SARP: River Classification Framework NC Environmental Flow Science Advisory Board April 16, 2013

Mary M. Davis, Ph.D. Southern Instream Flow Network

₽

Southern Instream Flow Network

Purpose - To facilitate protective instream flow policies and practices in 15 southern states by providing science-based resources and opening lines of communication.

More information at: <u>www.southeastaguatics.net/programs/siln/</u>

Presentation Overview

 Present SARP River Classification Framework for the South Atlantic Landscape Conservation Cooperative (SALCC) region

2. Review uses of classification

SARP River Classification Framework Objectives

- Characterize streams by ecologically relevant characteristics
- Provide common terms for describing rivers across the region
- Support development of flow-ecology relationships

SCIENTIFIC PROCESS

SCIENTIFIC PROCESS

SARP River Classification Framework Geomorphic Sub-Classifications

Stream Gradient

Stream Temperature

Ecoregions

- EPA Level III
- Freshwater
- EDU

Size (basin area and MAF)

SARP River Classification Framework Geomorphic Sub-Classifications (cont.)

Base Flow Index

Soils

- Available water capacity
- Soil organic carbon
- % Sand, Silt, and Clay

Bedrock Geology

Landforms

Land Uses

SCIENTIFIC PROCESS

SARP Hydrologic Classification Framework for SALCC region

- **1.** Size
 - Headwater,
 - Creek,
 - Small R.,
 - Medium R.,
 - Large R.,
 - Great R.
- 2. Variability (median annual std deviation/mean flow)
 - Very low,
 - Low,
 - Medium-High

SARP River Classification Framework Stream Size Class(by basin area)

		Definition:	Definition:	
41		Upstream	Upstream	Definition: Mean
Size		Drainage	Drainage	Annual Flow
Class	Description	Area (sq.mi.)	Area (sq.km)	(cfs)
1a	Headwaters	0<3.861	0<10	<= 10
1b	Creeks	>=3.861<38.61	>=10 < 100	>10 - 75
2	Small Rivers	>= 38.61<200	>=100 < 518	>75 - 400
	Medium Tributary			
3a	Rivers	>=200<1000	>= 518 - 2590	>400 - 2,000
	Medium Mainstem		>= 2590 <	
3b	Rivers	>=1000<3861	10,000	>2,000 - 6,000
			>=10,000 -	
4	Large Rivers	>=3861<9653	25,000	>6,000 - 20,000
5	Great Rivers	>=9653	>= 25,000	>20,000
		-		

SARP River Classification Framework Flow Variability Class (Median daily variability) Predict Flow Variability Class for Ungaged Locations

The modeling work consisted of four major steps.

- Compile set of gages, assign hydrologic class, and link them to the appropriate NHDPlusreach
- 2. Attribute each stream reach and gage with GIS predictor variables
- 3. Build random forest (RF) classification models using the randomForest package in in R
- 4. Apply the best RF model to each stream reach and map each stream reach according to the "highest probability" class.

Of 75 predictor variables, the most important variables were:

- mean baseflow index
- stream size
- cumulative drainage area and
- run-off coefficient.

SARP River Classification Framework Flow Variability Class (Median % variability)

Use of the SARP River Classification Framework

River Class: EPA Level III Ecoregion

Use of the SARP River Classification Framework

River Class: Size within EPA Level III Ecoregion

Use of the SARP River Classification Framework

River Class: Flow Variability by Size within EPA Level III Ecoregion

Presentation Overview

1. Present SARP River Classification Framework for the South Atlantic Landscape Conservation Cooperative region

2. Review uses of classification –

When do you classify?

- Michigan
- Potomac River Commission

SCIENTIFIC PROCESS

SCIENTIFIC PROCESS

Michigan Instream Flow Standard Setting Process Used fish assemblage temperature preferences to classify

Michigan's Instream Flow Standards by Class

Proportion of index flow removed

Ē

Middle Potomac Watershed Assessment: Environmental Flows

- Follows ELOHA framework
- Multistate watershed
- www.potomacriver.org

Slides courtesy of Carlton Haywood, PRC

Hydrologic Data

- Simulated daily flow time series for a current conditions scenario and for a baseline scenario
 - Current conditions:
 - 2000 land use
 - 2005 withdrawals, discharges, and impoundment volume
 - 1984-2005 hydrology
 - Baseline:
 - Land use modified to 78% forest, 0.35% impervious surface, other land uses adjusted proportionally,
 - Discharges and withdrawals set to zero.
 - No impoundments
- Flows simulated for 747 watersheds

Middle Potomac – Biological Data

- 1) Benthic macroinvertebrate data
 - a) Only bio data set sufficiently rich for this basinwide, interstate, assessment
 - b) Samples rarified to common basis and metrics calculated to family level for consistency
- 2) Collected in years 2000 2008
- 1,313 samples at 869 locations for 747 watersheds

Flow-Ecology Relationships

Classification

Some biological metrics appear not to need classification....

Family-Level Taxa Richness

Classification

...while others may need classification

SCIENTIFIC PROCESS

When to classify for flow-ecology relationships?

The answer for when to classify seems to depend:

- Complexity of the system
- Parameters being analyses
- ???

Since the answer is not clear, a safe approach is to allow for exploration of both approaches and let the rivers direct the results.