed oviposition in late afternoon. The female glides from a height of about 2 m down to the surface of the stream, her abdomen touches the water several times as the eggs are deposited, and then she flies upward. The eggs apparently hatch in August and September. The greatest larval growth occurs in January and April, with the adults emerging in late spring and early summer.

Type locality: Georgia. Type in the British Museum.

Range: Connecticut to Florida and west to Illinois and Arkansas.

Connecticut records: Larvae from Mansfield, R. Frehm, L. Oke , N. Duquette (UC); Storrs, T. Burr (UC).

4. *Isoperla conspicua* Frison

Length: 12 mm.

Description: Apparently this species is known only from the holotype female. However, it is the only Eastern *Isoperla* with a deep notch in the subgenital plate. The genitalia of the female type was figured by Frison (1935).

Type locality: Rock Island, Illinois. Type at Illinois Natural History Survey.

Range: Unknown.

5. *Isoperla cotta* Ricker

Length: 11.5-13 mm.

Description: This species is very close to orata and burksi and is possibly conspecific with them. The male and female genitalia and the structure of the larval maxilla are almost identical in all three species. However, the range of *cotta* is north of *burksi's* range and *cotta* is somewhat lighter in color than *orata*. The color pattern and genitalia of the adult were pictured by Ricker (1952).

Type locality: Terra Cotta, Ontario. Type at Illinois Natural History Survey.

Range: Michigan, Ontario, Quebec, and New England.

6. *Isoperla decepta* Frison (fig. 209)

Length: 10-14 mm.

Description: The adults is mostly yellow with some brownish areas. The lobe on the 8th sternite of the male is long but protrudes little beyond the hind margin of the sternite. The female has a rounded subgenital plate. The larva has a darker head than *richardsonii*, which species it most resembles. Frison (1935) illustrated the adult
Fig. 289. *Isoperla deceptria* larvae (from Frison, 1945).

genitalia, the larva, and the larval mouthparts.

Frison (1935) captured a larva as it was swallowing chironomid larvae, showing that it is at least partly predacious. The same author (p. 207) states that adults of this species also feed. The adults are diurnal.

Type locality: New Columbia, Illinois. *Type at Illinois Natural History Survey.*

Range: Has been collected in Illinois, Indiana, and Ohio.

7. *Isoperla dicala* Frison (fig. 290)

Fig. 290. *Isoperla dicala* larva. (from Frison, 1942).
Length: 11-14 mm.

Description: This insect is one of the few *Isoperla* with a pale head lacking dark markings. The lobe of the male 8th sternite is narrow and retracted and the female subgenital plate is triangular, with a suggestion of a nipple at the tip. The larvae are dark, with longitudinal abdominal stripes. Prisun (1942) pictured the adult, larva, and larval mouthparts.

Type locality: Free Soil, Michigan. Type at Illinois Natural History Survey.

Range: The Maritimes south to Connecticut and Tennessee and west to Minnesota and Missouri.

Connecticut records: Easton, May 27, 1908 (SWH); Mt. Carmel, June 1, 1906, June 12, 1907 (SWH), UV light trap, June 13, 25, 1961, July 8, 1960, A. DeCaprio.

8. *Isoperla emarginata* Harden and Mickel

Length: 16 mm.

Description: This is another species with a pale head. There is a crescent-shaped brown marking over each latero oralis. The female subgenital plate is triangularly produced, with an emarginated tip. Only the female holotype is known and was illustrated by Harden and Mickel (1952).

Type locality: Grand Marais, Minnesota. Type at University of Minnesota at St. Paul.

Range: Unknown.

9. *Isoperla franciscana* Harper

Length: 12-13 mm.

Description: This species is closely related to *ornata*. However, the male vasicle on the 8th sternite of *franciscana* is wider than long, whereas that on *ornata* is as long as wide. There are also differences in the penial armature. The female has a bilobed subgenital plate. Illustrations of the both sexes and the larva are with the original description.

Type locality: St. Hippolyte, Quebec. Type in Canadain National Collection, Ottawa.

Range: In Quebec.

10. *Isoperla frisoni* Illies

Length: 11-14 mm.
Description: The adult insect has the ocelli connected by a dark V-shaped marking. The female subgenital plate is truncate and turned downward in lateral view. The male paraprocts are neither hooked nor upturned. The larva has 3 distinct longitudinal stripes on the abdomen and 2 broken longitudinal stripes on the thorax. Pröeis (1957) illustrated color patterns of both larvae and adults. The adult genitalia, and the larval mouthparts under the name *Lonicerae*, Harper and Magnin (1969) found that this species emerges in June during the day on stumps at the water’s edge. Oviposition occurs within 15 minutes after sanddown, when the females drop to the stream surface to deposit their eggs. The first larvae are found in October and growth is steady throughout the winter. In late spring, just before emergence, growth is accelerated. Harper and Piéron (1976) graphed adult emergence and found the pattern to be similar each year, although it could be shifted as much as several weeks, depending on temperature.

Type locality: Spooner, Wisconsin. Type at Illinois Natural History Survey.

Range: The Maritimes west to Indiana and Wisconsin.

Connecticut records: Bethany, Apr. 14, 1960 (SWH); Killingworth, June 18, 1965 (SWH); Stafford, June 9, 1966 (SWH).

11. *Isoperla gibbosa* Harper

Length: 11.14 mm.

Description: This species is apparently related to the *bilineata* group. For specific identification, the male genital sac must be examined, but the dark V-shaped mark between the ocelli and the lack of pigment anterior to the front ocellus also separates it from other species. The female subgenital plate is large and rounded. Harper (1971) figured the adult and larvae.

Type locality: Rigaud, Quebec. Type in Macfay Museum, Montreal.

12. *Isoperla holochlora* (Klapalek) (figs. 291, 292)

Length: 11.14 mm.

This insect has U-shaped markings on mesothorax and metathorax, is mostly yellow, has dark hairs on thoraces, and bears stiff bristles on the margin of the 8th sternite. The dark marking of the ocular triangle is truncate in front, where it is even with the front ocellus and bowed backward between the hind ocelli. The female subgenital plate is triangular, covering most of the 9th sternite. The male paraprocts are rounded and, in some specimens, project slightly forward. The larva has longitudinal abdominal stripes and a dark head bearing a light spot in the ocular triangle. Pröeis (1942) figured the adult, larva, and larval mouthparts. Rickar (1938) pictured the genitalia of the type specimen.

Type locality: Georgia. Type at Musée Royal d’Histoire Naturelle, Brussels.
Fig. 291. *Isoperla holochlora* larva (after Prislow, 1942).

Fig. 292. *Isoperla holochlora* female, ventral view of posterior abdominal segments.

Range: Quebec south to Georgia and west to Tennessee.

Connecticut records: Ellsworth, June 7, 1967 (SWH); Kent, July 1, 1953, July 6, 1954, C. Remington (V.U.); Stonington, June 8, 1966 (SWH).

13. *Isoperla lata* Prislow (fig. 293)

Length: About 13 mm.

Description: This species is predominantly darkish, with a light spot in the ocellar triangle. The male has prominent recurved paraprocts; the female a rounded, slightly produced subgenital plate. The larva has longitudinal stripes on the abdomen.
a dark band across the head on the clypeus, and another band even with the ocelli. The larval hairs is quite broad and does not recede after the 2nd tooth as in most Isoperla. Further figures of adults and larvae are by Frison (1942) and Harden and Mikesell (1942).

Harper and Miquel (1969) found this species to emerge as adults at a height of about 2 m up the trunks of trees near the water. Larvae apparently hatch soon after oviposition. Harper and Miquel found larval growth to be regular until February or March with little increase from then until emergence in May.

Type locality: Boulder Junction, Wisconsin. Type at Illinois Natural History Survey.

Range: The Maritime to Tennessee and west to Minnesota.

14. Isoperla longispina Banks (fig. 294)

Length: 10-13 mm.

Description: This is a species of the prairies and apparently lives in large, sluggish streams. Adults are generally yellowish; males have sharp, recurved genital hooks. The female subgenital plate is abruptly produced. Apparently the far-southern form is Isoperla longispina. Larvae and adult are shown by Needham and Chappell (1925), Frison (1942), Ricker (1943), and Guerin, Nebeker, and Seeliger (1960), and the egg by Knight, Nebeker, and Guerin (1963a).

Type locality: Onaga, Kansas. Type in Museum of Comparative Zoology, Harvard University.

Range: Mississippi River west to Utah and north to the Yukon. The one isolated eastern record, from Aylmer, Quebec, may be in error.
15. *Isoperla molydina* Needham and Claussen (figs. 295-297)

Length: 12-13 mm.

Description: The adult has a light spot in the ocular triangle and a lateral light spot anterior to the front coelom. The male genital hooks are slender, recurved, and comparatively long. The female subgenital plate is produced and with a shallow emargination. The larvae vary from light to dark. The gills are broad, about as broad as the lacinal tooth is long. Further figures of the adult are by Needham and Claussen (1925) and (under the name *clo*) by Prisom (1942). The larva and hibernal mouthparts were figured by Prisom (1942) and (under the name *clo*) by Claussen (1931) and Prisom (1935).

Type locality: Lakehurst, New Jersey. Type at Cornell University.

Range: The Maritimes south to Virginia and west to Illinois and Manitoba.

16. *Isoperla maxima* Harden and Mickel

Length: 10 mm.

Description: This species is known only in the male. The genital hooks are not recurved. It is easily distinguished by the lobe on the 7th and 8th sternites. Harden and Mickel (1952) figured the male adult.

Type locality: Four miles south of Park Rapids, Minnesota. Type at University of Minnesota, St. Paul.

Range: Not known; as only one specimen has ever been captured.
Figs. 295, 296, 297. *Isoperla marlina* larva (from Frison, 1942).

17. *Isoperla mohri* Frison (fig. 296)

Length: 11.12 mm.
Description: In life, the adult is black and orangish yellow but is dusky yellow and brown in preservative. The male genital hooks are not heavily sclerotized or spinous. The female subgenital plate is somewhat produced and rounded and generally slightly emarginate. The larva has only 1 maxillary tooth and on the mandibles the teeth are more widely separated than those of other *Isoperla* larvae. Figures of the genitalia, larval pattern, and larval mouthparts were presented by Frison (1935).

Type locality: Watson, Illinois. Type at Illinois Natural History Survey.

Range: Has been collected only in Illinois and Missouri.

18. *Isoperla montana* (Banks)

Length: 11.3-14.5 mm.

Description: This is one of several species that have a dark V-shaped mark connecting the ocelli. Males from Quebec show a broad arrowhead-shaped subgenital sclerite through the 9th sternum (Ricker and his co-workers, 1969). The genital hooks are sharp and recurved. The female subgenital plate is produced and rounded. The larval pattern is apparently almost identical with that of *richardsoni*. (Ricker, Malcolm, Harper, and Roon, 1969). This species exemplifies the difficulties in presently identifying *Isoperla*. Banks' paratypes were said to be *marjorana* Needham and Chiaian by Frison (1942) but Ricker and his associates (1968) stated they are *Isoperla montana*. Furthermore, they said that specimens have been confused with *bifascia* and noted that the latter apparently does not have as sharply recurved genital hooks as does *montana*. The adult color pattern and genitalia were figured by Needham and Chiaian (1925).

Type locality: Mt. Washington, New Hampshire. Type in Museum of Comparative Zoology, Harvard University.
Range: This is probably an Eastern species, ranging from the Maritimes west to New York and Quebec. Needham and Chassere's (1925) record from Minnesota may be a misidentification.

19. *Iaspeles nanata* Frison (fig. 299)

![Fig. 299. *Iaspeles nanata* larva. (from Frison, 1942).](image)

Length: About 11 mm.

Description: The V-shaped marking between the ocelli of the adult is continued forward to form an "X." The male hooks are slightly recurved forward, the male ventral lobe broad and conspicuous. The female subgenital plate is produced and rounded. The larva is yellowish, with longitudinal markings on the abdomen and other markings as pictured in figure 299. Frison (1942) illustrated genitalis, larval mouthparts, and adult and larval color patterns.

Type locality: Silva, Missouri. Type at Illinois National History Survey.

Range: Has been collected in Indiana and Missouri.

20. *Iaspeles nova* (Walsh) (fig. 300)

Length: 3.5-7 mm.

Description: This small-sized species is dark, with the male genital hooks fairly long and recurved forward. The female subgenital plate is broad and rounded. The
lara is dark, with a speckled abdomen. Apparently there is only 1 tooth on the maxillae. Under the name minuta adults and larvae were illustrated by Needham and Claassen (1925) and Frison (1935).

The larvae are found in slow-moving streams with abundant vegetation. The adults were observed feeding on the pollen of dock (Rumex) and wild grape (Vitis). The larvae are probably herbivorous (Frison, 1935).

Type locality: Rock Island, Illinois. Type missing.

Range: Illinois through Ohio and north to Ontario and western Quebec.

21. *Iapetus orata* Frison (fig. 301)

Length: 10-13.5 mm.

Description: This species belongs to the *Iapetus* group of *Iapetus* and may be congeneric with them. The male genitalia are weakly developed and are not recurved over the 10th tergite. The female subgenital plate is produced, emarginate at the tip, and recurved downward away from the body. The maxillae are distinctive in these 3 species—it has 2 large cusps on the last and a tuft of hairs below them. Frison (1942) pictured adult color pattern and genitalia, as well as the larval color pattern and mouthparts. Harper and Pick (1971) graphed adult emergence.

Type locality: Gettysburg, Tennessee. Type at Illinois Natural History Survey.

Range: The Maritime south to North Carolina and west to Minnesota and Tennessee.

Fig. 301. *Isoperla croceus* larva (from Frison, 1942).

1966 (SWH): Franklin, June 3-7, 1967 (SWH); Haddam, June 21, 1967 (SWH); Kent, June 9, 1967 (SWH); June 17, 1952, C. Remington (YU); Mt. Camel, June 1, 1966 (SWH). June 4, 1962, UV light trap, A. DeCaprio; Plainfield, June 14, 23, 1967 (SWH); Redding, May 18, 1964 (SWH); Solon, June 7, 1967 (SWH); Sterling, June 11, 1959 (SWH).

22. *Isoperla richardsoni* Frison (fig. 302)

Length: 10-13.5 mm.

Description: *I. richardsoni* has a yellow band dorsally or a dark V-shaped

Fig. 302. *Isoperla richardsoni* larva (from Frison, 1935).

207
marking connecting the ocelli. The genital hooks are not strongly sclerotized or re-
covered. The female subgenital plate is somewhat produced and rounded. The typical
larva has a tuft of hairs on the lacinia below the 2nd tooth. This species belongs to
the Histiaeta group and is not easily separated from similar specimens in other spe-
cies of that group. The heurist characters seem to be distinctive in the larva and were
so figured by Frison (1935) and keyed by Harden and Mickel (1952) but Eastern
specimens do not seem to conform. Only further studies can show whether several
species are confounded under one name.

The larvae are carnivorous and feeds on chironomids (Frison, 1935).

Type locality: Sterling, Illinois. Type at Illinois Natural History Survey.

Range: The present range of this species is from Connecticut to Illinois and
Minnesota.

Connecticut records: Burlington, June 23, 1967 (SWH); East Haddam, July 1,
1959; Kent, June 12, 1967 (SWH); Storrs, June 12, 1954, J. Slater (UC).

23. *Isoperla sigillata* (Banks)

Length: 13-16 mm.

Description: The male has renurred, bluntly pointed genital hooks. In some
specimens, 2 subtriangular sclerites of the androcon show through the 9th sternite.
The female subgenital plate is slightly produced and rounded. Some larvae have trans-
verse banding on the abdominal tergites. Needham and Claassen (1925) illustrated
the genitalia and Claassen (1934) the larva.

Harden and Mickel (1952) dissected several larvae and found that they had fed
principally on chironomids.

Type locality: Michigan. Type in Museum of Comparative Zoology, Harvard
University.

Range: The recorded range is from the Maritimes to southern New England and
west to Minnesota.

Connecticut records: Storrs, April 27, 1954, Keller (UC), May 1959, at light,
Schafer (UC).

24. *Isoperla similis* (Hagen) (figs. 303-305)

Length: 12-13 mm.

Description: The adult occular triangle is completely dark. The males can be
separated from the few other eastern *Isoperla* with this characteristic by the abdomen
which is dark, except for the last 2 tergites, which are yellow. This characteristic is
not obvious except on well hardened specimens. The hooks are slightly sclerotized and
pointed but not recurved over the 18th tergite. The female subgenital plate is
rounded, broad, and barely protrusive onto the anterior margin of the 9th sternite.
Fig. 303. *Isoperla similis* larva (from Frison, 1942).

Isoperla similis
Fig. 304. Wings
Fig. 305. Thorax

The color patterns of adults and larvae, the genitalia, and the larval mouthparts were pictured by Frison (1942).

Type locality: Pennsylvania. Type in Museum of Comparative Zoology, Harvard University.

Range: New Hampshire south to North Carolina and west to Tennessee.

Connecticut records: Ashford, May 7, 1964, D. Merger (UC); Barkhamsted, June 1, 1967 (SWF); Bethany, May 5, 1969 (SWF); Hamden, May 5, 1959 (SWF);

25. *Isoperla sloazone* (Banks) (fig. 306)

![Fig. 306. *Isoperla sloazone* larva (from Frison, 1942).](image)

Length: 12-16 mm.

Description: This is another species with a light spot in the occipital triangle of the adult. The lobe on the male 8th sternite is broad and the genital hooks are recurved and sturdy. The female subgenital plate is broad, rounded, and extends partly over the 9th sternite. Larvae and their mouthparts were illustrated by Harden and Mickel (1925) and by Frison (1942), who also figured adult genitalia; Needham and Claassen (1925) figured the wing venation (under the name *omeralis*).

The type series must have consisted of more than one species. The female subgenital plate illustrated by Banks (1911) is quite different from the description of the remaining specimens given by Frison (1942) and Needham and Claassen (1923). The larvae feed principally upon chironomid larvae (Harden and Mickel, 1925).

Type locality: Franconia, New Hampshire, Type in Museum of Comparative Zoology, Harvard University.

26. *Isoperla transmarina* (Newman) (fig. 307)

Chiroperla transmarina Newman, 1838, Entomol. Mag. 5: 499.

Isoperla ventralis Banks, 1908, Psyche J. Entomol. 15: 66.

Length: 10-14 mm.

Description: The adult has a light spot on the ocular triangle that can be narrowly open to the rear. The male hooks are pointed and recurved. The female subgenital plate is produced and truncate. The larva has a large spot over the ocular triangle but, except for color pattern, has little to distinguish it from other Isoperla larvae. The larval pattern and mouthparts were illustrated by Harden and Mickel (1952) and Frison (1942); the adult gnathal by Needham and Channen (1925) (under the species-name "Isoperla"). Figures of the type specimen were given by Ricker (1938).

The preferred habitat of the larvae is silted leaves and vegetation caught by subemerged objects (Harden, 1942). An emerging adult takes about 4 minutes to emerge from the larval skin but a total of 11 minutes elapses before the wings are dry and may be folded, allowing the imagos to crawl away (Harden and Mickel, 1952).

Type locality: Trenton Falls, New York. The label on the type specimen gives the type locality as "North America" (Ricker, 1938; Kimmins, 1970) but from Newman's original description and the journal of the collector, Doubleday (Entomol. Mag. 5: 37), it is clear that the specific locality is Trenton Falls, New York. Type in the British Museum.

Range: The Maritimes and Labrador south to New Jersey and west to Minnesota, Manitoba, and British Columbia.

Connecticut records: Several larvae from Storrs, 1935.

GENUS Isoperla NEWMAN

Niphidae Pictet, 1841, Perisides: 144.

There have been several other proposed genera that are here considered subgenera of Isoperla. Ricker (1952) has monographed the species of
North America and subgenera of the world. Illies (1956) considered these subgenera to be genera but I am using the name in the sense of those North American workers who have followed Ricker's usage.

Isoenus differs from most other periodids in having a cleft male 10th tergite. It is closely related to *Argyropteryx* but as only one uncommon species of the latter occurs in the area under consideration here, it can be separated on the venational characters in the key and (in most species) by the lobes of the male 7th sternite. The females are not easily distinguished from *Isopena* and, in order to find the species, it may be necessary to key down isolated females in both generic keys.

Characters separating species are found in the presence or absence of submental gills and in the male genitalia—the presence or absence of lateral styles, the shape of the posterior lobes of the 10th tergite, the shape and position of projections on the epiproct, and the presence of lobes on sternites 6 to 8.

Type of genus: *Isoenus subnubila* Newman.

KEYS TO NORTHEASTERN SPECIES
(modified from Ricker, 1952)

ADULTS

1. Median mesosternal ridge present, running from fork of Y to transverse ridge; submental gills long .. 2
 Median mesosternal ridge absent from fork of Y to transverse ridge .. 7

2. Epiproct ending in long, slender lash (fig. 332); female subgenital plate moderately produced, with shallow, broadly V-shaped median notch; northern species .. 10, *obscus*
 Epiproct short, generally hooked; subgenital plates varied but have deep, rounded notch in northern species .. 3

3. Epiproct with pair of short, acute lobes posteriorly 4
 Epiproct without lobes posteriorly .. 5

4. Tip of epiproct sclerotized and excavated (saddlelike) (fig. 334)
 Epiproct produced into slender, blunt tip (fig. 328) 10, *brunholic*

5. Posterior lobes (terminal sclerotized corners of 10th tergite) directed inward and then somewhat forward (fig. 322); female subgenital plate only slightly produced, with deep, U-shaped, rounded notch .
 Posterior lobes directed inward and backward (fig. 317); female subgenital plate considerably produced and lacking rounded notch 6

6. Yellow area on rear of head continued forward into ocellar triangle;
 female subgenital plate generally entire; found from Quebec to North Carolina .. 8, *lunatus*
 Yellow area on rear of head not extending beyond occipital suture;
7. No lobe on male 7th sternite; submental gills at least twice as long as wide ... 8
 Well defined lobe on male 7th sternite (fig. 313); submental gills more
 slender or absent ... 2

8. Epiproct terminating in large hook, bent completely ventral (fig. 313);
 female subgenital plate produced only one-fourth the lateral length
 of its sternite ... 2, crassyi
 Epiproct bluntly pointed, not hooked (fig. 324); subgenital plate
 produced about half the lateral length of its sternite ... 7, jaydianus

9. Lateral styles absent from the male supra-anal apparatus 10
 Lateral styles present 12

10. Basal support of supra-anal process situated at anterior edge of the
 10th tergite .. 11
 Basal support of supra-anal process situated at least halfway back on
 10th segment, much behind anterior margin; tergite before support
 quite membranous (fig. 399) 1, bidens

11. Posterior end of paragenital plates with dorsal carina, subacute at
 tip; anal area of hindwing without dark mark; found in Michigan
 and Indiana (fig. 330) 11, saleus
 Tip of paragenital plates without carina, rounded; anal area of hind-
 wing with large dark spot (except in tergal specimens); found
 from Quebec to Georgia 11, subvenus

12. Lateral styles greatly exceeding tiny tip of epiproct, which is com-
 monly difficult to see 5, daphnitis
 Lateral styles no longer than well developed tip of epiproct 13

13. Submental gills absent; lateral styles slender, acute (fig. 314)
 Submental gills short but distinct; lateral styles hooked at tip (fig.
 320) .. 9, hastatus

LARVA

1. Maxilla terminating in single spine and lacking spinules or hairs on
 mental margin (fig. 368) 1, bidens
 Maxilla with shorter spine mesad of main one and commonly with
 additional spinules or hairs 2

2. Portion of submental gill projecting beyond submentum is at least
 twice as long as its greatest width 3
 Portion of submental gill projecting beyond submentum less than
 twice as long as their greatest width, generally about as long as
 wide, or entirely absent 11

*larva of *brummetzi* not known.*
3. Mesosternum with median ridge joining fork of the Y to transverse ridge.
 Mesosternum without median ridge anterior to fork of Y; transverse ridge absent or very indistinct. 4

4. Sides of ventral cups of mandibles margined by minute denticles; labrum greatly produced medially. 5
 Ventral cups of mandibles without denticles; labrum normal, only slightly produced.

5. Transverse black band on head narrow and not including ocellar triangle (fig. 320). 11, falcatus
 Transverse black band on head broad and including ocellar triangle, except for small central spot. 12, subequalis

6. Anterior half of each abdominal tergite dark, posterior half light. 2, creatsbyi
 Anterior half of each abdominal tergite light, except for row of 6-8 small dots. 7, lugens

7. Conspicuous denticles along margins of ventral cup of both mandibles.
 Margin of ventral cup of left mandible with only minute, scarcely distinguishable denticles or denticles entirely absent. 9

8. Denticles large; body conspicuously patterned; Appalachian species 8, septemfasciatus
 Denticles small; except for X-shaped mark on head, body is nearly uniformly colored (fig. 316). 4, duratus

9. Abdominal tergites banded, anterior half light, posterior half dark; forepart of head predominantly light, posterior part dark (fig. 331). 12, olivaceus
 Abdomen uniformly colored, head not as above. 10

10. Body light colored; pronotum with submarginal band, which is broad laterally. 14, varius
 Body dark colored; pronotum uniformly dark (fig. 331). 6, frontalis

11. Submental gills absent or at least not projecting beyond borders of submentum. 3, decius
 Submental gills projecting beyond border of submentum for a distance about equal to their greatest width. 12

12. Median mesosternal ridge forked anteriorly; transverse ridge on mesosternum. 9, busculatus
 Median mesosternal ridge not forked; no transverse ridge on mesosternum. 5, duplicatus

1. Isogenus (Remenas) bilobatus (Neesdham and Claassen) (figs. 308-311)
Fig. 306. *Isopoda bilobata*: a, larva; b, posterior abdominal segment of female larva (from Frison, 1942).

Isopoda bilobata, posterior abdominal segments
Fig. 309. Male, dorsal view.
Fig. 310. Female, ventral view.
Fig. 311. Male, lateral view.
Length: 10-14 mm.

Description: The adult male is the only Isogenus that bears both a whiplike extension of the epiproct (partially withdrawn in some specimens) and also a distinct lobe on both the 7th and 8th sternites. Also, the lateral styli are missing. The larva lacks gills and is without a strong color pattern; its distinctive and unique feature among Eastern Isogenus is the single large tooth on the labium. Needham and Claassen (1925) illustrated the adult wing venation and genitalia; Claassen (1935) and Frison (1942) the larval mouthparts.

Type locality: Old Forge, New York. Type at Cornell University.

Range: New York and southern New England to Tennessee and Georgia.

Connecticut records: Bethany, larva (SWH); Killingworth, June 18, 1965 (SWH); Madison, June 18, 1965 (SWH); Pomfretville, larva, H. Hud (UC); Storrs, June 18, 1954, J. Slater (UC).

2. *Isogenus (Hydroperla) crobyi* (Needham and Claassen) (figs. 312, 313)

Fig. 312. *Isogenus* crobyi larva (from Frison, 1935).

Length: 21-23 mm.

Description: The male does not have clearly recognizable ventral lobes on either the 7th or 8th sternites. The posterior lobes of the 8th tergite on each side of the clava are produced into erect, recurved, thumblike projections. The male epiproct ends in a decurved process. The female subgenital plate is somewhat produced. Submental gills are present. Needham and Claassen (1925) figured the adult wing venation and genitalia, as did Frison (1935), who also figured the larval color pattern and mouthparts.

216
Fig. 313. *Isogonus creathyi* male, lateral view of posterior abdominal segments (from Needham and Chasem, 1925).

The adult is diurnal. The larvae are predacious on chironomids and can be found in clusters of dead leaves in slowly moving streams. There is a 1 year life cycle and the larvae grow most rapidly in February and March (Prisco, 1935).

Type locality: Missouri. Type at Cornell University.

Range: A Midwestern species, found in Indiana, Illinois, and south to Arkansas and Oklahoma.

3. *Isogonus (Culinus) decima* (Walker) (figs. 314, 315)

Length: 12-16 mm.

Description: The male 7th sternite bears a broad lobe and, in some specimens, the 8th sternite has a suggestion of a small lobe. There is a distinct, inward-pointing posterior lobe at the silt of the 10th tergite. The labium of the 11th tergite are joined anteriorly by a strongly sclerotized subtriangular area. The paragenital plates

Isogonus decima male

Fig. 314. a. Dorsal view of posterior abdominal segments; b. paragenital plates and lateral styli.

Fig. 315. Lateral view of posterior abdominal segments.

217
are somewhat quadrilateral, with a membranous extension reaching posteriorly. The lateral styles are slender. The female subgenital plate is strongly produced, broad, and triangular. There are no subgenital gills. Adults were illustrated by Ricker (1938, 1944) and (under the species name verticilis) by Needham and Chaassen (1925). Claassen (1921) illustrated the larva under the species name verticilis.

I. decisus probably hatches in late summer or early fall but has its period of greatest larval growth from January to June. It is predacious, feeding principally on basid mayflies and chironomids. There is one generation a year (Minshall and Minshall, 1960).

Type locality: St. Martin’s Falls, Albany River, Ontario. Type in the British Museum.

Range: An eastern species, ranging from northern Quebec and Ontario to New York, Kentucky, and southern New England and south in the mountains to Georgia.

4. *Isogenas (Isogeninae) dorsatus* (Frison) (figs. 316, 317)

Length: 17-20 mm.

Description: There is a ventral lobe on the male 7th sternite and, in some individuals, a suggestion of ridges on other sternites. The lobes at the posterior corners of the cleft 10th tergite are broadly rounded, with a few long spinelike setae. The epiproct is mostly membranous, except for sclerotized supporting rods; paragynal plates are convex; lateral styles are present; there are long subgenital gills. A longitudinal ridge joins the fork of the mesosternal Y ridge with the mesosternal transverse ridge. The female subgenital plate is broad, somewhat flattened, and produced halfway over the following sternite. The adult genitalia were pictured by Hanson (1953) and Ricker (1932); the larva by Frison (1942).

![Fig. 316. Isogenas dorsatus larva (from Frison, 1942).](image-url)
5. *Isogenus (Diploperla) duplicatus* (Banks) (Figs. 318-320)

Length: 13-17 mm.

Description: *I. duplicatus* has lobes on sternites 7 and 8. The male epiproct is slender and light colored, lying between the more obvious lateral styles. The female subgenital plate is greatly produced, covering all or most of the following sternite.
Isogenus duplicatus male posterior abdominal segments (from Frison, 1935)

Fig. 319. Ventral view. Fig. 320. Dorsal view.

The male of this species might be confused with _bimaculatus_ because of its 2 sternal lobes, however, _duplicatus_ bears lateral styliids and lacks any whiplike extension of the epiproct. Adult genitalia and larval mouthparts were figured by Needham and Claassen (1925) and Frison (1935).

Type locality: Newport, Virginia. Type at Museum of Comparative Zoology, Harvard University.

Range: Ohio and Indiana south to Georgia.

Connecticut record: Bears, June 18, 1984, J. Elmore (UC).

6. *Isogenus* (Isogenoides) _frontalis_ (Newman) (figs. 321, 322)

Length: 12-25 mm.

Description: There is some question as to whether _hudsonicus_ and _colubrinus_ should be included in the above synonymy (Ricker, 1932; Hanson, 1949) but, since neither is found in Connecticut or elsewhere in New England, this causes no confusion.

There are long submental gills and a ridge connecting the fork of the mesoventral V ridge with the mesoventral transverse ridge. The male agnates have a heavy hump at the apex. The lobes of the posterior corner of the cleft of the 10th tergite are somewhat narrowed and directed forward. The female subgenital plate is only slightly produced, transverse, and has a strong notch. The adult genitalia, hind pattern, and wings were figured by Needham and Claassen (1925), Frison (1942), and Hansen (1943a); the larva and larval mouthparts by Claassen (1934) under the species name _colubrinus_ and by Frison (1942); the egg by Needham and Claassen (1925) and by Knight and his associates, (1965b).

Type locality: Trenton Falls, New York. Type in the British Museum.

Range: Including colorobrunus and budonisicus, this is a transcontinental species ranging across Canada, with southern extensions from New York to Minnesota; present in the Rockies to Utah and Colorado, and from the Pacific Northwest into California.

7. Isochrestus (Hydroperla) fugitana (Needham and Claassen) (Figs 323, 324)

 Length: 15-21 mm.

 Description: The posterior lobes of the 10th tergite on either side of the cleft.
are produced into a backward-projecting elongate lobe that bears peg-like setae on its inner margin. The epiproct is erect and pointed at the tip, with a hook-like process on its anterior face. The female subgenital plate is produced halfway over the 9th sternite and is either notched or smooth. Submental gills are present. The male genitalia and wing venation were pictured by Needham and Classen (1925), and (under the same keys) the eggs, larva, larval mouthparts, larval coloration and adult genitalia by Prisom (1935).

The adult is diurnal and mates during the day (Prisom, 1935).

Type locality: Austin, Texas. The type is apparently missing. The vial at Cornell University which contained the holotype is now empty and, according to a note in the vial, has been so since at least 1942.

Range: Indiana and Illinois south to Arkansas and Texas.

8. *Isogenus (Isogenoides) hansonii* Ricker (Fig. 325)

Length: 16-24 mm.

Description: As with other *Isogenoides*, *hansonii* has submental gills and a ridge
Fig. 352. Inogenus hastatus male, lateral view of posterior abdominal segments (from Hanson, 1943a).

connecting the fork of the mesosternal Y ridge with the transverse mesosternal ridge. The posterior lobes at the edge of the crest of the 10th tergite are rounded and directed backward. The male epiproct bears a strong hook at the apex. The female subgenital plate is broad, produced, and rounded. The most distinguishing mark on this species of Inogenus is the triangular yellow spot in the ocular triangle. This spot is connected posteriorly to the broad yellow patch in the occipital region. The adult genitalia and color pattern were figured by Prion (1942) and Hanson (1943a) under the name hastatus; the larval pattern and mouthparts by Ricker (1952).

Type locality: Broadhead Creek, Allegheny, Pennsylvania. Type at Illinois Natural History Survey.

Range: The Maritime provinces of Canada south to North Carolina and west to West Virginia and eastern New York.

Connecticut records: Metrose, larvae, O. Grant (UC); Willington, larvae, J. Ernst (UC); Storrs and Mansfield, many larvae from numerous student collectors (UC).

9. Inogenus (Malirehas) hastatus Banks (figs. 326, 327)

Length: 20-25 mm. (males).

Description: The male has a large lobe on the 7th sternite and its broadened lateral styles, hooked at the end, are the most distinctive feature. The female has a large, produced subgenital plate that is somewhat emarginate distally.

Hall, Weaver, and Guma-Miranda (1969) exposed a larva, tentatively identified as hastatus, to the parasite Clepsis empedora. The host encysted some of the parasites with no apparent injury except for some fat-body depletion.

Type locality: Andrews, North Carolina. Type presumably in Museum of Comparative Zoology, Harvard University.

Range: Quebec to Georgia.

10. Inogenus (Inogenoides) krumholzi Ricker (fig. 320)

223
Paragonus biskakis

Fig. 326. Male, lateral view of posterior abdominal segments (from Needham and Claassen, 1928).

Fig. 327. Female, ventral view of posterior abdominal segments.

Fig. 328. Paragonus brumholzi male, lateral view of posterior abdominal segments (from Ricker, 1952).

Length: About 19 mm.

Description: The species has a median ridge connecting the mesothoracic Y ridge with the transverse mesosternal ridge and submental gills. The male has a lobe on the 7th sternite. The posterior lobes of the 10th tergite are rounded and bear long spinules. The epiproct, like that of most Paragonus, is mainly membranous, with a hook at the apex. There are 2 small projections on the posterior face of the pointed epiproct. The female is unknown. The male was pictured by Ricker (1952).

The male might be confused with Paragonus but the termination of the epiproct—pointed for brumholzi and grooved for turkis—separates them.

Type locality: Pine River, Lake County, Michigan. Type at Illinois Natural History Survey.

Range: Has been collected in Michigan and Minnesota.
11. *Iogena* (Heliopus) *nudatus* (Frison) (figs. 329, 330)

Fig. 329. *Iogena nudatus* larva (from Frison, 1942).

Fig. 330. *Iogena nudatus* male posterior abdominal segments: a, lateral view; b, dorsal view (from Frison, 1942).

Length: About 17 mm.

Description: The lobes on the male 7th and 8th sternites represent color rather than a structural shape and so are not clear in all specimens. There are no lateral styles. The epiproct is pointed and recurved. The female is unknown. The adult genitalia and wings, and the color pattern and the larva and the larval mouthparts were illustrated by Frison (1942).

Type locality: Huron River, Washtenaw County, Michigan. Type at Illinois Natural History Survey.

Range: Has been collected in Michigan and Indiana.

225
12. *Lagenus* (*Lagenoides* olivaceus) (Walker) (figs. 331, 332)

Fig. 331. *Lagenus olivaceus*: a, larva; b, lateral view of posterior abdominal segments of larva (from Frison, 1942).

Length: 14–20 mm.

Description: This species has the typical *Lagenoides* median ridge connecting the Y ridge with the mesosternal transverse ridge; it also has abdominal gills and a lobe on the male 7th sternite. The epiproct is distinguished from those of all other species by bearing a long "whip" at the base. *L. lobata* bears a terminal "whip" on the epiproct but has lobes on both the 7th and 8th sternites and also lacks the median mesosternal ridge. The female subgenital plate is broadly produced and notched in some specimens. The adult genitaria were figured by Bicker (1938), Hanson (1943a), and by Frison (1942), who also figured the larva and larval mouthparts.

Fig. 332. *Lagenus olivaceus* male: a, lateral view of posterior abdominal segments; b, epiproct (from Hanson, 1943a).
Type locality: St. Martin’s Falls, Albany River, Ontario. Type in the British Museum.

Range: A northern species, ranging from Ontario and Quebec to Wisconsin and Michigan.

13. *Isognathus (Helopinus) subcaudus* (Banks) (figs. 2, 4, 5, 333)

![Image](image_url)

Fig. 333. *Isognathus subcaudus*; male, lateral view of posterior abdominal segments (from Prion, 1942).

Length: 10-18 mm.

Description: This species lacks lateral styles in the male. The epiproct is recurved and pointed. The female subgenital plate is broadly produced and rounded. There is an area of darker coloration on the anal area of the hindwing. The male genitalia and adult head pattern were figured by Prion (1942), the female and larva by Risiker (1922).

Type locality: Great Falls, Virginia. Type in Museum of Comparative Zoology, Harvard University.

Range: Down the eastern side of the continent from Ontario and Quebec to Georgia.

Connecticut records: Melrose, larva, O. Grant (UC); Storrs and Middletown, many larvae from numerous student collectors (UC).

14. *Isognathus (Isognathus) varius* (Walsh) (fig. 334)

Length: 15-21 mm.

Description: There is a median ridge from the mesosternal Y ridge to the mesosternal transverse ridge, also submedian gills, and a lobe on the male 7th sternite. The male posterior lobes of the 16th tergite are somewhat pointed and bear a few spines on the inner face. The upright epiproct is partly membranous, with a pair of small spines on the posterior surface. The apex of the epiproct is sclerotized.
and grooved. The female subgenital plate is produced and rounded. The adult head pattern and genitalia red the larva were pictured by Frison (1935, 1937), the adult genitalia by Hanson (1943a).

Type locality: Rock Island, Illinois. Type in Museum of Comparative Zoology, Harvard University.

Range: Because of the uncertainty of some past identifications, the exact range cannot be given. Ricker (1932) lists Michigan, Indiana, Illinois, Tennessee, and North Carolina.

GENUS Arcynopteryx Klápálek

This genus was monographed by Ricker (1952) and several subgenera were proposed. These have been raised to generic rank by Illies (1965). The differences between Arcynopteryx and Hapomeus do not appear to be mutually exclusive in all species. However, American species of Arcynopteryx can be distinguished by their irregular network of crossveins between Rs and R4. Other differences are less consistent, and Ricker (1952) should be consulted for subgenera and species found in other parts of North America.

Type of genus: Dictyopteryx compacta McLachlan

1. Arcynopteryx compacta (McLachlan) (fig. 335)

Fr. Joz. 1, Internat. 7: 9.

Fig. 335. Arcynopteryx compacta male: a, dorsal view of posterior abdominal segments; b, lateral view of epigynum and extremities of 9th and 10th tergites.

Length: 11.30 mm to end of body.

Description: This insect has an unusually complicated synonymy and has been described as a new species by numerous workers both in this country and abroad. This is the only Arcynopteryx found in New England and has been collected from high elevations in the White Mountains, from the shore of Lake Superior, and from northern New York. Additional figures of the adult were drawn by Hansen (1942b) under A. minor. Brinck (1940) figured the larval mouthparts and tarsi. The same author (1955) pictured the external and internal reproductive organs of the adults and describes mating.

Brinck (1940) has presented some biological data on A. compacta in Sweden. There, as elsewhere, this insect is found in high mountain lakes or northern streams. Larval growth occurs mainly in the fall and again in late spring. Adults emerge in midsummer during early morning or at night when the humidity is high. The short-winged males surround the newly emerging females in order to mate. The egg mass is carried on the abdomen of the female. As she crawls along the shore or runs across the water, the eggs fall off as they are wetted. The eggs subsequently become attached to the substrate within the water by adhesive knobs on a basal plate. The larvae feed principally on chironomid and mayfly larvae.

Type locality: Siberia.

Range: A. compacta is Holarctic in the higher latitudes but is found in isolated more southerly spots on high mountain ranges into the Pyrenees in Europe and the

229
GENUS Diura BILLBERG

Diura is the only American representative of the Perlodinae. It is characterized by its uncleved male 10th tergite and by the paraprocts, which extend backward and meet on the mesal annulus.

There are 3 North American species of which 2 are northern Holarctic (nanseni and bicundata) and the other (knomoni) is found in western United States and Canada.

Type of genus: Phryganca bicundata Linne.

1. Diura nanseni washingtoniama Kempey (Fig. 336)

Fig. 336. Diura nanseni washingtoniama male, terminal abdominal segments: a, dorsal view; b, lateral view.

Length: 14-18 mm.

Description: This is the only Diura found in New England and can be recognized by the generic description. Brinck (1954) states that nanseni t.u. differs from nanseni washingtoniama in the shape of the male paraproct and urgenus and in the width of the female subgenital plate.

Further figures of the adults are by Hanson (1940) under the name washingtoniama and of the larva and egg by Brinck (1944).
Brinck (1949) stated that the incubation period of the eggs is 14-21 days. He found the larvae to be predacious, principally on mayfly larvae. Svenson (1966) and Ulfsstrand (1968) found a high rate of larval growth in autumn and spring but a cessation through the winter months. Ulfsstrand (1967) correlated the distribution of larvae within a stream with current speed and the presence of rocks in the substrate. This species occurs in both lakes and rivers. In New England it is found running among the rocks near the Lake of the Clouds above timberline at 5,000-ft altitude. This isolated population is similar to other relict Arctic insects found in the same area.

Type locality: Norway, north of 66° latitude.

Range: Northern Europe and Asia as well as the Western Hemisphere. In North America it has been found only near Mt. Washington in New Hampshire and on the Gaspé Peninsula in Canada.

Family Pteronarcyidae

These are large, primitive stoneflies that are found in eastern Asia and in North America. Unlike other Setipalps, the glossae and paraglossae are subequal in length. There are 8 abdominal ganglia. The larvae have tufted gills on the thorax and the basal abdominal segments. The adult cerci are many segmented and there are numerous crossetae in both wings. The male 10th tergite is cleft, both epiproct and paraprocts are conspicuous, and there is no vesicle on the 9th sternite.

Genus Pteronarcyx Newman

Pteronarcyx Newman, 1838, Entomol. Mag. 5: 175.

These are among the largest of the stoneflies and, because of their conspicuous size, among the first described from North America. The family is found only in North America and eastern Asia. Members of this family retain several primitive features, such as numerous crossetae, abdominal gills, and slight coalescence of the abdominal ganglia.

The Northeastern species fall into 2 distinct groups. One, with upright epiproct, cupped paraprocts, unnotched 9th sternite with no peglike setae at the tip, with divided hemitergal lobes on the male 10th tergite, produced subgenital plate in the females, paired lateral projections on the larval abdomen, has been named subgenus *Allomarctis* by Ricker (1952). The other, with massive epiprocts, fleshy and rounded paraprocts, produced and notched 9th sternites bearing numerous peglike setae near the tip and produced rearward projecting hemitergal lobes on the 10th tergite, with unproduced subgenital plate in the females and whose larvae lack lateral projections, remains in *Pteronarcyx* s.s.

Nelson and Hanson (1971) have recently studied in detail the anatomy and phylogeny of this genus. They believe that the subgeneric groupings (elevated to genera by Illies, 1966) do not accurately reflect the relationships within the family. They proposed 6 species groups without subgeneric standing.

Type of genus: *Pteronarcyx dorata* Say

231
KEYS TO NORTHEASTERN SPECIES

MALES

1. Epiproct elongate and upright, simple in shape, rounded at apex; 9th sternite entire or only slightly emarginate (fig. 337) ... 2
 Epiproct large, flattened, complex in shape (fig. 342); 9th sternite notched (fig. 342) ... 3

2. 9th tergite with emarginate median process on anterior margin; median hemitergal lobe broad and rounded (fig. 344) 5, proteus
 9th tergite without dorsal process; median hemitergal lobe bluntly pointed (fig. 337) ... 1, bireosa

3. Apex of 9th sternite straight in lateral view 3, dorasta
 Apex of 9th sternite decurved ventrad in lateral view 4, pictetii

FEMALES

1. Subgenital plate conspicuously produced beyond margin for a distance equal to about half or more the length of the sternite 2
 Subgenital plate not produced or with only 2 inconspicuous projections (figs. 341, 343) ... 4

2. Subgenital plate deeply notched, the notch reaching almost to or past margin of 8th sternite (fig. 338) .. 3
 Subgenital plate only slightly notched (notch inconspicuous in some individuals) and ending well before margin of 8th sternite (fig. 339) ... 2, constictki

3. Lobes of subgenital plate approximately equal in width throughout length; base of subgenital plate occupies about one-quarter the width of posterior margin of 8th sternite (fig. 345) 5, proteus
 Lobes of subgenital plate roughly triangular; base of subgenital plate occupies about half the width of posterior margin of 8th sternite (fig. 338) ... 1, bireosa

4. Posterior margin of 8th sternite entire or with 2 small projections (fig. 341) ... 3, dorasta
 Posterior margin of 8th sternite with small rectangular emargination (fig. 343) ... 4, pictetii

1. *Pteronarcys bireosa* Newman (figs. 337, 338)

Pteronarcys bireosa Prouzet, 1891, Nat. Can. 8: 190.

Length: 34-46 mm.

Description: *P. bireosa* is easily recognized by the characteristics given in the key. It is widespread in New England but more often captured as a larva than as an adult. Commonly the epiproct is concealed within the large cupped paraphyses.

Male of constictki not known.
Platynarcys bilesi

Fig. 337. Male: a, dorsal view of posterior abdominal segments; b, dorsal view of epiproct and c, lateral view of epiproct, showing variations.
Fig. 338. Female, ventral view of posterior abdominal segments.

(fig. 337). These are easily parted to reveal the simple, straight epiproct arising between the paragenital plates. The epiproct has minute projections or rugosities near its end, which apparently vary somewhat between specimens. Figure 337 shows the epiprocts of 2 specimens in a single series.

The female subgenital plate is large and deeply notched. Both lobes of the plate are triangular, with a broad mesial division between them.

Nelson and Hanson (1960b) made a detailed study of the external morphology. Clausen (1931) figured the larval mouthparts. Nelson and Hanson (1971) figured the male and female genitalia.

A similar species, *P. scotti* Ricker, is southern in range and may extend into New England. The median homopterous lobes of the 10th tergite of *bilesi* are bluntly pointed but in *scotti* they are sharply angled and bear a pair of transversely elongate membranous mound.
Type locality: Trenton Falls, N.Y. Type in the British Museum.

Range: Quebec south to New York and New England and from there through the mountains south to Georgia. It apparently is not found west of New York State.

Connecticut records: Groton, June 5, 1967 (SWH); Hamden, June 8, 1942, H. Johnson (CARES); Litchfield, June 6, 1924, L. B. Woodruff (AMNH); Norwalk, June 1917, E. Stoddard (CARES); Washington, at night, June 1961, S. Hessel (YU). Larvae from Cornwall, Litchfield, Mansfield, Simsbury, Storrs, Vernon, Willington (UC).

2. *Pieromarces comstocki* Smith (fig. 330)

![Figure 330. *Pieromarces comstocki* female, ventral view of posterior abdominal segments (from Nelson and Hanson, 1971).](image)

Length: About 12 mm.

Description: This species is known only from the (male). The female subgenital plate projects well beyond the 8th sternite but is not deeply notched as in other *Pieromarces*. The notch is quite inconspicuous in most specimens. There is a distinctive larva (Frison, 1942) found widely over the northeastern that is probably this species but the proper confirmation has never been made. Nelson and Hanson (1971) figured the female genitalia.

Type locality: Wilmurt, New York. Type at Cornell University.

Range: Northern New England or the Maritimes south to Virginia.

3. *Pieromarces dorsata* (Say) (figs. 340, 341)

Sida dorsata Say, 1823, Godman’s Western Quarterly Reporter 2: 164.

Pieromarces regalis Neuman, 1828, Entomol. Mag. 5: 176.

Kollarius sayana Pictet, 1841, Fertile: 123.

Pieromarces roscus Provancher, 1876, Nat. Can. 8: 189.

Pieromarces fasticorne Provancher, 1876, Nat. Can. 8: 191.
Pteromarces durante, posterior abdominal segments (from Nelson and Hanson, 1971)

Fig. 340. Male, dorsal view. Fig. 341. Female, ventral view.

Length: 40-60 mm.

Description: This species is very close to *P. piehetti* in both the male and female. The end of the male 5th sternite is straight near its tip in lateral view and the female subgenital plate is either straight or has 2 small projections. The egg of *durante* was figured by Knight and his associates (1968b) and by Needham and Claussen (1972), who also discussed the variation in wing venation. Hoke (1924) figured the head and mouthparts and Claussen (1931) a larva that may be this species. Nelson and Hanson (1971) figured both male and female genitalia.

Harden and Michel (1953) reared the larvae on elm leaves—the leaves were not eaten completely but skeletonized. Olson and Brown (1968) found that, unlike most aquatic insects, large specimens of this animal have a higher rate of oxygen consumption in relation to body weight than do small ones. Cushing (1960) collected larvae in the rapids above a productive lake but not in the stream below it. Presumably, organic additions from the lake changed the character of the stream.

Half the larvae tested can stand a water temperature of 29.5°C or a pH of 4.25 for 96 hours (Nebeker and Lomke, 1967; Bell and Nebeker, 1969). When larvae were held in the laboratory at temperatures from 1°C to 35°C in 5°C increments, most feeding took place at 20°C. Adults emerged on the first day at 15°C to 20°C, with adults averaging a life span of 36 days, when reared at 10°C and only 17.5 days at 20°C. Egg production averaged 475 eggs at 15°C but only one of the females reared at 20°C survived, and then only 175 eggs. Larvae held at 30°C died within 2 weeks, whereas those at 5°C survived but did not feed or develop for the 9 months of the test (Nebeker, 1971a).

Type locality: Pittsburgh, Pennsylvania. Type missing.

Range: A transcontinental distribution from Labrador to Alaska and south in the Rockies to Wyoming. Farther east it is found around the Great Lakes and south to Georgia. Nebeker (1964) published a distribution map.
4. *Pteronarcy pietetti* Hagen (figs. 342, 343)

Pteronarcy pietetti, posterior abdominal segments (from Nelson and Hanson, 1971)

- Fig. 342. Male, dorsal view.
- Fig. 343. Female, ventral view.

Length 31-46 mm.

Description: *P. pietetti* is distinguished from *duvallii* by the tip of the 9th sternite which, in lateral view, is turned downward near the tip. The female has a small quadrangular notch on the posterior margin of the 8th sternite. Nelson (1935) illustrated eggs, larvae, and adult genitalia under the name “*mobile*” Nelson and Hanson (1971) figured the male and female genitalia.

Gibson and Ruzzy (1968) found the mean oxygen consumption of a larva at 20°C was 9.6 cu/mm/hr/g live weight.

Type locality: Philadelphia, Pennsylvania. Type (female) in Museum of Comparative Zoology, Harvard University.

Romer: The Midwest from Manitoba to Kansas east to Georgia and Pennsylvania.

5. *Pteronarcy proteus* Newman (figs. 344, 345)

Pteronarcy proteus Newman, 1868, Entomol. Mag. 5: 177.

Length: 33-40 mm.

Description: The male is distinguished by the conspicuous median process on the anterior part of the 9th tergite, as well as by the broad shape of the median hemisperical lobes. The median lobe is the sclerotized area of the split 20th tergite bearing papillate setae. The female has a subgenital plate of 2 long, curved lobes. The larva was figured by Clausen (1921), the wings by Nuckolls and Clausen (1923), and the adult terminalia and reproductive organs by Nelson and Hanson (1969, 1971).
Pleocercus porrectus, posterior abdominal segments (from Nelson and Hanson, 1971)
Fig. 344: Male, dorsal view. Fig. 345: Female, ventral view.

Miller (1939, 1940) and Holdsworth (1940a,b) have given information on the life history of this species and the following is taken from their accounts. Adults can mate several times during a maximum life span of 20 days for the male and 25 days for the female. However, only one mating is necessary, as the sperms stored in the spermatheca remain active up to the death of the female. Mating takes place at any time of day and the insects can remain coupled for many hours (up to 24). Mating usually occurs shortly after the female emerges and eggs are laid 3 to 7 days after emergence and 1 to 4 days after mating. The adults do not feed but do drink water. Mating is necessary for egg deposition. Eggs are extruded between 2 PM and 5 PM, and, less commonly, up to 8 PM. Each egg mass contains about 150 eggs (range from a few dozen to 450) but decreases in successive batches to the minimum. The female produces about 5 separate masses (range 2-7) over a period of 6-18 days. The total number of eggs per female is about 500 to 600, with a maximum of 1,500. In the water, the gelatinous coating expands and the rim of the anchor base adheres the egg to the substrate. The embryo is fully developed by late fall but does not emerge until the following spring. The eggs can freeze without harm. Diagnosis is initiated at lower temperatures but is not obligatory. A cephalic egg-tooth enables the young *parvus* to escape the egg. The 1st larval instar submerges on the yolk remaining in the midgut, is inactive, and has no air in the tracheal system. The 2nd instar is active and feeds on algae. Larval development takes 2 years on counting 1 year in the egg stage, the life cycle takes 3 years to complete. The female has 13 larval instars and the male 12.

Miller (1939, 1940) studied embryogenesis and Holdsworth (1940, 1942) discussed wing development in this species. Nelson and Hanson (1960) made a detailed examination of the external morphology and Schmidt (1963) described the abdominal nervous system of the larva.

Type locality: Trenton Falls, New York. Type in the British Museum.

Range: Quebec south to Virginia and west into New York.
CHECKLIST OF NEARCTIC STONEFLIES

The following list gives the 465 valid species of stoneflies in North America north of Mexico as of January 1972. A few older species whose identities are uncertain are not included. The geographical listings generally follow those by Herber (1959) of the Ephemeroptera (Bulg. Pla. State Mus. 4[1]: 1-88). In the western states, these divisions are not always accurate, as some species from northern Utah and Colorado are of Northwestern rather than Southwestern affinities and some from Texas are Southwestern rather than Central. However, State lines are a convenient fiction for delimiting areas. "Northern California" is roughly the Coast Range to San Francisco and the Sierra Nevada to Yosemite.

Abbreviations are as follows:

A=Northern (Hudson's Bay through Alaska)
NE=Northeast (Maine south to the Potomac River and West Virginia and west through Pennsylvania and New York).
SE=Southeast (Virginia and Tennessee south through Louisiana).
C=Central (Ohio and Kentucky west through North Dakota and south through Arkansas and Texas).
SW=Southwest (Colorado and New Mexico west through Nevada and southern California).
NW=Northwest (Montana and Wyoming west through Washington and northern California).
CE=Eastern Canada (Newfoundland through eastern Ontario).
CC=Central Canada (western Ontario through Saskatchewan).
CW=Western Canada (Alberta and British Columbia).

Species that have been captured in Connecticut are marked with an asterisk. Any species listed as Northeastern might reasonably be expected to be eventually found in this state.

Plecoptera

Pelop perforata Needham 1905

lepis Needham & Smith 1916: SE

arctica Needham 1905: SE, NE, CE

brevius Banks 1907: NW, CW

comparanda Jewett 1954: NW

copo Needham & Smith 1916: SW, NW

fenderi Jewett 1955: NW

deutic Ricker 1952: SE

marias Needham & Smith 1916: SE, NE, CE

marianna Ricker 1943: NW, CW

quadripalma Jewett 1954: NW

thyma Needham & Smith 1916: SW, NW

simpia Frison 1942: SE

238
Taeniopterygidae

Taenioptrurus Pictet 1841

thorpei Ricker & Ross 1968: SE, NE, C, CE
bia Frison 1942: SE, C

ionicra Ricker & Ross 1968: SE, NE

*mysear Pictet 1841: SE, NE, C, NW, CE

metopus Ricker & Ross 1968: SE, NE, C

spinella Pictet 1847: NE, C, SW, NW, CE

triloba Banks 1918: SE, NE, C, CE

ugola Ricker & Ross 1968: SE, NE

Brochiptera Newport 1849

californica Needham & Claassen 1925: SW, NW

cruentata Frison 1934: C

flavescens Burmeister 1839: SE, NE, C, CE

fusiformis Ricker 1965: CC

plecostis Newport 1848: NE, C, SW, CE, CC

prasinobanksi Banks 1918: SW

producta Banks 1900: SW, NW, CE, CW

redinate Banks 1900: NW, CE, CW

pollidae Banks 1902: SW, NW, CW

raynori Claassen 1947: NW

rossi Frison 1942: NE, CE

vandusenia Claassen 1937: NW

acutata Ricker 1968: SW

Leuctridae

leastra Stephens 1835

alecanderi Hanson 1941: SE

angusta Banks 1907: NW, CW, A

baddeleya Ricker 1965: NE

biloba Claassen 1923: SE

carolinensis Claassen 1923: SE, NE
divisa Hitchcock 1958: NW

clauseni Claassen 1923: NE, CE

clauseni Walker 1852: SE, NE, C, CE
grandis Banks 1906: SE

infisecto Claassen 1923: NW, CW

insculpta Claassen 1970: NE

navicula Hansen 1941: NE, CE

mitchellensis Hansen 1941: SE

mohi Ricker 1952: SE

monticola Hansen 1941: SE

neorhaphila Hansen 1941: SE

ribes Claassen 1923: SE, NE, C, CE

trinotata Provancher 1878: NE, C, CE

triseta Pictet 1841: SE, NE, C, CE
triloba Claassen 1923: SE, NE, CE

truncata Claassen 1923: NE, CE

variable Hansen 1941: NE

Paraleuctra Hansen 1941

disula Ricker 1965: CW

isophia Frison 1937: NW, A

levis Nebecker & Gaufin 1966: SW, NW

occidentalis Banks 1907: CW

occidentalis auct. (see Hansen 1962): SW, NW, CW

parvella Neave 1934: NW, CW

richteri Nebecker & Gaufin 1966: SW, NW

stilva Claassen 1937: NE, CE

Zeoleuctra Ricker 1952

amabilis Ricker 1969: C

claaseni Frison 1929: C

fratema Ricker 1969: SE, C

hibei Ricker 1969: C

maroi Ricker 1969: C

nuchita Ricker 1969: C

varreniti Ricker 1969: C

Portunops Banks 1906

collaria Banks 1906: SW, NW, CW
atakensii Needham & Claassen 1925: SW, NW, CW

Bacileps

Astacopneus Claassen 1928

aurora Ricker 1952: SE, NE
brooksi Ross 1964: SE
cunninghami Ross & Ricker 1964: SE
curiosa Frison 1942: NE, C
forbesi Frison 1929: C
frisoni Ross & Ricker 1964: NE, C
gemmata Ross 1964: SE
granulata Claassen 1924: SE, NE, C, CE
tallacensis Frison 1935: NE, C, CE

indaeae Ricker 1952: NE, C
jeanes Ross 1964: C
kushaba Ricker 1952: NE

laticlavia Ross 1964: SE, C

marina Hanson 1942: NE, CE
minima Newport 1849: NE, C, CE

rubri Fris and Ricker 1964: C
myctica Frison 1929: SE, NE, C

micicola Fitch 1847: SE, NE, C, CE
ohiotes Ross & Ricker 1964: NE, C

orara Ross 1964: C
perhumani Ross & Ricker 1964: NE, CE

pelodes Ross & Ricker 1964: C
perplexa Ross & Ricker 1970: SE

polynemis Ross & Ricker 1970: SE

pygmaea Brunner 1809: SE, NE, C, CE, CC

recta Claassen 1924: SE, NE, C, CE

rickeri Frison 1942: SE, NE, C, CE

sandersoni Ricker 1952: C
smithi Ross & Ricker 1970: SE, C

Strongyloides Ross 1964: SE

tenuis Ross & Ricker 1964: SE

unricheri Ross & Yamanoto 1966: SE

virginiana Frison 1942: SE
group C Claassen 1924: SE, NE, C, CE

warranii Ross & Yamanoto 1956: C

yalyi Ross 1964: SE
zerba Ross 1964: SE, NE

Cupola Pictet 1841

arizonensis Baumann & Gaufin 1969: SW

austriaca Baumann & Gaufin 1970: NW, CW, A
bakeri Banks 1918: SW
burbiana Frison 1944: SW
barbata Frison 1944: SW

bassi Claassen 1924: NW

bryeri Ricker 1963: A
californica Claassen 1924: SW
deserta Ricker 1965: A
coloradensis Claassen 1937: SW, NW

calabiana Claassen 1924: SW, NW, CW, A

cupolica Claassen 1926: SW, NW, CW, A
cygnus Jewett 1954: NW
decepta Banks 1897: SW
diastema Jewett 1962: NW
distincta Frison 1937: NW
elevata Frison 1942: NW
elegans Claassen 1924: SW, NW, CW

emisola Jewett 1962: NW
epecta Jewett 1955: NW
equinata Claassen 1924: NW, CW
diaca Claassen 1924: NW
frisoni Baumann & Gaufin 1970: SW
globa Claassen 1924: SW, NW

gracilicosta Claassen 1924: SW, NW, CW

gregori Ricker 1965: CW

imbera Nebecker & Gaufin 1965: NW

240
junelvi Frison 1942: NW
labradorica Ricker 1934: CE, A
lacustra Jewett 1965: NW
leptone Baumann & Gaufin 1970: NW
lenmonina Nebeker & Gaufin 1965: SW, NW
lirina Jewett 1954: NW
limata Frison 1944: SW, NW
lindenae Hansen 1943: SW, NW, NW
logana Nebeker & Gaufin 1965: SW
marialata Jewett 1954: NW
*manitoba Claassen 1924: NE, CE, CC, CW, A
media Frison 1942: NW, CW
millani Nebeker & Gaufin 1967: NW
nana Claassen 1924: SW, NW, CW
necrosta Banks 1918: A
nedia Nebeker & Gaufin 1966: NW
ocwone Neave 1920: NW, CW
oggotorni Jewett 1963: CW, A
orogena Frison 1942: NW
ovagenipera Jewett 1965: NW
peltata Jewett 1954: NW
pieleta Jewett 1966: NW, CW
poda Nebeker & Gaufin 1965: SW, NW
porrecta Jewett 1954: NW
proiecta Frison 1937: SW, NW, CW, A
promota Frison 1937: NW
quadridisca Hitchcock 1958: NW
rapagnae Ricker 1965: CW
rappachti Ricker 1965: NW, CW
scabina Jewett 1966: NW
sectertuberculata Jewett 1954: NW
serena Nebeker & Gaufin 1965: NW
spencer Ricker 1965: NW, CW
spinulosa Claassen 1937: SW
spinula Ricker 1965: A
tabernae Nebeker & Gaufin 1965: NW
terebra Claassen 1924: SW
trans Nebeker & Gaufin 1965: NW
trumida Claassen 1924: NW
unitalis Gaufin 1965: SW, NW
uphyla Frison 1942: NW
utahensis Gaufin & Jewett 1962: SW
vivax Banks 1900: NW
vermona Newport 1848: C, CE, CC, CW
veronica Frison 1941: SW, NW
vernieri Baumann & Gaufin 1970: SW
volcanita Jewett 1955: NW
yoloensis Baumann & Gaufin 1970: NW
zuehli Hansen 1943: NW
Eucanopycna Okaamoto 1922
*bredienkia Claassen 1924: SW, NW, CW, A
I.CurrentRow Banks 1938
abbreviata Frison 1942: NW, CW
agassizia Ricker 1943: NW, CW
cristia Needham & Claassen 1925: SW, NW
frasseri Ricker 1959: CW
grandis Banks 1905: SW, NW, CW, A
hyalina Ricker 1959: NW
integrifrons Hansen 1943: CW
missouri Ricker 1959: SW, NW
negilla Ricker 1959: NW
spenceri Ricker 1943: NW, CW
trederensis Ricker 1943: SW, NW, CW
Nemacapa Banks 1938
carolinica Banks 1938: SE, C
Paracapa Hansen 1946
*sampsoni Hansen 1964: SE, NE, C, CE
*spina Newman 1839: NE, C, CE
Megaleuctra Neave 1934
compressa Claassen 1937: NW
kincadi Frison 1942: NW
speciabilis Neave 1934 (pessi-
Nemouridae

Nemoura Latreille 1796

abidiflavus Walker 1852: NE, CE
		* apache* Baumann & Gaufin 1972: SW
		arctica Eben-Peterson 1910: A
		bankai Baumann & Gaufin 1972: SW
		biscuita Claassen 1923: SW, NW, CW
		blifurcata Claassen 1923: NW
		biloba Claassen 1923: NW
		californica Claassen 1923: SW, NW, CW
		catarracta Neve 1933: NW, CW
		chiis Ricke 1952: SE
		cinerea Banks 1897: C, SW, NW, CW, A
		coloredadenia Banks 1897: SW, NW
		colombiana Claassen 1923: SW, NW, CW, A
		* completa* Walker 1852: SE, NE, C, NW, CE
		complexa Claassen 1937: NE, CE
		cordillera Baumann & Gaufin 1971: NW
		cornuta Claassen 1923: NW, CW
		decepta Frison 1942: SW, NW, CW
		delicatula Claassen 1923: SW, NW, CW
		delia Banks 1895: SE, C, CE
		defraesa Banks 1898: SW, NW
		dimidiata Frison 1936: NW, CW
		flexuina Claassen 1923: SW, NW
		foersteri Riether 1943: NW, CW
		frigida Claassen 1923: SW, NW, CW, A
		glacier Baumann & Gaufin 1971: NW
		hay Hay 1952: SW, NW, CW, A
		lessa Riether 1952: C, SW, CE
		macduffaudi Riether 1947: CE
		marionae Hitchcock 1958: NW
		mackfordi Riether 1952: SE
		matagonica Baumann & Gaufin 1972: SW
		neodrepanis Claassen 1923: SW, NW, CW
		nigrita Provancher 1876: SE, NE, C, CE
		normani Riether 1952: A
		obscura Frison 1936: NW
		oregomenes Claassen 1923: SW, NW, CW, A
		perfecta Walker 1852: SE, NE, CE
		perplexa Frison 1936: NW
		posteri Baumann & Gaufin 1971: NW
		products Claassen 1923: NW, CW
		pseudocorovata Claassen 1923: NE, CE
		richeri Jewett 1971: A
		rotundula Claassen 1923: NE, C, CE, C, A
		*similis Hagen 1861: NE, C, CE
		spinulosa Jewett 1954: NW
		tine Riether 1952: NW
		trigona Claassen 1923: NE, CE
		truncata Claassen 1923: NE, C, CE
		tusana Ricke 1952: NW
		ulaculicola Wu 1923: NE, C, CE
		vandora Hagen 1913: SW, NW
		valesiana Jewett 1954: NW
		waikanae Claassen 1923: SE, NE
		weberti Riether 1952: A
		wenatchee Riether 1968: NW
		weidii Claassen 1923: SE, NE, CE

Pteronarcyidae

Pteronarcyia Neuman 1838
bibofo Newman 1838: SE, NE, CE, SW
californica Newport 1849: SW, NW, CW
comatusi Smith 1917: NE, CE
dorata Say 1823: SE, NE, C, NW, CE, CC, CW, A
picta Hagen 1874: SE, NE, C, CE
prunocyta Banks 1907: SW, NW, CW
protetus Newman 1930: NE, CE
scotti Rickers 1952: SE
Pteronarcilla Banks 1900
badia Hagen 1873: SW, NW, A
regulatrix Hagen 1873: SW, NW, CW
Perlidae
Neopora Needham 1905
eucnema Newman 1839: SE, NE, C, SW, CE
bubita Rickers 1952: C
Paragnatina Klapalek 1907
fattig Rickers 1949: SE
lunata Banks 1902: SE, immorgata Say 1823: SE, NE, CE
kauzarii Banks 1905: C
media Walker 1852: SE, NE, C, CE, CC, A
Phaemophora Klapalek 1921
rapita Picket 1841: SE, NE, C, CE
Acroceria Picket 1841
abnormis Newman 1838: SE, NE, C, CE, CC
arenax Picket 1841: SE, NE, CE
arela Hagen 1861: SE
californica Banks 1905: SW, NW, CW
californica Banks 1905: SE, NE, CE
depressa Needham & Claassen 1922: NW
evoluta Klapalek 1909: C, NW
filicae Frison 1942: SE, C
torquata Hagen 1874: SW, NW, CW
subfrons Banks 1914: NW, CW

interstitia Walker 1852: NE, C, SW
lytorias Newman 1839: SE, NE, C, CE, CC
melida Frison 1942: C
pacifica Banks 1900: SW, NW, CW
perplexia Frison 1937: NE, C
poelzii Hagen 1861: SE, NE, C, SW, CC
princola Needham & Claassen 1922: SW, NW
santhomes Newman 1838: SE, NE, C
Clansevata Wu 1934
usulaxa Banks 1900: SW, NW, CC, CW, A
Perlapa banks 1900
frisoni Banks 1948: SE
plicata Hagen 1861: SE, NE, C, NW, CE, CC
Perlemina Banks 1900
dusma Newman 1839: SE, NE, C
phylea Newman 1839: SE, NE, C
phylomorpha Walsh 1862: SE, C
Perlididae
Archnoptersyx Klapalek 1904
aurata Smith 1917: NW
barbara Needham 1933: NW
bradlei Smith 1917: NW, CW
compactus MacLachlan 1872: NE, SW, NW, CE, CC, CW, A
curatae Hanson 1942: NW, CW
irregularis Banks 1900: SW, NW, CW
parallela Frison 1936: SW, NW, CW
picteps Hanson 1942: NW, CW
rigata Hagen 1874: SW, NW, CW
subfrons Hanson 1942: NW, CW
tribialis Banks 1914: NW, CW
waterstoni Rickers 1952: NW,

243
yosemiti Needham & Claassen 1925: NW
Callipteris Banks 1947
lactuca Banks 1906: NW
Diera Billberg 1820
baccaulae Line 1758: A
kneadieni Frison 1937: SW, NW, GW
mammi Kempty 1900: NE, CE
ce
zeugma Newman 1833
agrestica Needham & Claassen 1925: SW, NW, CW
alomeda Needham & Claassen 1925: SW
arimus Frison 1942: SE
*balbatus Needham & Claassen 1925: SE, NE
balbus Frison 1942: SE
brebys Frison & Claassen 1925: C
*decimus Walker 1852: SE, NE, C, CE, CC
doratus Frison 1942: C, CE
*duplicatus Banks 1920: SE, C
doleatus Hagen 1874: SW, NW, CW
euratus Claassen 1925: NW
cyanus Banks 1920: SW, NW
frons frons frons. Newman 1838: NE, C, CE, A
frons colubrinus Hagen 1874: SW, NW, CC, CW, A
fuglanus Needham & Claassen 1925: C
*hamani Ricker 1952: SE, NE, CE
haastii Banks 1920: SE, NE, CE
innubilus Needham & Claassen 1925: SE
kromholzi Ricker 1952: C
minimus Claassen 1936: NW
modestus Banks 1908: SW, NW, CW
molatus Frison 1942: C
nonus Needham & Claassen 1925: NW, CW
oleaster Walker 1852: C, CE, CC
pilatus Frison 1942: NW, CW
*subspinosus Banks 1920: SE, NE, CE
tetramus Ricker 1952: NW, CW
varius Walsh 1863: SE, C
vexatus Jewett 1965: NW
yalmar Hoppe 1928: SW, NW, CW
zionensis Hanson 1949: SW, A
Isoporia Banks 1906
acuta Jewett 1962: SW
adurna Jewett 1962: NW
bellox Banks 1911: SE
*bilinata Say 1823: SE, NE, C, SW, CE, GC
burchi Frison 1942: C
citronella Newport 1849: CC, A
*tila Newman 1839: SE, NE, C
conspicua Frison 1938: C
costa Ricker 1952: C, CE
decepta Frison 1935: C
decolorata Walker 1882: CC, A
dennini Jewett 1955: SW
*deica Frison 1942: SE, NE, C, CE
ebra Hagen 1874: SW, NW, CW
emarginata Harden & Mickel 1952: C
extensa Claassen 1937: C
*franciscan Harper 1971: CE
*frons lillies 1966: C, CE
*futura Claassen 1937: SW, NW, CW,
*fusca Needham & Claassen 1925: NW, CW
*gilbae Harper 1971: SE, CE
*granatus Needham & Claassen: NW
*hadochloa Klajek 1923: SE, NE, CE
irregularis Klajek 1923: C
lata Frison 1942: SE, C, CE
longicola Banks 1906: C, SW, NW, CW, A
*mormonica Needham & Claassen 1925: SE, NE, C, CE
*mormonita Needham & Claassen 1925: SW, NW
Chloroperlidae

Alloperlus Banks 1906

A. alternans Reighard, Needham & Claassen 1926: NW, CW

A. banksi Hoppe 1938: NW, CW

A. bowleri Banks 1906: NW, CW

A. californiae Jewett 1965: NW

Chloroperla Banks 1888: NE, C, CE

Conchoecia Rickar 1938: NE, CE, C, CW

C. concinna Banks 1899: NW, CW

C. cupreata Newman 1859: SE, SW

C. delicata Prisen 1935: SW, NW, CW

C. diveria Prisen 1935: SW, NW, CW

C. exquisita Prisen 1935: NW, CW

C. fidelis Banks 1920: SW, NW, CW, A

C. foetida Norve 1929: NW, CW, A

C. fratera Prisen 1935: NW, CW, A

C. idel Rickar 1935: CE

C. imbecilla Say 1823: SE, NE, C, CE

C. jambas Needham & Claassen 1926: SW, NW

C. integrata Banks 1911: SE, NE, CE

C. leonardoi Rickar 1952: C, CE

C. lunella Banks 1912: SW, NW

C. marginata Banks 1897: NE, C, CE

C. mediana Banks 1911: SE, NE, C, CE

C. mendocina Rickar 1952: SW, NW, CW, A

C. minima Provancher 1876: NE, CE

C. minimula Prisen 1935: SE, NW

C. occidentalis Prisen 1937: NW, CW

C. orbis Rickar 1952: SE, NW, CW

C. pacifica Banks 1895: SW, NW, CW, A

C. pallidula Banks 1904: SW, NW, CW, A

C. parietina Jewett 1962: NW

C. picta Needham & Claassen 1921: SW

C. rivulata Rickar 1952: C, SW, NW
quadrate Harden & Mickel 1952: C
plicatula Jewett 1955: NW, CW
serrata Needham & Claassen 1925: NW, CW, A
severa Hagen 1861: SW, NW, A
signata Banks 1895: SW, NW, A
tanita Ricker 1952: NW
tennesi Ricker 1952: NW
uricae Ricker 1952: SE
van Ricker 1953: SE
vannusa Ricker 1948: NE, CE
vandleri Ricker 1948: NE, CE
Chloroperla Newman 1836
terna Frison 1942: SE, NE
scoborsa Ricker 1965: A
Hastaperla Ricker 1935
*habita Banks 1895: SE, NE, C, CE, CC
chihuahua Ricker 1952: NW
orpha Frison 1937: C, CE
Kathaperla Banks 1920
perleta Banks 1920: NW, CW, A
Paraperla Banks 1906
Trematula Banks 1902: SW, NW, CW, A
tulsaui Ricker 1965: CW
Utaperla Ricker 1932
zabulora Ricker 1952: SW, NW, CW, A
REFERENCES

249

-----, 1971c. The nymphs of the Taeniopterygidae of eastern Canada. Can. J.
Zool. 49: 941-947.
49: 1129-1142.
Hartman, G. 1938. Mouth size and food size in young rainbow trout, Salmo gairdneri.
Hirane, D. R. and A. W. Knight. 1970. Studies on growth and development of the
Entomol. Fenn. 26: 199-201.
Hitchcock, S. W. 1964. Field and laboratory studies of DDT and aquatic insects.
------, 1968. Alloplectus (Chloroperlidae: Plecoptera) of the Northeast with a key
------, 1969. Plecoptera from high altitudes and a new species of Leuctra
(Leuctridae) from the Sierras (Chloroperlidae: Plecoptera). J. Morphol. 88:
347-385.
Heldsworth, R. 1949. The histology of the wing pads of the early instars of
------, 1941b. Additional information and a correction concerning the growth of
70: 431-462.
Hudson, G. B. 1934. Studies in the comparative anatomy and systematic importance
Hutton, L. N., S. Savitz and S. Ulbrich. 1968. Upstream movements of insects in a
south Swedish small stream. Oikos 20: 533-537.
Hyams, R. B. N. 1941. The taxonomy and ecology of the nymphs of British
Plecoptera with notes on the adults and eggs. Trans. R. Entomol. Soc. Lond. 94:
459-557.
Entomol. Soc. Lond. (A) 17: 81-82.
Lond. 103: 85-109.
------, 1955. A key to the adults and nymphs of British stoneflies (Plecoptera).

Ivan, L. 1963. Pseudofora kishinai kishinai Perla marginata var. V odsinovský J. Vědkové česlo 1, 35-175.

Kimura, B. G. 1964. Studies on the biology of Capnia bifrons (Neesman) and notes on the disposition in the nymphs of this species. Genus and Abesawa 54: 25-30.

Léger, L. and M. Guthier. 1932. Endomyctes nouveaux des larves aquatiques

253

Molden, B. L. 1968. Methylene blue and ep. u. from the dipter. (Chironomus), In Oregon J. Parasitolog. 54: 74-754.

Minnisall, R. G. and G. Smith. 1929. The food of trout stream insects in Yellowstone

Pastre, E. 1945. Influence d’un changement de temperature sur la consommation...

Ricker, W. E., R. Malotin, P. Harper, and H. H. Ross. 1968. Distribution of Quebec...

257

Other insect publications of Connecticut are listed in the List of Publications of the State Geological and Natural History Survey which is available from the State Library on request. The price of this Bulletin is $0.60. Additional copies may be ordered from Sales and Publications, State Library, Hartford, Connecticut 06115 (postpaid; Connecticut residents must add sales tax). Like all publications of the Connecticut Geological and Natural History Survey, one copy is available, free of charge, to any Connecticut public official, scientist, or teacher who wishes, under his official letterhead, that it is required for professional work.
TAXONOMIC INDEX

A number in italics indicates the page where the Description of a family, genus, or species begins. Species Descriptions include illustrations.

abdominalis, Perla, 12, 14
aborbitalis, Acroneuria, 139, 155
Acroneuria, 4, 8, 20, 25, 114
Acroneuria, 4, 5, 6, 11, 16, 20, 24, 46
Acroneuria, 284
Actoperla, 4, 5, 9, 12, 43, 96, 157, 170
Acroneuria, 37
angulata, Paragynus, 19, 69, 70
arcuate, Felisperlus, 131, 134
Asymptopus, 43, 212, 239
Avecans, Acroneuria, 3, 130
avis, Acroneuria, 153
avunc, Capnidae, 36
axillaris, Acroneuria, 47, 64
badabica, Leuctridae, 74
badia, Pteronarcys, 3
banki, Acroneuria, 173
barnesiana, Nemoura, 97
beowulfa, Diatoma, 10, 230
beira, Capnidae, 9, 10, 11
beira, Isoperla, 193, 194, 214, 218
bifida, Pteronarcys, 222
bifida, Isoperla, 215, 220
bipunctata, Perla, 4
Brockytyphle, 2, 5, 11, 20, 124
brevis, Harellina, 165, 170
brevis, Felisperlus, 3
burkhi, Isoperla, 191, 196, 206
burkhi, Tanytarsus, 6, 114, 117
118, 122, 123
burmeisteri, Chloroperla, 12
burmeisteriana, Perla, 3, 11
californica, Acroneuria, 4, 7, 16
californica, Pteronarcy, 3, 13, 14
capitata, Pteronarcys, 157
capitata, Phaeogymnus, 157
Capnidae, 3, 5, 9, 29, 45, 63
Carinipennis, 43
Carolina, Nemoura, 71
Carnivorous, Acroneuria, 153
caudata, Acroneuria, 174
cerealis, Diocnemis, 3, 4, 9, 10, 15
chloris, Acroneuria, 97
Chloroperla, 4, 7, 12, 29, 165, 170
Chloroperlidae, 2, 4, 165
cinerea, Nemoura, 5, 11
clairo, Leuctria, 8
clairo, Zelotoides, 87
Clatura, 91
Claura, Isoperla, 25
claudina, Nemoura, 19, 143
Clymene, Isoperla, 15
Clupea, Acroneuria, 14, 9, 19, 228
complexa, Nemoura, 97, 105
completa, Nemoura, 97
completa, Pteronarcy, 234
cornicula, Acroneuria, 273, 284
corniculata, Isoperla, 156
cortesia, Brachytyphle, 155, 120, 131
cornus, Isoperla, 156
cornuta, Acroneuria, 50
decipiens, Isoperla, 7, 196
decidua, Isoperla, 217
dehaas, Nemoura, 99, 102
decurtata, Nemoura, 97
degrayi, Isoperla, 27
Diacranus, 8
Diptera, 3, 230
donana, Isoperla, 238
doneana, Pteronarcy, 13, 231, 234
dorsalis, Periclimenae, 163
double, Leuctria, 75, 77
duplicitata, Isoperla, 219
dvorsl, Isoperla, 186
dwerglina, Isoperla, 178
dwerglina, Perla, 154
Eisenmeya, 26
elavus, Acroneuria, 135
fallax, Brachytyphle, 5, 127, 130
ferruginea, Leuctria, 8, 20, 76, 84
fistula, Acroneuria, 134
Fitchipimia, 2, 9, 11, 29
flotina, Nemoura, 13, 16
foehot, Allochropa, 50
francus, Isoperla, 198
fresia, Zelotina, 89
aqua, Paraquatana, 6, 45, 69
amia, Isoptera, 190, 198, 200
aphid, Heteroptera, 196, 199
Odonata, 104
orthoptera, Chloroptera, 166

Pacific, Acantharia, 4, 7, 14, 16
Pacific, Brachyptera, 16, 19, 120
fuloida, Allelopora, 5, 179
PanaCAM, 11, 15, 24, 46, 66
Panamericana, 4, 6, 154
Paradreina, 73, 74, 83
Paragaloptera, 2
parvola, Tanaotrypidae, 122, 123
pechmanni, Allelopora, 55, 66
Pelagoptera, 132, 135
Pelagopteridae, 2, 3, 132
pellet, Katheryla, 4
perfecta, Nemoura, 107
Pero, 7, 8, 12, 29
Perleata, 20, 139
Perleidae, 2, 3, 5, 8, 133, 216
Perlibas, 135
Perlibella, 143, 161
Perleidae, 12
Peltalinidae, 2, 3, 5, 8, 108
Peltalinus, 186, 230
perlizon, Aeronemura, 157
Phagophora, 140
picta, Nemoura, 31
picterii, Pteronemura, 13, 225, 226
phala, Perleia, 6, 8, 9, 11, 15, 161, 186
phalera, Stenoptera, 7
phalara, Nemoura, 104
picta, Pteronemura, 4, 5, 10, 11, 236
Protoconemura, 7
Pterygotidae, 2
Pterygotinae, 2, 3, 8, 231
Pteronemura, 3, 4, 8, 20, 231
Pteronemura, 5, 8, 9, 16, 56, 60
quadra, Allelopora, 184
recta, Allelopora, 6, 16, 54, 57, 62
richardsoni, Isopera, 190, 204, 207
riceti, Allelopora, 64
rios, Brachyptera, 9, 10, 11, 12, 13
russi, Brachyptera, 146, 151
sabauda, Nemoura, 106
saracis, Aeronemura, 158

sublata, Chlaunus, 19
zara, Palaemonidae, 85
acte, Pterygotidae, 3, 233
setiglina, Pterygidae, 2, 9, 11, 29
albina, Nemoura, 78
albina, Allelopora, 6
algana, Isopera, 200
alpina, Nemoura, 105
alpina, Isopera, 200
alpina, Nemoura, 6
ally, Allelopora, 6
ala, Isopera, 12
amphicrinus, Isopera, 227
angula, Capnia, 44
anilicola, Aphanemura, 7

Tanaotrypidae, 2, 3, 5, 114
Tanaotrypidae, 2, 5
Tanaotrypidae, 3, 8, 10, 11, 20, 114
Takagipelopia, 40
tenella, Lepidura, 79, 82
tenelle, Lepidura, 8, 40
ter, Chlaunus, 106, 167
thamnora, Aeronemura, 13
transmarina, Isopera, 249
triste, Lepidura, 82
tripunctata, Chloroptera, 13
trispinosa, Nemoura, 307
tramata, Lepidura, 94
truncata, Nemoura, 109
upola, Tanaotrypidae, 113
Uplosa, 29

vallicolaria, Nemoura, 5, 7, 11, 110
varia, Lepidura, 64
varia, Lepidura, 227
varia, Nemoura, 99, 102, 110
varia, Capnia, 6, 19, 65
variorum, Allelopora, 67
variorum, Allelopora, 63
vivax, Isopera, 104
vivax, Allelopora, 183
vivax, Zeletoptera, 88
washingtoni, Nemoura, 110, 112
wagyi, Allelopora, 66, 67
wai, Nemoura, 116

zoanthes, Aeronemura, 141, 159
Zeletoptera, 74, 85
zebra, Allelopora, 66, 67
zela, Allelopora, 16, 67