BIOLOGICAL - ENVIRONMENTAL CLASSIFICATION (BEC) SYSTEM AND SUPPORTING FLOW – BIOLOGY RELATIONSHIPS IN NORTH CAROLINA – PROJECT UPDATE

Conducted by: RTI and USGS

Funded by: Environmental Defense Fund, NC DENR, and NC WRC

LAST MEETING.....

BEC stream classification system:

- Do multifactor response models offer better predictions of biological response?
- Do a priori regional classifications improve strength of flow-biology relationships?

RTI IR&D flow-biology relationships:

- Riffle-run fish guild (normalized by basin)
- Wadeable streams in
 NC

science for a changing we

BEC STREAM CLASSIFICATION

- Multifactor response models?
 - NC fish (species richness of riffle-run guild)
 - Flow metrics:
 - Summer Ecodeficit
 - decreases in Annual 30-day Minimum Flow
 - Best model fit:
 - Flow metric
 - Ecological Drainage Unit (EDU) regions
 - Slope
 - % Forest Cover (correlated with flow metric)
 - Average Temperature

NOTE: Results are similar for invertebrates

BEC STREAM CLASSIFICATION

- A priori regional classification improve strength of flowbiology relationship?
 - NC fish (species richness of riffle-run guild; RTI flowbiology methodology – normalized by basin; response of 90th percentile data)
 - Flow-biology relationships by EDU
 - Results:
 - Flow-biology relationships were not consistently strengthened by splitting up by EDU
 - only 4 of 10 EDUs had significant flow-biology relationships
 - only 1 EDU had a better model fit than the state-wide model (Albemarle Pamlico Piedmont EDU)

RECOMMENDATION

- Use state-wide flow-biology relationships for fish and benthos (based on RTI flow-biology methodology) to support determination of ecological flows
 - Biological response:
 - Fish
 - Species richness of Riffle-run guild
 - Normalized by basin
 - Benthos
 - EPT Richness
 - Normalized by Omernik Level III
 - Flow metric:
 - Ecodeficit

ECODEFICIT

NHD+ Catchments in Roanoke Basin

- Ecodeficit is a measure of the reduction in volumetric water availability
- 20% ecodeficit = 20% reduction in volumetric water availability (over a defined period of time)

ANNUAL ECODEFICIT - FISH

ANNUAL ECODEFICIT - BENTHOS

Note: 50% reduction in biological condition is beyond the range of the data

ANNUAL ECODEFICIT - COMBINED

science for a changing world

ANNUAL ECODEFICIT - COMBINED

 Annual versus seasonal ecodeficit – biological responses relationships and associated "biological condition" thresholds

	Fish: Species Richness			Benthos: EPTR		
Metric	10%	20%	30%	10%	20%	30%
Annual EcoDeficit	7	11	16	12	18	26
Winter Deficit	7	11	16	11	16	24
Spring Deficit	7	11	15	11	17	25
Summer Deficit	9	13	18	13	20	31
Fall Deficit	10	15	20	14	21	30
Average	8	12	17	12	18	27
Standard Deviation	1	2	2	1	2	3

WHAT'S NEXT?

 Depending on the current condition of a stream, how much degradation in the biological condition is EF-SAB (NCDENR) willing to tolerate?

RELEVANCE: NEED TO LINK ECOLOGICAL RESPONSES (E.G., EPT RICHNESS) AND FLOW DEFICITS (I.E., QUANTILE REGRESSIONS) TO ECOLOGICAL CONDITION

DWQ HAS ESTABLISHED INVERTEBRATE CONDITION CLASSES BASED ON EPT TAXA RICHNESS

 DWQ uses EPT richness as one means of establishing condition classes:

	Mountain	Piedmont	Coastal Plain
Excellent	>35	>27	>23
Good	28-35	21-27	18-23
Good-Fair	19-27	14-20	12-17
Fair	11-18	7-13	6-11
Poor	0-10	0-6	0-5

 DWQ has condition rankings for most sites and dates used in EF-SAB analyses

THEREFORE, WE CAN CALCULATE 90TH PERCENTILE FOR CONDITION CLASSES IN EACH ECOREGION

Mountains: 66 (Blue Ridge), Piedmont: 45, Coastal Plain: 63 (Mid Atlantic Coastal Plain) + 65 (Southern Plain)

STANDARDIZE FOR 90TH PERCENTILE CONDITION IN EACH CONDITION CLASS WITHIN EACH ECOREGION

DERIVE STATE-WIDE CONDITION CLASSES BASED ON AVERAGE STANDARDIZED VALUES

STATE-WIDE CONDITION CLASSES BASED ON 90^{TH} PERCENTILE

	EPT richness ¹
Excellent	≥ 0.868
Good	0.868 - 0.675
Good-Fair	0.675 - 0.469
Fair	0.469 - 0.249
Poor	< 0.249

¹EPT taxa richness scaled by 90th percentile in mountains, Piedmont, and Coastal Plain

Screening criteria: if a planned water withdrawal results in a flow deficit (annual, summer, winter, etc.) that pushes the site into a lower condition class then a site-specific flow-ecology study is warranted (e.g., PHABSim).

STATE-WIDE CONDITION CLASSES BASED ON 90^{TH} PERCENTILE

Note: Thresholds for Good-Fair to Fair and Fair to Poor are not reached within 100% decrease in Annual EcoDeficit

ADVANTAGES OF APPROACH

- Data-driven approach for establishing ecological flows
- Relates back to NC DWQ concept of biological condition classes
- Uses state-wide flow-biology relationships for fish and benthos (based on RTI flow-biology methodology) to support determination of ecological flows
- Guards against further degradation, while taking into account of current conditions
- On-going process (adaptive management)

