NC Division of Water Quality - Methodology and Calculations for determining Nutrient Reductions associated with Riparian Buffer Establishment

Nitrogen Water Quality Benefits for Riparian Buffer Restoration

- 1). Benefit of Land Use Change
- 2). Benefit of Nutrient Removal from Nonpoint Source Runoff
- 3). Benefit of Nutrient Removal from Periodic Overbank Flood

Nitrogen General Assumptions:

Life expectancy of Riparian Buffer is assumed to be 30 years. (Life expectancy for stormwater detention pond is 20 - 30 yrs)
Restored Riparian Buffer is assumed to be natural.

Effectiveness of	Annual Effectiveness	Annual Effectiveness	Effectiveness in 30 yrs
Riparian Buffer	(kg/ha/yr)	(lb/ac/yr)	(lb/ac)
Benefit (1)	11.08	9.89	296.6
Benefit (2)	70.09	62.54	1876.1
Benefit (3)	3.75	3.35	100.4
Total	84.92	75.77	2273.0

Nitrogen Benefit Descriptions and Assumptions:

1) Benefit is due to change land use.

Assume existing land use export coefficient is a composite export coefficient with a value of 12.98 kg/ha (agriculture and urban). Wetland export coefficient is 1.9 kg/ha.

The annual nutrient output is decreased by 11.08 kg/ha annually by land use changing.

2) Benefit is due to nitrogen removal from nonpoint source runoff.

Nutrient contribution/buffer treatment area ratio is approximately 10.8 (based on studies examined by Gannon 1997).

In flow loading is calculated by nutrient contribution area x composite export coefficient.

In flow loading is 10.8 ha x 12.98 kg/ha = 140 kg/ha/yr.

Nutrient removal due to this benefit is calculated by in flow loading x removal efficiency

*Gannon, Richard. 1997. Effectiveness of Wetland Riparian Areas for Treatment of Agricultural Pollution Sources: A Literature Review. (Draft) The nitrogen removal efficiency is 50% based on various literature.

* Kadlec, Robert H. and Robert L. Knight. 1996. Treatment Wetland

- * Moshiri, Gerald A.1993. Constructed Wetlands for Water Quality Improvement. Lewis Publi.
- * Mitsch, William J. 1994. Global Wetlands: Old world and New. Elsevier
- 3) Benefit is due to nitrogen removal from overbank flooding

Nitrogen concentration is assumed to be 2.5 mg/L. Assume overboard is 1 ft. Flood frequency is assumed to be once every year. Nutrient removal due to this benefit is estimated by in flow concentration x area (1 ha) x overboard height x removal efficiency.

Formula for Calculating Nitrogen Offset Reductions on Riparian Buffer Restoration Sites:

Size (Acres) * 75.77(Ibs/Acre/Year) * 30 Years = Total Pounds of Nitorgen Removed from Riparian Buffer Project

Phosphorus Water Quality Benefits for Riparian Buffer Restoration

- 1). Benefit of Land Use Change
- 2). Benefit of Nutrient Removal from Nonpoint Source Runoff

Phosphorus General Assumptions:

1. Life expectancy of Riparian Buffer is assumed to be 30 years.

Effectiveness of Riparian Buffer	Annual Effectiveness (lb/ac/yr)	Effectiveness in 30 yrs (Ib/ac)
Benefit (1)	1.73	51.90
Benefit (2)	3.15	94.50
Total	4.88	146.40

Phosphorus Benefit Descriptions and Assumptions:

1) Benefit is due to change land use^{1, 2}

Export coefficient for agricultural land is 2.15 (lb/ac/yr).

Export coefficient for riparian buffer is 0.42 (lb/ac/yr).

The annual total phosphorus (TP) output is decreased by 1.73 lb/ac annually by land use changing.

 Benefit is due to TP removal from nonpoint source runoff ^{3, 4} Mass load for TP reductions for buffer is estimated to be 3.15 lb/ac/yr.

Assumptions:

Riparian buffer restorations only occur on agricultural lands.

Width of restored riparian buffer is 50 feet, and with mixture of grass and forest.

References:

¹ NC Division of Water Quality memo 'Export Coefficients Revisited' (1996)

² Comparison of Selected TP Loading Coefficients (Jim Blose, 2001)

³ Cost-Effectiveness Study of Selected Agricultural Best Management Practices in the Neuse and Tar-Pamlico River Basins (Todd Kennedy, 2001)

⁴ A Review of the Scientific Literature on Riparian Buffer Width, Extent and Vegetation. (Seth Wenger, 1999)

Formula for Calculating Phosphorus Offset Reductions on Riparian Buffer Restoration Sites:

Size (Acres) * 4.88(Ibs/Acre/Year) * 30 Years = Total Pounds of Total Phosphorus Removed from Riparian Buffer Project