7. BMP Inspection and Maintenance

7.1. The Importance of Maintaining BMPs

Most of this manual is devoted to proper design of stormwater BMPs, a task that requires a significant investment of effort and expense. Once they are constructed, BMPs are crucial in protecting water quality from the impacts of development projects. If designed correctly, BMPs can also be an aesthetic asset to the development. However, no matter how well they are designed and constructed, BMPs will not function correctly nor look attractive unless they are properly maintained. Most maintenance problems with BMPs are less costly to correct when they are caught early – as the old adage goes, “an ounce of prevention is worth a pound of cure.”

Regular inspection and maintenance is an ongoing legal requirement after the BMP is constructed – inspections must be completed at appropriate times throughout the year and inspection records must be available upon request. An appropriate professional should conduct BMP inspections. NC State University offers a BMP Inspection and Maintenance Certification Program; more information is available at their web site: http://www.bae.ncsu.edu/people/faculty/hunt/.

This chapter will discuss the logistical issues associated with BMP inspection and maintenance as well as provide an overview of some of the tasks associated with maintaining BMPs. Each of the BMP chapters in this manual includes a table explaining the specific inspection and maintenance activities required to ensure the proper functioning of the BMP.

7.2. Legal and Financial Issues

7.2.1. Access and Maintenance Easements

BMPs must have access and maintenance easements to provide the legal authority for inspections, maintenance personnel and equipment. The location and configuration of easements must be established during the design phase and should be clearly shown on the design drawings. The entire footprint of the BMP system must be included in the access and maintenance easement, plus an additional ten or more feet around the BMP to provide enough room to complete maintenance tasks. This BMP system includes the side slopes, forebay, riser structure, BMP device, and basin outlet, dam embankment, outlet, and emergency spillway.

Access and maintenance easements must be designed and built with a concept of the maintenance tasks that may be needed. If heavy equipment will be necessary to perform maintenance tasks (such as for devices with a forebay that will require sediment clean-out), typically a roadway with a minimum width of ten feet to the BMP must be available. Easements are usually owned and maintained by the owner of the BMP facility, whether an individual, a corporation, or a government. Easements for BMPs that are not publicly maintained should include provisions to permit public inspection.
and maintenance. An example of an Access and Maintenance Easement Agreement is provided in Appendix C.

7.2.2. Inspection and Maintenance Agreements

BMP facilities are typically built, owned and maintained by non-governmental entities. To insure proper long-term maintenance, a signed and notarized Inspection and Maintenance Agreement must accompany the design plans for any BMP. An Inspection and Maintenance Agreement will include the following:
- The frequency of inspections that are needed (based on the type of BMP proposed).
- The components of the BMP that need to be inspected.
- The types of problems that may be observed with each BMP component.
- The appropriate remedy for any problems that may occur.

Sample Inspection and Maintenance Agreement provisions are included at the end of each BMP chapter. The most effective Inspection and Maintenance Agreements are site-specific for the particular BMP components that are used on the site as well as any conditions that are unique to the site (for example, the presence of steep slopes that should be inspected for soil stability).

Table 7-1

Required Inspection Frequency for BMPs

<table>
<thead>
<tr>
<th>Inspection Frequency</th>
<th>BMPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly and within 24 hours after every water quality storm (greater than 1.5 inches in Coastal Counties and greater than 1.0 inch elsewhere)</td>
<td>Stormwater wetlands</td>
</tr>
<tr>
<td></td>
<td>Wet detention basins</td>
</tr>
<tr>
<td></td>
<td>Bioretention cells</td>
</tr>
<tr>
<td>Quarterly and within 24 hours after every water quality storm (greater than 1.5 inches in Coastal Counties and greater than 1.0 inch elsewhere)</td>
<td>Level spreaders</td>
</tr>
<tr>
<td></td>
<td>Infiltration devices</td>
</tr>
<tr>
<td></td>
<td>Sand filters</td>
</tr>
<tr>
<td></td>
<td>Extended dry detention basins</td>
</tr>
<tr>
<td></td>
<td>Permeable pavement</td>
</tr>
<tr>
<td></td>
<td>Rooftop runoff management</td>
</tr>
<tr>
<td></td>
<td>Filter strips *</td>
</tr>
<tr>
<td></td>
<td>Grassed swales *</td>
</tr>
<tr>
<td></td>
<td>Restored riparian buffers *</td>
</tr>
</tbody>
</table>

* Although these devices require quarterly inspection, mowing will usually be done at more frequent intervals during the growing season.

To summarize Table 7-1, devices that include vegetation in a highly engineered system require inspection monthly and after large storm events to catch any problems with flow conveyance or vegetative health before they become serious. All other BMPs should be inspected quarterly and after large storm events.
The signed and notarized Inspection and Maintenance Agreement should be filed with the appropriate Register of Deeds. The responsible party should keep a copy of the Inspection and Maintenance Agreement along with a current set of BMP plans at a known set location.

7.2.3. Inspection and Maintenance Record-Keeping

All inspection and maintenance activities should be recorded. One easy way to do this is to create an Inspection and Maintenance checklist based on the Inspection and Maintenance Agreement. The checklist, at a minimum, should include the following:

- Date of inspection.
- Condition of each of the BMP elements.
- Any maintenance work that was performed (as well as who performed the work).
- Any issues noted for future maintenance (sediment accumulating, vegetation needing pruning or replacement, etc.).

Each project should have a maintenance record. Records should be kept in a log in a known set location. Any deficient BMP elements noted in the inspection should be corrected, repaired or replaced immediately. These deficiencies can affect the integrity of structures, safety of the public, and the removal efficiency of the BMP.

Major repairs or maintenance work should include the same level of inspection and documentation as original installations. Inspection checklists and record logs should be kept in a known set location.

7.2.4. Maintenance Responsibilities

As stated in the section above, maintenance is usually the responsibility of the owner, which in most cases is a private individual, corporation, or homeowners association. Simple maintenance items such as minor landscaping tasks, litter removal, and mowing can be done by the owner, or can be incorporated in conventional grounds maintenance contracts for the overall property.

Although a nonprofessional can undertake many maintenance tasks effectively, a professional should be consulted periodically to ensure that all needs of the BMP facility are met. Some elements that can need professional judgment include structures, outlets, and embankments/dams by a professional engineer, as well as plant system health by an appropriate plant professional. Some developing problems may not be obvious to the untrained eye.

In addition, it is advisable to have professionals do the more difficult or specialized work. Filling eroded areas and soil-disturbing activities, such as re-sodding or replanting vegetation, are tasks that are best assigned to a professional landscaping firm. If the work is not done properly the first time, not only will the effort have been wasted, but also the facility may have been damaged by excessive erosion. Grading and sediment removal are best left to professional contractors. Appropriate professionals
(e.g. BMP maintenance specialists, professional engineers, aquatic plant specialists, etc.) should be hired for specialized tasks such as inspections of vegetation and structures.

7.2.5. **Providing for Maintenance Expenses**

The expenses associated with maintaining a BMP are highly dependent on the BMP type and design. However, the most important factor that determines the cost of BMP maintenance is the condition of the drainage area upstream of the BMP. If a drainage area conveys a high load of sediment and other pollutants to a BMP, the cost of maintaining the BMP will increase dramatically. Preventing pollution in the drainage area as much as possible will reduce the cost of BMP maintenance.

A funding mechanism should be created and regularly funded with an amount that provides enough money to pay for the maintenance expenses over the lifetime of the BMP. One option is to establish an escrow account, which can be spent solely for sediment removal, structural, biological or vegetative replacement, major repair, or reconstruction of the BMPs. In the case of a residential subdivision, the escrow account could be funded by a combination of an initial payment by the developer and regular contributions by the homeowners’ association. For an example of how to legally structure such an account, please see the Phase II model stormwater ordinance at the Division of Water Quality’s web site:

http://h2o.enr.state.nc.us/su/phase_2_mod_ord.htm.

Routine maintenance costs are relatively easy to estimate, and include the expenses associated with the following activities:
- Conducting BMP inspections at the intervals shown in Table 7-1.
- Maintaining site safety, including any perimeter fences and other access inhibitors (trash racks or pipe grates).
- Removing trash.
- Removing sediment that has accumulated in any components of the BMP.
- For infiltration-type systems, maintaining the filtering media and cleaning or replacing it when necessary.
- Restoring soils to assure performance.
- Pruning woody vegetation pruning.
- Replacing dead vegetation.
- Stabilizing any eroding side slopes.
- Repairing damaged or eroded outlet devices and conveyance systems.
- Repairing embankments, dams, and channels due to erosion or rodents.

Emergency maintenance costs are more difficult to estimate. They depend on the frequency of occurrence and the nature of the problem, which could vary from storm erosion repairs to complete failure of a structure.
7.3. **Summary of BMP Maintenance Tasks**

7.3.1. **Emergency Maintenance**

Maintenance after floods and other emergencies requires immediate mobilization. It can include replanting and repairs to structures. Living systems are likely to need at least minor repairs after emergencies. Following an emergency such as a flood, standing water may pose health risks because of mosquitoes. Mosquito control should be considered if this becomes a problem.

For all installations obstructions and debris deposited during storm events should be removed immediately. Exceptions include debris that provides habitat and does not damage vegetation or divert currents to, from, or in the BMP. In fact, because of the high quality habitat that can be found in woody debris, careful re-positioning rather than complete removal may be desirable. There may be instances where debris is even added. Such locations should be noted so that this debris is not accidentally removed. Educating adjacent property owners about the habitat benefits of debris and vegetation can decrease requests for removal.

7.3.2. **Debris and Litter Removal**

Regularly removing debris and litter is well worth the effort and can be expected to help in the following ways:

− Reduce the chance of clogging in outlet structures, trash racks, and other facility components.
− Prevent damage to vegetated areas.
− Reduce mosquito breeding habitats.
− Maintain facility appearance.
− Reduce conditions for excessive surface algae.
− Reduce the likelihood of stagnant pool formation.

Special attention should be given to removing floating debris, which can clog the outlet device or riser.

7.3.3. **Sediment Removal and Disposal**

Sediment gradually accumulates in many BMPs. For most BMPs, accumulated sediment must eventually be removed. However, removal intervals vary so dramatically among facilities that no “rules of thumb” are applicable. The specific setting of a BMP is important in determining how often sediment must be removed. Important factors that determine rates of sedimentation include the current and future land uses upstream and the presence of other sediment-trapping BMPs upstream.

Before installing a BMP, designers should estimate the lifetime sediment accumulation that the BMP will have to handle. Several time periods may be considered, representing expected changes in land use in the watershed. To estimate sediment accumulation, first,
an estimate of the long term sediment load from upstream is needed, then an estimate of BMP sediment removal efficiency (see Sections 3.0 and 4.0). The analysis of watershed sediment loss and BMP efficiency can be expedited by using a sediment delivery computer model.

The frequency of sediment removal is then based on the sediment accumulation rate described above versus the amount of sediment storage volume that is inherently provided in the BMP without affecting treatment efficiency or stormwater storage volume. Again, the frequency of sediment removal is BMP and site specific, and could be as frequent as every couple years, or as long as 15-25 years. The volume of sediment needing to be removed and disposed of per dredging cycle is the volume calculated above multiplied by any density or dewatering factors, as appropriate.

Wet sediment is more difficult and expensive to remove than dry sediment. Ideally, the entire facility can be drained and allowed to dry sufficiently so that heavy equipment can operate on the bottom. Provisions for draining permanent pools should be incorporated in the design of water impoundments where feasible. Also, low flow channels and outlets should be included in all BMPs to bypass stormwater flow during maintenance. However, in many impoundments periodic rainfall keeps the sediment soft, preventing access by heavy equipment. In these cases, sediment may have to be removed from the shoreline by using backhoes, grade-alls, or similar equipment.

Proper disposal of the sediment removed from a BMP is required. It is least expensive if an onsite area or a nearby site has been set aside for the sediment. This area must be located outside of the floodplain. If such a disposal area is not set aside, transportation and landfill tipping fees can greatly increase the cost of the BMP, especially where disposal of wet sediment is not allowed in the local landfill. Often, the material must be dewatered before disposal, which again adds more cost and requires land area where wet material can be temporarily placed to dry.

Sediment removal is usually the largest single cost of maintaining a BMP facility, so the necessary funds should be allocated in advance. Since sediment removal costs are so site specific and dependent on disposal plans, it is difficult to provide good estimates. Actual estimates should be obtained during the design phase of the BMP from sediment removal contractors based on the planned situation. The estimates should include: mobilization expenses, sediment removal expenses, material transport expenses (if applicable), and disposal expenses (if applicable).

7.3.4. Stability and Erosion Control

The best way to promote soil stability and erosion control is to maintain a healthy ground cover in and around BMPs. Areas of bare soil quickly erode, potentially clogging the facility with soil and threatening its integrity. Therefore, bare areas must be re-stabilized as quickly as possible. Newly seeded areas should be protected with mulch and/or an erosion mat that is securely staked. For BMP’s that rely on filtration, such as bioretention facilities, it is critical that adjacent soils do not contaminate the selected media during or after construction. If the site is not permanently stabilized with
vegetation when the filter media is installed, the best design practice is to specify sod or other robust erosion control practices for all slopes in and immediately around the BMP.

Erosion is quite common in or around the inlet and outlet of the BMP facility and should be repaired as soon as possible. Erosion control activities should also extend to areas immediately downstream of the BMP.

The roots of woody growth such as young trees and bushes in embankments are destabilizing. Consistent mowing of the embankment controls stray seedlings that take root. Woody growth, such as trees and bushes, further away from the embankment should not pose a threat to the stability of the embankment and can provide important runoff filtering benefits. Trees and bushes should be planted outside maintenance and access areas.

Animal burrows also diminish the structural integrity of an embankment. Muskrats, in particular, burrow tunnels up to 6 inches in diameter. Efforts should be made to control animal burrowing. Burrows should be filled as soon as possible.

7.3.5. Maintenance of Mechanical Components

Each type of BMP may have mechanical components that need periodic attention. For example, valves, sluice gates, fence gates, locks, and access hatches should be functional at all times. The routine inspection, exercising, and preventive maintenance on such mechanical components should be included on a routine inspection/maintenance checklist.

7.3.6. Vegetation Maintenance

Vegetation maintenance is an important component of any maintenance program. The grasses and plants in all BMPs, but particularly in vegetative BMPs such as filter strips, grass swales, restored riparian buffers, bioretention facilities, and stormwater wetlands, require regular attention. The development of distressed vegetation, bare spots, and rills indicates that a BMP is not functioning properly. Problems can have many sources, such as:

- Excessive sediment accumulation, which clogs the soil pores and produces anaerobic conditions.
- Nutrient deficiencies or imbalances, including pH and potassium.
- Water-logged conditions caused by reduced soil drainage or high seasonal water table.
- Invasive weeds.

The soil in vegetated areas should be tested every other year and adjustments made to sustain vigorous plant growth with deep, well-developed root systems. Aeration of soils is recommended for filter strips and grassed swales where sediment accumulation rates are high. Ideally, vegetative covers should be mown infrequently, allowing them to develop thick stands of tall grass and other plant vegetation. Also, trampling from pedestrian traffic should be prevented.
Areas immediately up- and downstream of some BMP plant installations often experience increased erosion. Although properly designed, located, and transitioned installations experience this effect to only a minor degree, all erosion should be repaired immediately to prevent spreading. Live stakes, live fascines, and other soil bioengineering techniques, possibly in combination with 3-D geotextiles, can be applied to erosion in natural drainage ways with minor grading.

Table 7-2 below describes some specific vegetation maintenance activities at various types of BMPs. It is important to note that DWQ has some specific requirements related to some management practices, such as those performed within buffers, that must be followed. In addition, any vegetation that poses threats to human safety, buildings, fences, and other important structures should be removed. Finally, vegetation maintenance activities naturally change as the project ages from construction, when the vegetation is still getting established, to a mature state.

7.3.7. Maintenance of the Aquatic Environment

An important yet often overlooked aspect of non-routine maintenance of BMPs that maintain a permanent pool of water is the need to regularly monitor and manage conditions to promote a healthy aquatic environment. An indicator of excess nutrients (a common problem) is excessive algae growth in the permanent pool of water. In most cases, these problems can be addressed by encouraging the growth of more desirable aquatic and semi-aquatic vegetation in and around the permanent pool. The plants selected should be tolerant of varying water levels and have a high capacity to incorporate the specific nutrients associated with the problem. If algae proliferation is not addressed, algae-laden water will be washed downstream during rain events and may contribute to nuisance odors and stresses in downstream aquatic habitat.

7.3.8. Insect Control

Ponded water can function as breeding grounds for mosquitoes and other insects. Mosquito problems can be minimized through proper design and maintenance. The best control technique for BMPs that maintain a permanent pool of water is to ensure that it does not develop stagnant areas. BMPs with permanent pools should include a source of steady dry-weather flow. Promptly removing floatable debris helps eliminate areas where water can collect and then stagnate. In larger basins, fish, which feed on mosquito larvae, can be stocked. Additionally, splash aerators can be employed to prevent stagnant water, however, this requires electricity at the site, increases maintenance costs, and must be properly designed so as to not decrease the settling efficiency of the BMP.
Table 7-2
Vegetation Maintenance for BMPs

<table>
<thead>
<tr>
<th>Maintenance Activity</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement of Dead Plants</td>
<td>All dead plants should be removed and disposed of. Before vegetation that has failed on a large scale is replaced, the cause of such failure should be investigated. If the cause can be determined, it should be eliminated before any reinstallation.</td>
</tr>
<tr>
<td>Fertilization</td>
<td>The objective of fertilizing at a BMP is to secure optimum vegetative growth rather than yield (often the objective with other activities such as farming). Infertile soils should be amended before installation and then fertilized periodically thereafter. Fertilizer can be composed of minerals, organic matter (manure), compost, green crops, or other materials.</td>
</tr>
<tr>
<td>Irrigation/Watering</td>
<td>Watering of the vegetation can often be required during the germination and establishment of the vegetation, as well as occasionally to preserve the vegetation through drought conditions. This can typically be accomplished by pumping water retained in the BMP or from the stream, installing a permanent irrigation system or frost-proof hose bib, or using portable water trucks.</td>
</tr>
<tr>
<td>Mulching</td>
<td>Mulching should be used to maintain soil temperature and moisture, as well as site aesthetics. A half-inch layer is typically adequate. Ideally, mulch should be removed before winter to prevent an infestation of rodents.</td>
</tr>
<tr>
<td>Weeding</td>
<td>Weeding is often necessary in the first growing season, particularly if herbaceous grasses are out-competing the young woody vegetation growth. The need for weeding may be largely eliminated by minimizing the amount of seed used for temporary erosion control. Weeding may also be required if, over time, invasive or undesirable species are entering the site and out-competing plants that are specifically involved in the treatment of the stormwater.</td>
</tr>
<tr>
<td>Cultivating/Hoeing</td>
<td>Hoeing is often required to loosen overly compacted soil and eliminate weeds that compete with the desirable vegetation.</td>
</tr>
<tr>
<td>Pruning</td>
<td>Pruning is used to trim to shape and remove dead wood. It can force single-shoot shrubs and trees to assume a bushier configuration.</td>
</tr>
<tr>
<td>Thinning</td>
<td>Thinning dense brush may be necessary for particular species to thrive, increase the vigor of individual specimens, to reduce flow obstructions, and to increase the ability of maintenance staff to access the entire BMP. Tall maturing trees, for the most part, have no place in a BMP (except for buffers) and should be removed as soon as possible.</td>
</tr>
<tr>
<td>Staking</td>
<td>Saplings of tall trees planted in or near the BMP may require staking. Care should be taken not to damage the tree’s roots with stakes. Stakes should be kept in place for 6 to 18 months, and the condition of stakes and ties should be checked periodically.</td>
</tr>
<tr>
<td>Wound Dressing</td>
<td>The wounds on any trees found broken off or damaged should be dressed following recommendations from a trained arborist.</td>
</tr>
</tbody>
</table>
Table 7-2, continued
Vegetation Maintenance for BMPs

<table>
<thead>
<tr>
<th>Maintenance Activity</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease Control</td>
<td>Based on monitoring observations, either insecticides or (preferably) organic means of pest and fungal control should be used.</td>
</tr>
<tr>
<td>Protection from Animals and Human Foot Traffic</td>
<td>Fencing and signage should be installed to warn pedestrians and to prevent damage due to trampling. These measures are often most necessary during the early phases of installation but may be required at any time. Measures for controlling human foot traffic include signs, fencing, floating log barriers, impenetrable bushes, ditches, paths, and piled brush. Wildlife damage is caused by the animals browsing, grazing, and rubbing the plants. The use of chemical wildlife repellents should be avoided. Fences and meshes can be used to deter entry to the BMP. Tree tubes can be used to prevent damage to individual specimens.</td>
</tr>
<tr>
<td>Mowing</td>
<td>Mowing of perennial herbaceous grasses and wildflowers, especially once seed heads have set, promotes redistribution of seed for this self-sustaining system. Mowing should be carefully controlled, however, especially when performed for aesthetics. As adjacent property owners and customers in general learn more about BMPs, their vision of what is aesthetically pleasing can change. Grasses, in healthy herbaceous stands, should never be mown more than once per year.</td>
</tr>
</tbody>
</table>

7.3.9. Maintenance of Other Project Features

All other devices and features associated with the BMP should be monitored and maintained appropriately. These additional items could affect the safety or aesthetics of the facility, which can be as important if not more important than the operational efficiency of the facility. Such items could include:
- Fences
- Access roads
- Trails
- Lighting
- Signage (e.g. no trespassing, emergency notification contact information, etc.)
- Nest boxes
- Platforms
- Watering systems
September 28, 2007 Changes: