

Biological Fidelity Analysis of Stream Classes - UPDATE

Funded by: Environmental Defense Fund

Conducted by: RTI International

RTI International is a trade name of Research Triangle Institute.

www.rti.org

Project Objectives:

- To adopt a stream classification system that represents the distribution of aquatic biota in North Carolina
 - Compare fidelities of aquatic biota to different stream classification systems
 - Environmental Flow Specialists (EFS)
 - McManamay et al., 2011 (McManamay)
 - Adopt the most suitable classification system and/or modify a system to better reflect biological assemblages

- Determine catchments to include in analysis:
 - nimally altered water quality and flow condition
 - _____,094 NHD+ catchments
- 2. Link catchments with biological data:
 - benthos 1,094
 - fis 416
- 3. Induct preliminary statistical analysis of biological idelity to test analysis framework:
 - 106 catchments
 - individual species and community analyses

- 4. Compare stream classification systems:
 - EFS and McManamay

Stream Classification Systems

EFS:

- Developed for NC
- Developed using USGS gage data restricted to locations with "stable flow conditions" for 18+ years (185 gages)
- Based on 22 ecologically-relevant flow metrics
- 7 classes:

B - Small Stable Streams	A - Coastal Streams
F - Medium Stable Streams	E - Large Piedmont Rivers
C - Large Stable Streams	D - Small Flashy
	G - Small Seasonal

Stream Classification Systems

McManamay:

- Developed for Southeastern U.S. (8 states)
- Developed using USGS gage data restricted to catchments with minimally disturbed, "unregulated" stream condition (292 gages)
- Based on 9 ecologically-relevant flow metrics in hydrologic classification tree
- 8 classes (6 main classes):

IF - Intermediate Flashy	SBF1 - Stable High Baseflow 1
CSI - Coastal Swamp/Intermittent	SBF2 - Stable High Baseflow 2
BKR - Black River	PR1 - Perennial Runoff 1
UPR - Unpredictable Perennial	
Runoff	PR1 - Perennial Runoff 2

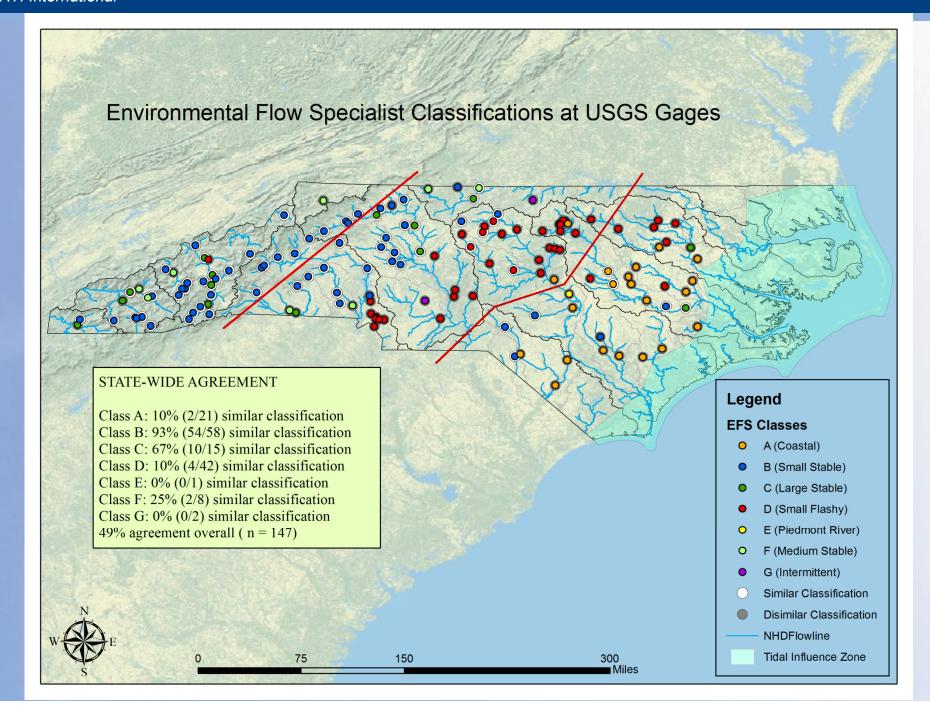
- 4. Compare stream classification systems:
 - EFS and McManamay
 - classifications determined using USGS gage data
 - 147 catchments (restricted to catchments with 15+ years of USGS records between 1960 – 2006)

Comparison of Stream Classification Systems

Classes	Α	В	С	D	E	F	G	McMan Sum
CSI	12	1	2	0	0	0	0	15
IF	0	0	0	18	0	0	1	19
PR1	3	2	0	3	0	0	1	9
PR2	5	12	0	18	1	1	0	37
SBF1	0	10	1	1	0	2	0	14
SBF2	1	33	12	2	0	5	0	53
EFS Sum	21	58	15	42	1	8	2	147

- Kappa statistic = -0.145
- <u>Conclusion</u>: classifications are dissimilar enough that biological fidelity analyses should be conducted on both systems

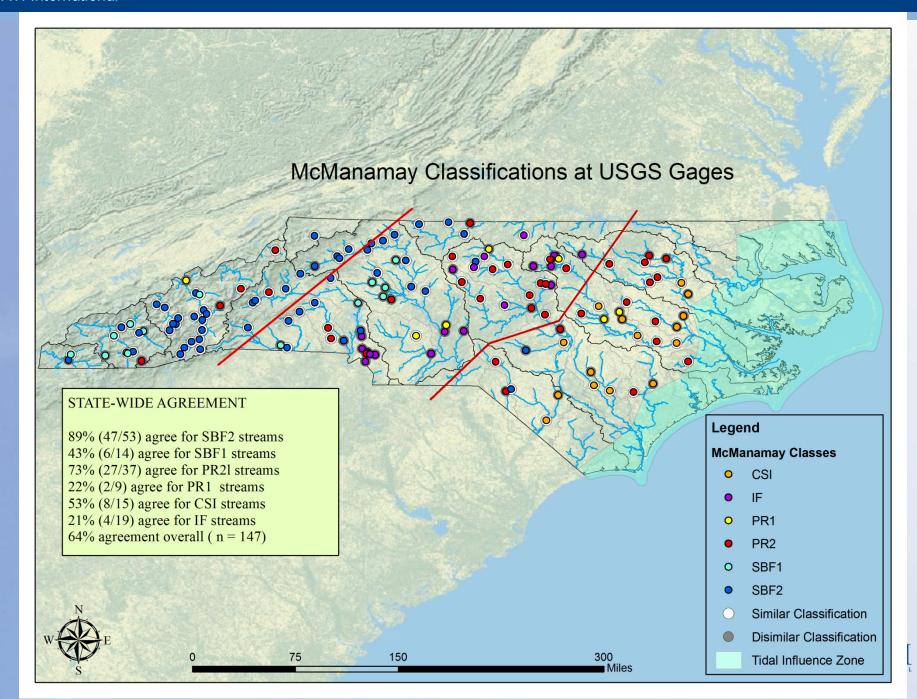
- 4. Compare stream classification systems:
 - EF nd McManamay
 - c) sifications determined using USGS gage data
 - 47 catchments (restricted to catchments with 15+ years of records between 1960 2006)
 - CONCLUSION = classifications are not the same
- 5. Compare stream classes determined using USGS gage and WaterFALL hydrology data:
 - EFS and McManamay
 - 147 catchments


EFS classification – comparison of USGS and WaterFALL data sources

- Only 49% match
- Stable streams

 (B, F and C) are
 sensitive to the
 median base flow
 metric
- Flashy streams (D and A) are sensitive to the Very High Flows (>90th percentile) metric

EFS Class	% USGS – WaterFALL Match
B - Small Stable	93% (54/58)
C - Large Stable	67% (10/15)
F - Medium Stable	25% (2/8)
D - Small Flashy	10% (4/42)
A - Coastal	10% (2/21)
G - Intermittent	0% (0/2)
E - Piedmont River	0% (0/1)
Total	49% (72/147)



McManamay classification – comparison of USGS and WaterFALL data sources

- Only 64% match
- Thresholds of classes sensitive
- McManamay
 found
 classification tree
 resulted in 66 80% accuracy in
 assigning USGS
 gages to classes

McManamay Class	% USGS – WaterFALL Match
SBF2	89% (47/53)
PR2	73% (27/37)
CSI	53% (8/15)
SBF1	43% (6/14)
PR1	22% (2/9)
IF	21% (4/19)
Total	64% (94/147)

McManamay classification – comparison of USGS and WaterFALL data sources

- Combined classes:
 - Stable Base Flow (SBF1 + SBF2)
 - Perennial Run Off (PR1 + PR2)
- Increased to 76% match

Grouped McManamay	% USGS – WaterFALL
Class	Match
SBF	99% (66/67)
PR	72% (33/46)
CSI	53% (8/15)
IF	21% (4/19)
Total	76% (111/147)

- 4. Compare stream classification systems:
 - EF and McManamay
 - assifications determined using USGS gage data
 - 47 catchments (restricted to catchments with 15+ years of records between 1960 2006)
 - CONCLUSION = classifications are not the same
- 5. Compare stream classes determined using USGS and WaterFALL hydrology data:
 - S and McManamay
 - 47 catchments
 - CONCLUSION = can't extrapolate either classification beyond USGS gages

6. Stream classes to all 1,094 catchments
7. Juct biological fidelity analyses to determine identes of benthos and fish to the stream classes

What's Next?

- Need a classification system that is:
 - Not based on sensitive threshold values
 - Consistent and reproducible using USGS stream gage and modeled data
 - Easy to understand and implement
 - Can be applied throughout state
 - Captures the distribution of aquatic biota in North Carolina
- NCDENR is in process of evaluating other potential approaches
 - balance of Biological Fidelity project will be devoted to pursuing an alternative approach

Questions?

