August 31, 2004

Mr. Don Freeman
Executive Director
Cape Fear River Assembly
P.O. Box 1089
Fayetteville, NC 28302

RE: Proposal for Developing New Cape Fear River Basin Hydrologic Model

Dear Mr. Freeman,

The purpose of this letter is to submit the enclosed proposal for services to develop a new Cape Fear River Basin Hydrologic Model with updates and enhancements. The project team will include Moffatt & Nichol and Hydrologics Inc. In accordance with the scope of work identified in the Request for Proposals, the model will include the hydrologic data for the period through 2003. Hydrologics Inc. will develop an OASIS model for the Cape Fear River Basin. The new model will be developed to include the drought management planning tools and other features desired by the model planning committee.

If you have any questions about the proposed services, please do not hesitate to contact me or Johnny Martin at (919) 781-4626.

Sincerely,

Peter Elkan, P.E.
Project Engineer

Attachments
Scope of Services
A – Hydrologics Services to Meet General Model Requirements
B – Letter Proposal Describing OASIS Model and Hydrologics Expertise
C - Breakdown of Cost for Moffatt and Nichol Services
D – Agreement Form of Proposal
Scope of Services

Moffatt and Nichol (M&N) will coordinate with the project partners, attend project meetings, perform data collection, assist in model review and maintain overall responsibility to deliver the project in accordance with schedule and cost. Hydrologics staff will perform the OASIS model development.

The proposed services that will be provided by M&N and Hydrologics staff are as follows:

TASK 1 – Meetings & Project Coordination

Representatives from both M&N and Hydrologics staff will participate in a total of 4 meetings with the Cape Fear River Assembly (CFRA) technical committee. M&N will assist in facilitation of meetings.

Kickoff Meeting. The purpose of this meeting will be to present the project methodology to the stakeholders for review and comment.

Interim Meetings. Two (2) interim project meetings with stakeholders. The purpose of these meetings will be to present model update progress to the project stakeholders and receive comments/guidance from the stakeholders.

Final Meeting. The purpose of this meeting will be to present the final results from the study and complete a technology transfer for the project.

Project Management & Coordination. M&N will interact with Cape Fear River Assembly Technical Review Committee to be chaired by the Division of Water Resources (DWR) to facilitate the project management and coordination of meetings. M&N will be responsible for coordination with subconsultants and transfer of interim and final deliverables.

TASK 2 – Data Collection, Formatting, Analysis and Creation of Model Time Series

M&N will perform data collection and analysis as required for model development and upgrades.

Data Collection/Formatting. As part of this task, M&N will collect and format the following datasets for the time period of 1999-2003:

- Twenty-eight (28) USGS Daily Gage Records
- Twenty-eight (28) NOAA Precipitation & Evaporation Daily Gage Records
- Agricultural Yearly Statistics and Census Data for Seventeen (17) Counties
- Discussions with Agricultural Extension Agents to Verify Recent Trends, % of Surface Water Versus Groundwater Irrigation and Livestock Water Use, % of Acreage in County, etc.
- NCDEH Database Water Withdrawals (Municipal)
Data Analysis. The agricultural datasets will then be used to estimate agricultural water demands for years 1999-2003. The methodology followed will be identical to that used for the previous model (comparing crop acreages and crop water use curves to precipitation on a weekly basis with irrigation supplying the shortfall – for only the crops which are normally irrigated). Dr. Ronald Sneed will be providing technical oversight and QA/QC of the final water demand curves.

Municipal/industrial withdrawals and discharges will also be computed as based on personal interview via phone calls, review of databases and census data.

Creation of Model Time Series. The finalized USGS river discharge gage records, NOAA precipitation/evaporation gage records, and agricultural/municipal/industrial withdrawals and discharges will be transferred into a DSS file format readable by OASIS.

TASK 3 – Model Update, Enhancements, Calibration and Verification

Hydrologics will develop an OASIS model for the Cape Fear River Basin in accordance with the project requirements. M&N will review model calibration and provide limited QA/QC. The project team will then assist in the setup of one scenario desired by the project stakeholders and update the existing model documentation and reporting to assist in model application by project stakeholders.

We have included a detailed breakdown that outlines the parameters of the project model requirements (corresponding to sections 1.2 through 1.5 and 2.2 through 2.5 of the RFP) identified in Attachment A –Hydrologics Services to Meet General Model Requirements. A letter proposal provides additional information regarding the experience of Hydrologics and application of OASIS in Attachment B – Letter Proposal from Hydrologics.

2.0 Deliverables

Documentation - The consultant will provide a users manual that describes the model input data assumptions, default modeling parameters, and the basics of how to use the model. Twenty printed copies and an electronic version will be provided to DWR for distribution to the stakeholders. The consultant will provide documentation and software to facilitate model updates.

Software & Training – A total of 23 copies of the software with calibrated model will be provided. A two day training seminar will be held for the project stakeholders.

3.0 Schedule

The project team will be available to commence work as soon as authorization is provided. Assuming a project start date of October 1, 2004 the total estimated project duration is 6 months, with project completion March 31, 2005.
4.0 Estimate of Cost

The proposed services will be provided at a fixed price based on the scope of work identified. The estimated fee for services to be provided by Hydrologics is $102,800. Estimated total fee for services by Moffatt and Nichol is estimated to be $68,000. The total project cost is $170,800.

Attachment A contains a breakdown of fees for work to be completed by Hydrologics in accordance with the project model requirements. Attachment C is a detailed breakdown of services to be completed by Moffatt & Nichol.

Any additional services beyond the base scope of work may be provided in accordance to the following hourly rates. Travel expenses and materials will be billed at cost with a ten percent markup for overhead costs.

October 2003
Fee Schedule

Moffatt & Nichol

Principal $136.00/hour
Senior Engineer $100.00/hour
Hydraulic Engineer $95.00/hour
Clerical $68.00/hour

HYDROLOGICS

Principal Engineer $115.00/hour
Senior Engineer $100.00/hour
Staff Engineer $90.00/hour

The following assumptions apply to scope and estimated fee estimate:

- Others will arrange for the facilities for setup of stakeholders meetings, presentations and workshop. Moffatt & Nichol will review and comment on meeting agendas and meeting minutes that will be prepared for by others.
- A total of 23 copies of the model software will be provided.
- The proposed schedule is six months assuming an October 1, 2004 notice-to-proceed.
1. The consultant must update the model input data files through calendar year 2003.

2. The model must be developed in an open, cooperative manner and generally accepted among the project partners. This includes, but is not limited to, four meetings with the project partners.

3. The consultant must demonstrate the validity of the model prior to the model's release.

4. The model must include the ability to input multiplication factors for any single withdrawal and discharge, or group of withdrawals and discharges.

5. The model must run daily time steps and be able to run periods of one year to the total period of record.

6. The modeled withdrawals and discharges must vary with every time step of the simulation.

7. The model must be developed in an open, cooperative manner and generally accepted among the project partners.

8. The consultant must provide software to DWR for four years, with a two-day response time in which to provide either a complete response, or a plan and schedule for providing a complete response that addresses DWR's concern. Funds will be set aside to provide for this consultant support, and those funds will be released to the consultant on an annual basis, based on the consultant's ability to provide timely customer support and thoroughly tested software updates.

9. The model must accurately keep separate accounts of water allocations.

10. The consultant must update the model to include current Corps' operating policies for Jordan Lake and EMC Jordan Lake allocations.

11. The consultant must update the model input data files through calendar year 2003.

12. The model must include the ability to input multiplication factors for any single withdrawal and discharge, or group of withdrawals and discharges.

13. The model must be developed in an open, cooperative manner and generally accepted among the project partners. This includes, but is not limited to, four meetings with the project partners.

14. The consultant must demonstrate the validity of the model prior to the model's release.

15. The model must include the ability to input multiplication factors for any single withdrawal and discharge, or group of withdrawals and discharges.

16. The model must run daily time steps and be able to run periods of one year to the total period of record.

17. The modeled withdrawals and discharges must vary with every time step of the simulation.

18. The model must incorporate varying seasonal water consumption from agricultural use based on climatic conditions during the growing season. The model must also incorporate varying annual water consumption from agriculture based on differing annual precipitation over the period of record.

19. The model must run daily time steps and be able to run periods of one year to the total period of record.

20. The consultant must provide software to DWR for four years, with a two-day response time in which to provide either a complete response, or a plan and schedule for providing a complete response that addresses DWR's concern. Funds will be set aside to provide for this consultant support, and those funds will be released to the consultant on an annual basis, based on the consultant's ability to provide timely customer support and thoroughly tested software updates.

21. The model must accurately keep separate accounts of water allocations.

22. The consultant must update the model to include current Corps' operating policies for Jordan Lake and EMC Jordan Lake allocations.

23. The consultant must update the model input data files through calendar year 2003.
1. The model must simulate the Corps' existing and potential future operating policies for Jordan Lake. | Partial | Minor OCL code required (part of initial setup) | Note 1 |

2. The model must allow user-defined reservoir operating policies that differ from existing conditions (e.g., different storage allocations, triggers, releases, flow targets, etc.), without resorting to the model developer to implement the changes. | Yes |

3. The model must track low flow targets downstream that vary by week and as a function of the water quality storage remaining in Jordan Lake, or some other trigger or set of triggers (e.g., lake inflow, lake level, time of year, etc.). | Yes |

4. The model must support drought management planning. Drought management planning includes, but is not limited to, the following:

 a) Safe yield estimates for river withdrawals, return period estimation for user-defined Jordan Lake water supply storage-
 yield values, tracking of user-defined minimum in-stream flow targets at individual nodes, flow targets that vary by time step, and water supply benefits at any node from conservation scenarios. DWR would prefer an automated methodology for estimating reservoir safe yield. | Partial | Development of post-processor required to automate the process | $5,000.00 |

 b) Conservation and drought response measures by water users need only be thresholds and associated percentage reductions in water use. | Partial | Minor OCL code required (part of initial setup) | Note 1 |

 c) Reduction strategies must have a variety of potential triggers or combinations of triggers, such as inflows (both current and previous n-day moving average), lake elevations, pool volumes, stream flows (in the case of run-of-river intakes), time of year, etc. | Yes | Note 1 |

 d) The model must be able to set a schedule of drought response triggers that vary week-to-week over the course of a year. | Yes |

 e) The model must be able to schedule a change in any downstream flow target as a triggered drought response. | Yes |

 f) The model must simulate both the Jordan Lake drought management plan and each system's Jordan Lake drought management plan. | Partial | Minor OCL code required (part of initial setup) | Note 1 |

 g) The model must be able to incorporate National Weather Service Extended Streamflow Prediction System (ESP) data for 'what-if' scenarios. | Yes |

 h) The model users must have the option of mathematically linking selected withdrawals and discharges for any system. This includes systems with multiple withdrawals and discharges, as well as systems that have discharges upstream of their withdrawal. | Yes | N/A |

 i) The model must provide flow duration curves and flow statistics of model output at user-selected nodes. Model users must be able to define the flow statistics (i.e., aQb, where the users can input a range of values for a and b). | Partial | Development of post-processor required to compute flow statistics | $5,000.00 |

 j) The model output must include the tables and graphs similar to the ones found in the Cape Fear River Basin Water Supply Plan (http://www.ncwater.org/Water_Supply_Planning/Cape_Fear_Basin/Water_Supply_Plan) to show impacts for the various model scenarios. | Yes | Table/plot setup required (25 graphs assumed) | $2,000.00 |

Note 1: Preparation of OCL code $4,400.00

Note 2: Importation of time series data $6,000.00

OASIS uses a third-party solver during execution. A license for this solver costs $1500. Hence, licensing fees have increased $20000 since the original submission. There are no restrictions on the license except that it not be used on more than one machine at a time. That is, a copy of the model could be handed around for local use if not all funding partners require a permanent copy of the software. To the extent that the total number of copies is reduced from 23, licensing fees can be reduced by $1500 per copy.
August 27, 2004

Mr. Peter J. Elkan, P.E.
Moffatt & Nichol
1616 East Millbrook Road, Suite 160
Raleigh, North Carolina 27609

RE: Cape Fear River Basin Model Update RFP

Dear Mr. Elkan:

HydroLogics, Inc., is pleased to respond to the referenced Request for Proposal, which you forwarded to us via email on August 17. Our costs for the proposed work are detailed in the attached Decision Matrix provided by Moffatt & Nichol for the preliminary submittal. The costs are unchanged from that earlier submittal except as pertains to the requirement to provide 18 more copies of the software than were called for in the draft model specifications. Please refer to Note 3 in the Matrix for further information about this change.

HydroLogics’ core business is assisting in the resolution of water allocation and flow management issues such as those in the Cape Fear River Basin. OASIS was designed from the ground up for use in this type of application and is already in use or under development for two other river basins in North Carolina. Consequently, other than the initial setup that would be needed for any application, there are only two relatively minor items in the specifications that will require any changes to the OASIS modeling platform. The first is the “clickable schematic” whereby the user could access both input and output data for any node by clicking on it in the schematic. This is a feature that does not currently exist in OASIS but is one that we had already considered and planned to add. The second change, which is not really a change to the modeling platform, is the development of a post-processor to automate the computation of flow statistics such as the 7Q10 from the flow output. Neither of these changes requires a significant amount of work.

Prompt and effective client service is a cornerstone of HydroLogics’ business. One of our internal measures of success is the extent to which we can empower our clients to use and extend the models we develop. This requires the development of long-term relationships with our clients. We have a long history in North Carolina that has included work for a number of municipalities, the Division of Water Resources, and federal agencies. We propose to build and support the Cape Fear model from our Raleigh office. I will be the principal-in-charge of the project. My reputation and HydroLogics’ ability to produce high-quality work are well known.

In short, we believe that HydroLogics has the people, process and programs to provide
excellent service to the users of the Cape Fear River Basin. We look forward to working with Moffatt & Nichol to improve the management of water resources in the Basin.

Sincerely yours,
HydroLogics, Inc.

Brian J. McCrodden, P.E.
Vice President

encl.
Breakdown of Cost for Moffatt and Nichol Services

ATTACHMENT "C"

PROJECT TASK COMPLETION CHECKLIST

Firm: Moffatt & Nichol, Engineers
Project: Cape Fear River Basin Hydrologic Model Update

<table>
<thead>
<tr>
<th>Task</th>
<th>Description</th>
<th>Billing Rates</th>
<th>Hrs.</th>
<th>Principal</th>
<th>Assistant</th>
<th>Hydraulics</th>
<th>GIS</th>
<th>Staff</th>
<th>Misc.</th>
<th>Total Hours</th>
<th>Total Dollars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 - Meetings and Coordination</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>8.00</td>
<td>8.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19.00</td>
<td>$1,832</td>
</tr>
<tr>
<td>Kickoff Meeting</td>
<td></td>
</tr>
<tr>
<td>Interim Project Meetings (2)</td>
<td></td>
</tr>
<tr>
<td>Model Co-Developer & Dr. Sneed</td>
<td></td>
</tr>
<tr>
<td>Task 1 Totals</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>32.00</td>
<td>40.00</td>
<td>-</td>
<td>3.00</td>
<td>-</td>
<td>76.00</td>
<td>$7,340</td>
</tr>
<tr>
<td>Task 2 - Data Collection, Formatting, Analysis, and Creation of Time Series Files</td>
<td></td>
</tr>
<tr>
<td>Collect & Format 20 USGS Daily Gage Records</td>
<td></td>
</tr>
<tr>
<td>Collect & Format 20+ NOAA Precipitation & Evaporation Daily Gage Records</td>
<td></td>
</tr>
<tr>
<td>Collect Ag Census & Statistic Data for 17 Counties</td>
<td></td>
</tr>
<tr>
<td>Verify % of Surface Water/Groundwater Irrigation, % of Acreage Irrigated, % of Acreage</td>
<td></td>
</tr>
<tr>
<td>in County, Recent Trends, and Other Info from Ag Extension Agents (Phone Calls)</td>
<td></td>
</tr>
<tr>
<td>Complete Ag Water Demand Calculations Based on Above Data and Livestock Stats</td>
<td></td>
</tr>
<tr>
<td>Breakdown of County Percentages, Filling in Gaps, and Ag Demand QA/QC</td>
<td></td>
</tr>
<tr>
<td>Collect NCDEH Database Withdrawals (Municipal)</td>
<td></td>
</tr>
<tr>
<td>Collect Industrial Withdrawals (Phone Calls)</td>
<td></td>
</tr>
<tr>
<td>Collect 2000 Census Data for Filling in Data Gaps, Interpolations and Extrapolations</td>
<td></td>
</tr>
<tr>
<td>Create Withdrawal Time Series</td>
<td></td>
</tr>
<tr>
<td>Collect NCDWQ NPDES Discharge Database</td>
<td></td>
</tr>
<tr>
<td>Create Discharge Withdrawal Time Series</td>
<td></td>
</tr>
<tr>
<td>OA/QC of Municipal/Industrial Withdrawals and Discharges</td>
<td></td>
</tr>
<tr>
<td>Task 2 Totals</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>20.00</td>
<td>$6,910</td>
</tr>
<tr>
<td>Task 3 - Model Creation, Calibration/Verification, and QA/QC</td>
<td></td>
</tr>
<tr>
<td>Input of Time Series Files Within MIKEBASIN/OASIS</td>
<td></td>
</tr>
<tr>
<td>Model Calibration/Verification</td>
<td></td>
</tr>
<tr>
<td>Model QA/QC</td>
<td></td>
</tr>
<tr>
<td>Scenario Setup</td>
<td></td>
</tr>
<tr>
<td>Model Documentation and Reporting</td>
<td></td>
</tr>
<tr>
<td>Two Day Training Session in Raleigh for Model Stakeholders</td>
<td></td>
</tr>
<tr>
<td>Create CU's of Models for Project Stakeholders</td>
<td></td>
</tr>
<tr>
<td>Task 3 Totals</td>
<td></td>
</tr>
<tr>
<td>Task 1 Totals</td>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
<td>32.00</td>
<td>40.00</td>
<td>-</td>
<td>3.00</td>
<td>-</td>
<td>76.00</td>
<td>$7,340</td>
</tr>
</tbody>
</table>

Miscellaneous Expenses

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsistence (2 days for 2 people @ $50 Day):</td>
<td>$200</td>
</tr>
<tr>
<td>Photographs, Telephone, Shipping, Supplies, & Misc. Expenses:</td>
<td>$250</td>
</tr>
<tr>
<td>Reproduction:</td>
<td>$500</td>
</tr>
<tr>
<td>Automobile & Travel (2 days @ $50/day):</td>
<td>$100</td>
</tr>
</tbody>
</table>

Total Miscellaneous Expenses: $1,050
Total Personnel Expenses: $66,952

Total M&N Expenses: $68,002
PART V

FORM OF PROPOSAL (PAGE 1 OF 2)

The undersigned bidder proposes and agrees if this proposal is accepted to contract with the Cape Fear River Assembly (CFRA) to furnish the services required herein, and to complete the scope of work as described in Parts I and II hereof. Services shall be accomplished in full and complete accordance with the specifications and contract documents to the full and entire satisfaction of CFRA and the Division of Water Resources, with a definite understanding that no money will be allowed for extra work except as may be set forth in written addendum to the contract, duly executed by all parties thereto.

The parties hereto agree that in consideration for performing all the requirements hereunder, CFRA shall pay the offeror per the attached cost proposal for the services as described herein, said sum to be full and complete compensation for the offeror's services required herein.

Pursuant to the provisions of G.S. 143-54, and under penalty of perjury, the signer of this proposal certifies that this proposal has not been arrived at collusively nor otherwise in violation of Federal or North Carolina antitrust laws.

Moffatt & Nichol
Name of Firm or Corporation submitting bid

Federal I.D Number 95-1951343

By: Jim Reid

Typed Name: Tim Reid

Title: Vice President

Address: 1616 East Millbrook Road, Suite 160 Raleigh, NC 27609

Phone: (919) 781-4626 Fax: (919) 781-4869

Witness: Maria Allen

Failure to execute the Form of Proposal shall render the proposal invalid. By execution and delivery of this document, the offeror agrees that any additional terms and conditions, whether submitted purposely or inadvertently, shall have no force or effect.

Please indicate if one of the following applies:

Minority Owned/Controlled ______ Women Owned/Controlled ______

Handicapped Owned/Controlled ______

Submitted this 31st, day of August, 2004