# Brunswick County Interbasin Transfer Petition

**Prepared for** 



**Prepared by** 



One Park Drive, Suite 200 • P.O. Box 14409 Research Triangle Park, NC 27709

> June 2013 DRAFT

#### Lead Agency

North Carolina Division of Water Resources Ms. Toya Ogallo 1611 Mail Service Center Raleigh, NC 27699-1611 (919) 707-9023

#### Applicant

Brunswick County Public Utilities Jerry Pierce, PE, Director 250 Grey Water Road NE Supply, NC 28462 P.O. Box 249 Bolivia, NC 28422 (910) 253-2657

#### **Consultant Contact**

Tetra Tech J. Todd Kennedy, PH, QEP One Park Drive, Suite 200 P.O. Box 14409 Research Triangle Park, NC 27709 (919) 485-8278

# Contents

| 1 | Introduction                                                                                            | 1        |
|---|---------------------------------------------------------------------------------------------------------|----------|
| 2 | Description of Facilities                                                                               | 3        |
| 3 | Proposed Uses of the Water                                                                              | 5        |
|   | 3.1 Recent Water Demand Synopsis                                                                        | 5        |
|   | 3.2 Current (2011) Water Demand Analysis                                                                |          |
|   | 3.3 Projected Water Demand                                                                              | 7        |
|   | 3.3.1 Retail Water Demand                                                                               | 8        |
|   | 3.3.2 Wholesale Water Demand                                                                            | 9        |
|   | 3.3.3 Industrial Water Demand                                                                           | 9        |
|   | 3.3.4 Non-Revenue Water Demand                                                                          | 10       |
|   | 3.3.5 Peaking Factors                                                                                   | 12       |
|   | 3.3.6 Future Demand Projection                                                                          | 12       |
| 4 | Water Quality and Aquatic Habitat                                                                       | 15       |
|   | 4.1 Cape Fear IBT River Basin (Source)                                                                  | 15       |
|   | 4.1.1 Surface and Groundwater Resources                                                                 | 16       |
|   | 4.1.2 Aquatic and Wildlife Habitat and Resources                                                        | 23       |
|   | 4.1.3 In-Stream Flow                                                                                    | 30       |
|   | 4.2 Shallotte IBT River Basin (Receiving)                                                               | 30       |
|   | 4.2.1 Surface and Groundwater Resources                                                                 | 30       |
|   | 4.2.2 Aquatic and Wildlife Habitat and Resources                                                        | 37       |
| 5 | Water Conservation Measures                                                                             | 41       |
|   | 5.1 Water Use Restrictions                                                                              | 41       |
|   | 5.2 Pricing Signals                                                                                     | 43       |
|   | 5.3 Customer Education                                                                                  | 44       |
|   | 5.4 Water Reuse                                                                                         | 44       |
|   | 5.5 ASR Study                                                                                           | 44       |
| 6 | Water Supply Alternatives                                                                               | 45       |
|   | 6.1 No Additional IBT Alternative                                                                       | 45       |
|   | 6.2 Increase in IBT from Cape Fear - Northwest WTP Expansion                                            | 46       |
|   | 6.3 Water Supply Alternatives in Receiving Basins                                                       | 47       |
|   | 6.3.1 New Surface WTP                                                                                   | 47       |
|   | 6.3.2 Purchase Water from Existing Utility in Receiving Basin                                           | 48       |
|   | 6.3.3 Expanded or New Groundwater WTP                                                                   |          |
|   | 6.3.4 Seawater Desalination WTP                                                                         | 51       |
|   | 6.4 Other Options for Reducing the IBT                                                                  |          |
|   | 6.4.1 Surface Water Storage                                                                             |          |
|   |                                                                                                         |          |
|   | 6.4.2 Water Conservation and Reuse                                                                      | 52       |
|   | <ul><li>6.4.2 Water Conservation and Reuse</li><li>6.4.3 Return of Wastewater to Source Basin</li></ul> | 52<br>52 |
|   | 6.4.2 Water Conservation and Reuse                                                                      | 52<br>52 |

| 8 Cape Fea  | r IBT River Basin Impact Analysis             | 61  |
|-------------|-----------------------------------------------|-----|
| 8.1 Impa    | ct Analysis                                   | 61  |
| 8.1.1 I     | mpacts Above Lock and Dam #1                  | 61  |
| 8.1.2 N     | New Fish Passage Structure at Lock and Dam #1 | 66  |
| 8.1.3 I     | mpacts Below Lock and Dam #1                  | 66  |
| 8.1.4 H     | Reservoirs in the Cape Fear IBT River Basin   | 68  |
| 9 Future W  | ater Supply Needs                             | 69  |
| 10 Brunswic | k Local Water Supply Plan                     | 71  |
| References  |                                               | 73  |
| Appendix A  | Finding of No Significant Impact              | A-1 |
| Appendix B  | Protected Species                             | B-1 |
| Appendix C  | Local Water Supply Plan                       | C-1 |

## Tables

| Table 1.  | 5 5 5 5                                                                                 |   |  |
|-----------|-----------------------------------------------------------------------------------------|---|--|
|           | 2050)                                                                                   | 1 |  |
| Table 2.  | Population Projections for Brunswick County                                             | 3 |  |
| Table 3.  | Brunswick County Water Demand Projections (MGD)                                         | 3 |  |
| Table 4.  | Waters with Impaired Use Support Rating in the Cape Fear Study Area (not including the  |   |  |
|           | Cape Fear River)                                                                        | 8 |  |
| Table 5.  | Impairment Ratings for the Cape Fear River in the Cape Fear Study Area20                | 0 |  |
| Table 6.  | SNHAs in the Cape Fear Study Area                                                       | 3 |  |
| Table 7.  | Waters with Impaired Use Support Rating in the Shallotte Study Area                     | 3 |  |
| Table 8.  | SNHAs in the Shallotte Study Area                                                       | 7 |  |
| Table 9.  | Summary Water Supply Alternatives to Additional IBT                                     | 4 |  |
| Table 10. | Public Water Systems in the Cape Fear IBT River Basin                                   | 7 |  |
| Table 11. | Registered Water Withdrawals in the Cape Fear IBT River Basin                           | 7 |  |
| Table 12. | Incremental Impact of Brunswick Withdrawal for 2050 Scenario on Stream Flow             | 2 |  |
| Table 13. | Incremental Impact of Cumulative Withdrawal for July at Daily Maximum for 2050 Scenario |   |  |
|           | on Simulated Flow at Lock and Dam #1                                                    | 3 |  |
| Table 14. | Predictive Models for pH                                                                | 4 |  |
| Table 15. | Predictive Models for Dissolved Oxygen                                                  | 4 |  |
| Table 16. | Maximum Brunswick County and LCFWSA Withdrawals for Water Quality Analysis              | 5 |  |
| Table 17. | Predicted Dissolved Oxygen (mg/L) Response Maximum Withdrawal at Lock and Dam #1.65     | 5 |  |
| Table 18. | Predicted pH (s.u.) Response to Increase in Maximum Withdrawal at Lock and Dam #1 60    | 5 |  |

## Figures

| Figure 1.  | Location Map for Brunswick County IBT                                                   | .4 |
|------------|-----------------------------------------------------------------------------------------|----|
| Figure 2.  | Brunswick County - Actual Finished Water Flows for October 2007 through 2011            | 6  |
| Figure 3.  | Brunswick County 2011 Water Sector Demands                                              | 7  |
| Figure 4.  | Historical Per Capita Retail Water Demand                                               | 9  |
| Figure 5.  | Historical Industrial Water Demand (2001-2011)                                          | 10 |
| Figure 6.  | Non-Revenue Water Demand Trend                                                          | 11 |
| Figure 7.  | Non-Revenue Water Demand as a Function of Billed Water Demand                           | 11 |
| Figure 8.  | Analysis of Historical Water Demand Peaking Factors                                     | 12 |
| Figure 9.  | Water Demand (2000-2011) and Projections through 2050                                   | 14 |
| Figure 10. | Overview Map of the IBT River Basins Study Area                                         | 15 |
| Figure 11. | DWQ Surface Water Use Classifications for the Cape Fear Study Area                      | 17 |
| Figure 12. | Impaired Waters of the Cape Fear Study Area                                             | 21 |
| Figure 13. | SNHAs in the IBT River Basins Study Area (Sites with National Level of Significance are |    |
|            | Labeled)                                                                                | 25 |
| Figure 14. | Anadromous Fish Spawning Areas in the IBT River Basins Study Area                       | 27 |
| Figure 15. | Fish Nursery Areas in the IBT River Basins Study Area                                   | 28 |
| Figure 16. | SGAs in the IBT River Basins Study Area                                                 | 29 |
| Figure 17. | DWQ Surface Water Use Classifications for the Shallotte and Waccamaw Study Areas        | 32 |
| Figure 18. | Impaired Waters in the Shallotte and Waccamaw Study Areas                               | 36 |

## **Executive Summary**

Brunswick County (County), through Brunswick County Public Utilities, provides water to more than 34,000 retail customers and 11 wholesale customers through its two water treatment plants (WTP). The Northwest WTP is located near the City of Northwest and supplied by water from the Cape Fear River via the Lower Cape Fear Water and Sewer Authority. The 211 WTP, near the Town of St. James, is supplied by groundwater wells into the Castle Hayne Aquifer. To meet future demand for water, the County is considering expansion of the Northwest WTP. The expansion is expected to trigger the need for an interbasin transfer (IBT) certificate from the North Carolina Environmental Management Commission (EMC) under the Regulation of Surface Water Transfers Act. A portion of the surface water treated at the Northwest WTP in the Cape Fear IBT River Basin (and Cape Fear Major River Basin) is distributed to customers in the Shallotte IBT River Basin and the Waccamaw IBT River Basin, both of which are in the Lumber Major River Basin.

Under the grandfather provision of the Regulation of Surface Water Transfers Act, the County may transfer up to 10.5 MGD from one designated river basin to another without an IBT certificate. The County is requesting an IBT certificate from the EMC for an increase of 7.8 MGD over the grandfathered transfer, with all the increase going to the Shallotte IBT River Basin and resulting in a maximum transfer from the Cape Fear IBT River Basin of 18.3 MGD. This increase is based on water demand projections and need through approximately 2042, representing nearly a 30-year period for the IBT certificate. No increase in IBT is being requested for the Waccamaw IBT River Basin: minor growth is expected in this area and future water will be supplied by the Little River Water and Sewerage Company in South Carolina via an agreement with the County.

The certification process was initiated by the County in February 2009 by filing a Notice of Intent (NOI) to File a Petition to the EMC as described in G.S.§143-215.22L(c). The NOI letter described the County's plan to petition for an IBT. As required by the IBT provisions in effect during that time, public notice was given, and four public meetings were held. In addition, a scoping document was circulated through the State Environmental Review Clearinghouse.

The County prepared an environmental assessment (EA) pursuant to the procedures and standards set out in G.S.§143-215.22I effective July 1, 2007, as specified in Session Law 2010-155 passed by the North Carolina General Assembly in the summer of 2010. The EA supports the request for an IBT certificate only and does not involve any construction activities. Any potential impacts associated with construction of WTP improvements or associated distribution upgrades would be reviewed under environmental documents prepared specifically for these projects as required by statute and regulation. An EA for the plant expansion and associated improvements as described would be prepared and reviewed if an IBT certificate is approved.

The EA includes detailed descriptions of environmental characteristics in the source and receiving basins, an analysis of alternatives considered to IBT, analyses of the potential impacts, and mitigation to reduce the potential impacts to an insignificant level. Additional IBT associated with an expansion of the Northwest WTP is recommended as the preferred alternative because of a lower cost (capital, O&M), low technical difficulty, an equivalent or lower level of permitting difficulty, a low level of direct impacts, and an equivalent level of secondary and cumulative impacts.

Combined with additional IBT associated with the expansion of the Northwest WTP, the County proposes to use a combination of measures to limit the transfer of water. Water conservation and reuse are key elements of the County's current water management plan, and they already reduce water demand and associated IBT of water. In addition, the County has reduced the need to transfer additional water by developing an interconnection and agreement to purchase water from the Little River Water and Sewerage Company for future potable water service in the Waccamaw River subbasin. The County is conducting a study to assess the feasibility of residential water reuse (costs, demand and public

acceptance issues) at the Saint James Plantation and Winding River developments. The County estimates that these developments might have a seasonal reclaimed water demand of up to 1.3 MGD. Finally, the County is planning a study of aquifer storage and recovery at the 211 WTP to reduce withdrawal of surface water during peak demand periods.

The EA was provided for review to the NC Division of Water Resources (NCDWR), other agencies within the Department of Environment and Natural Resources, US Fish and Wildlife Service, NC Wildlife Resources Commission, and through the State Environmental Review Clearinghouse as required by statute. NCDWR issued a Finding of No Significant Impact for the proposed IBT in April 2013.

The next step in the certification process is a petition to the EMC for an IBT certificate. This petition for an IBT certificate is organized to address the following nine primary elements:

- 1. Facilities used to transfer water.
- 2. Proposed consumptive and nonconsumptive uses of the water to be transferred.
- 3. Water quality of the source river and receiving river, including information on aquatic habitat for rare, threatened, and endangered species; in-stream flow data for segments of the source and receiving rivers that may be affected by the transfer; and any waters that are impaired.
- 4. Water conservation measures used by the applicant at the time of the petition and any additional water conservation measures that the applicant will implement if the certificate is granted.
- 5. Analysis of alternative sources of water within the receiving river basin.
- 6. Registered water transfers and withdrawals from the source river basin and planned transfers or withdrawals.
- 7. How the proposed transfer, if added to all other transfers and withdrawals within the source basin would not reduce the amount of water available for use to a degree that would impair existing uses or existing and planned uses of the water.
- 8. Present and future water supply needs of the County and other public water systems with service area located within the source river basin.
- 9. The County's Local Water Supply Plan.

# **1** Introduction

Brunswick County (County), through Brunswick County Public Utilities, provides water to more than 34,000 retail customers and 11 wholesale customers through its two water treatment plants (WTP), Northwest WTP and 211 WTP. To meet future demand for water, the County is considering expansion of the Northwest WTP, which treats raw water from the Cape Fear River, from 24 to 36 MGD. The expansion is expected to trigger the need for an interbasin transfer (IBT) certificate from the North Carolina Environmental Management Commission (EMC) under the Regulation of Surface Water Transfers Act since a portion of the surface water treated at the Northwest WTP in the Cape Fear IBT River Basin is distributed to customers in the Shallotte IBT River Basin and the Waccamaw IBT River Basin.

Under the grandfather provision of the Regulation of Surface Water Transfers Act, the County may transfer up to 10.5 MGD from one designated river basin to another without an IBT certificate. The County is requesting an IBT certificate from the EMC for an increase of 7.8 MGD over the grandfathered transfer, with all the increase going to the Shallotte IBT River Basin and resulting in a maximum transfer from the Cape Fear IBT River Basin of 18.3 MGD (Table 1). This increase is based on water demand projections and need through approximately 2042, representing nearly a 30-year period for the IBT certificate. No increase in IBT is being requested for the Waccamaw IBT River Basin: minor growth is expected in this area and future water will be supplied by the Little River Water and Sewerage Company in South Carolina via an agreement with the County.

| Year                                       | Total Water<br>Demand<br>(MGD) – Max<br>Day | Withdrawal<br>from Surface<br>Water Source<br>(MGD) <sup>1</sup> | Total Return to<br>Source Basin<br>(MGD) | IBT –<br>Shallotte<br>(MGD) | IBT –<br>Waccamaw<br>(MGD) | Total IBT<br>(MGD) |
|--------------------------------------------|---------------------------------------------|------------------------------------------------------------------|------------------------------------------|-----------------------------|----------------------------|--------------------|
| 2010                                       | 21.32                                       | 16.83                                                            | 8.31                                     | 7.71                        | 0.81                       | 8.52               |
| 2020                                       | 28.47                                       | 22.47                                                            | 11.09                                    | 10.57                       | 0.81                       | 11.38              |
| 2030                                       | 33.76                                       | 27.76                                                            | 13.70                                    | 13.25                       | 0.81                       | 14.06              |
| 2040                                       | 39.52                                       | 33.52                                                            | 16.54                                    | 16.17                       | 0.81                       | 16.98              |
| 2050                                       | 45.11                                       | 39.11                                                            | 19.30                                    | 19.00                       | 0.81                       | 19.81              |
| <b>IBT Request (~2042)</b> 36 <sup>2</sup> |                                             |                                                                  | 17.76                                    | 17.43                       | 0.81                       | 18.3 <sup>3</sup>  |
| IBT E                                      | ceeding Grandf                              | athered Amount                                                   |                                          | <b>7.8</b> <sup>3</sup>     |                            |                    |

# Table 1.Brunswick County Maximum Daily Surface Water Transfer<br/>(Actual 2010; Projected 2020 – 2050)

Notes:

<sup>1</sup> The flow amounts are surface water only for the Northwest WTP and do not include flows from the 211 WTP. <sup>2</sup> Based on the proposed treatment capacity of 36 MGD finished water for the Northwest WTP. Additional raw water that is withdrawn from the river for backwash, clarifier blowdowns, and process water is not included. This water is discharged back to the Cape Fear source basin via NPDES permit.

<sup>3</sup> Values have been rounded up for the IBT request.

The certification process was initiated by the County in February 2009 by filing a Notice of Intent (NOI) to File a Petition to the EMC as described in G.S.§143-215.22L(c). A NOI letter described the County's plan to petition for an IBT. As required by the IBT provisions in effect during that time, public notice was

given, and four public meetings were held within 90 days of the NOI letter. In addition, a scoping document was circulated through the State Environmental Review Clearinghouse.

Following these initial steps required by G.S.§143-215.22L, the North Carolina General Assembly passed Session Law 2010-155 in the summer of 2010. This change in the statute directed the County to proceed with the certification process using the procedures and standards set out in G.S.§143-215.22I effective July 1, 2007. The County has prepared an environmental assessment (EA) pursuant to this statute to support the request for an IBT certificate. Any potential impacts associated with construction of WTP improvements in the source basin, and transmission line upgrades in the source and receiving basin would be reviewed under environmental documents prepared specifically for these projects as required by statute and regulation.

Components of the EA include detailed descriptions of environmental characteristics in the source and receiving basins, an analysis of alternatives considered to IBT, analyses of the potential impacts, and mitigation to reduce the potential impacts to an insignificant level. Factors considered during alternatives analyses included the technical viability of the option, the constructability of the alternative, potential environmental impacts, technical difficulty, permitting issues, and estimates of probable costs, both construction costs and O&M.

The EA was provided for review to the NC Division of Water Resources (NCDWR), other agencies within the Department of Environment and Natural Resources (NCDENR), US Fish and Wildlife Service, NC Wildlife Resources Commission, and through the State Environmental Review Clearinghouse as required by statute. NCDWR issued a Finding of No Significant Impact (FONSI) for the IBT request in April 2013 (Appendix A).

The next step in the certification process is a petition to the EMC for an IBT certificate. This petition is organized to address the following nine primary elements:

- 1. Facilities used to transfer water.
- 2. Proposed consumptive and nonconsumptive uses of the water to be transferred.
- 3. Water quality of the source river and receiving river, including information on aquatic habitat for rare, threatened, and endangered species; in-stream flow data for segments of the source and receiving rivers that may be affected by the transfer; and any waters that are impaired.
- 4. Water conservation measures used by the applicant at the time of the petition and any additional water conservation measures that the applicant will implement if the certificate is granted.
- 5. Analysis of alternative sources of water within the receiving river basin.
- 6. Registered water transfers and withdrawals from the source river basin and planned transfers or withdrawals.
- 7. How the proposed transfer, if added to all other transfers and withdrawals within the source basin would not reduce the amount of water available for use to a degree that would impair existing uses or existing and planned consumptive and nonconsumptive uses of the water.
- 8. Present and future water supply needs of the County and other public water systems with service area located within the source river basin.
- 9. The County's Local Water Supply Plan.

# **2** Description of Facilities

The County has two WTPs: the Northwest WTP, near the City of Northwest and supplied by water from the Cape Fear River, and the 211 WTP, near the Town of St. James and supplied by 15 wells that draw groundwater from the Castle Hayne Aquifer (Figure 1). The Lower Cape Fear Water and Sewer Authority (LCFWSA) supplies raw water to the Northwest WTP from intakes on the Cape Fear River above Lock and Dam 1. LCFWSA has two intake pipelines: a 48-inch intake pipeline constructed in 1984 and a relatively new 60-inch intake pipeline, constructed in 2010, providing a combined 100 MG withdrawal capacity. In addition to the County, LCFWSA currently supplies raw water to a number of other customers, the largest of which is the Cape Fear Public Utility Authority.

The County's water system serves the majority of the County, including more than 34,000 retail customers and 11 wholesale customers, and does not serve customers outside the County. The southwest portion of the County uses the most water relative to the northeast and southeast. Current customers include the following wholesale entities: Bald Head Island, Leland, Caswell Beach, Holden Beach, Brunswick Regional Water and Sewer (H2GO), Northwest, Oak Island, Ocean Isle Beach, Shallotte, Navassa, and Southport. The system also serves retail and industrial customers in the County's jurisdiction as well as customers residing in the towns of Sunset Beach, Carolina Shores, Bolivia, Calabash, and Varnamtown. The County owns and operates the water systems in these small municipalities. Recently, the County entered into an agreement with the Little River Water and Sewerage Company in South Carolina for an emergency water connection and to supply water to meet future demand in Carolina Shores.

The Northwest WTP and 211 WTP have permitted capacities of 24 and 6 MGD, respectively. Surface water treated at the Northwest WTP is distributed to customers across the basin divide from the Cape Fear Major River Basin to the Lumber Major River Basin. Water from the two plants is routinely mixed within the distribution system in the southeastern portion of the County. To meet future demand for water, the County is considering expansion of its Northwest WTP to a capacity of 36 MGD. The proposed expansion of the Northwest WTP plant is expected to trigger the need for an IBT certificate because a portion of the surface water treated at the Northwest WTP is distributed to customers across the basin divide into the Shallotte IBT River Basin and the Waccamaw IBT River Basin, both of which are in the Lumber Major River Basin. Under the grandfather provision of the Regulation of Surface Water Transfers Act, the County may transfer up to 10.5 MGD from one designated river basin to another without an IBT certificate. The County is requesting an IBT certificate from the EMC for an increase over the grandfathered transfer, with all of the increase going to the Shallotte IBT River Basin (i.e., no increase in the Waccamaw IBT River Basin). This increase is based on water demand projections and need through approximately 2042, representing nearly a 30-year period for the IBT certificate.

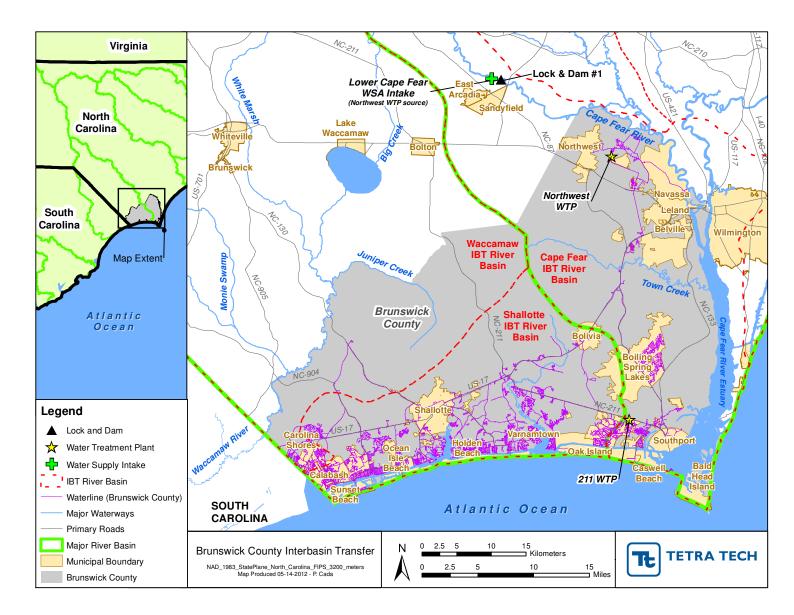
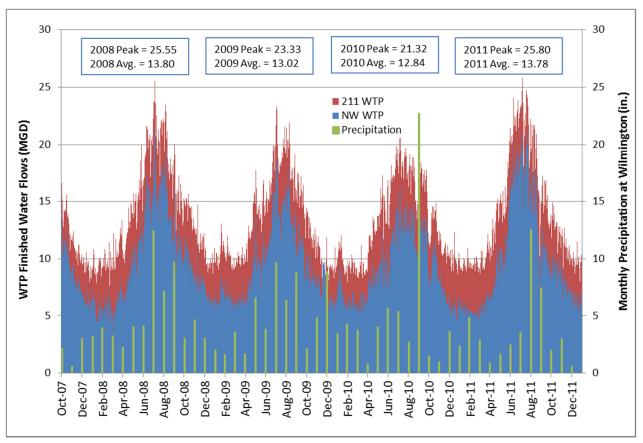



Figure 1. Location Map for Brunswick County IBT

# **3 Proposed Uses of the Water**

The following section provides a discussion of the consumptive and nonconsumptive uses of water in the County based on recent trends and future projections.

## 3.1 RECENT WATER DEMAND SYNOPSIS


Previous water demand projections prepared for the County's recent Water Master Plan suggested that *peak day* demand was estimated to reach 80 percent of the water treatment capacity for the Northwest and 211 plants *combined*, in about 2007 (Hazen and Sawyer, 2006). Additionally, data from 2005 through 2007 suggested that the Northwest WTP was approaching capacity on peak days which typically occur mid-summer (Hazen and Sawyer, 2008).

Since these earlier projections, finished water demand increased in 2008, but then declined in 2009 and 2010 before increasing to pre-2009 levels again in 2011 (Figure 2). The number of customers served increased modestly over this 4-year period (approximately 15% between 2008 and 2011), but slower than had been projected because of the economic downturn that became more pronounced in 2008.

It is believed that there are several reasons that average and peak water demands have not clearly increased despite an increase in the number of customers served including:

- Weather related effects (discussed below)
- Increased water efficiency, conservation and reuse (see Figure 4 and discussion of *per capita* water demand in Section 1.3.3)
- Decreased industrial demand (see Figure 5 and discussion of *industrial* water demand in Section 1.3.3)

It is likely that weather played a significant role in observed water demand (annual average and peaks) over the 2008-2011 period. Monthly precipitation data superimposed on Figure 2 appear to show some correlation between rainfall and water use (an inverse relationship as expected in a system with seasonal increases in water use associated with landscape irrigation). However, the simplified presentation of precipitation data in Figure 2 does not tell the complete story. For example, drought conditions leading up to the summer of 2008 resulted in a precipitation deficit of over 23 inches for calendar year 2007 at the National Weather Service's Wilmington, NC monitoring station. On the other hand, measured precipitation for calendar years 2008 and 2009 tracked closely with historical averages (+3.76 inches and +2.68 inches, respectively). However, 2010, which like 2008 saw a spike in water demand, finished with a 13.65 inch annual precipitation deficit.

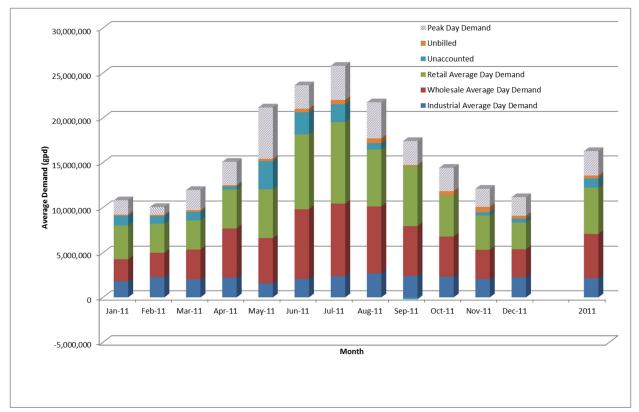


#### Figure 2. Brunswick County - Actual Finished Water Flows for October 2007 through 2011

Additional historical water demand trend analyses in support of future projections are provided in Section 1.3.3.

## 3.2 CURRENT (2011) WATER DEMAND ANALYSIS

An analysis of water use for the most recent full calendar year (2011) was developed using data from the following sources:


- Daily finished water pumping data from Brunswick County Drought Report to NCDENR (2011)
- BCPU Monthly Reports for FY 2011 and FY 2012
- BCPU Monthly Total, Industrial and Wholesale Customer summary (2011)
- U.S. Census Data (2010)

The County meters the following water demand elements: total water pumped, retail pumped, large industrial pumped, wholesale pumped and operational (unbilled) uses pumped.

*Unaccounted water* is calculated as the difference between total water pumped and the sum of the other metered sectors. Unaccounted water losses averaged 0.56 MGD in 2010 and 1.01 MGD in 2011, with significant monthly variability. Operational (unbilled) uses averaged 0.31 MGD and 0.33 MGD for 2010 and 2011 respectively, but also varied widely from month to month.

Figure 3 provides a graphical summary of monthly water demand by sector for calendar year 2011. In 2011, total daily demand averaged 13.78 MGD. The peak day flow reported for 2011 was 25.80 MGD (approximately 86 percent of permitted water treatment capacity of 30 MGD), occurring in July, resulting

in a peak day peaking factor of 1.87. Monthly average daily water demand ranged from about 68 percent (January, February, December) to 160 percent (July) of the annual average. In 2011, the average daily water demand for July was approximately 2.35 times the February water demand because of a combination of seasonal outdoor water uses and seasonal population increases associated with beach communities in County's service area. In Figure 3, the gray hatched segment at the top of each column represents the increase above the average demand associated with the peak day for that month.



Additional water sector demand analyses in support of future projections are provided in Section 1.3.3.

#### Figure 3. Brunswick County 2011 Water Sector Demands

### 3.3 PROJECTED WATER DEMAND

The sectoral breakdowns summarized in Figure 3 were used along with population data and associated projections from various sources to estimate future water demand.

Water demand projections were based on the following main assumptions:

- A constant *per capita* water demand was used to estimate future *retail water demand* based on population growth projections
- *Wholesale water demand* was assumed to increase at a rate proportional to population growth projections
- Industrial water demand was assumed to be constant over the planning horizon
- *Non-revenue water demand* was assumed to increase at a rate proportional to population growth projections
- Peak month and peak day peaking factors were assumed to be constant over the planning horizon

Note that *per capita* and wholesale water demands as well as peaking factors associated with the County water systems are most likely influenced by the seasonal nature of some of its customer base. This seasonal effect likely results in somewhat lower than typical *per capita* demand (because a portion of the water user base is only present during tourist seasons and times) and higher than typical peaking factors, (since, in addition to seasonal water uses such as irrigation during summer months, more water users may also be present during these times).

Additional discussion on these water demand elements is provided below.

### 3.3.1 Retail Water Demand

The average *per capita* water demand for 2011 of 71.94 gallons per day (gpd) was used to estimate future retail demands. *Per capita* water demand was calculated by dividing the annual average daily retail demand by the average number of customers served in 2011. The average number of customers was calculated by multiplying the average number of connections (tracked monthly by BCPU) by 2.21, which is the average number of persons per household derived from 2010 U.S. Census for the County (U.S. Census, 2010). On a per connection basis, retail water demand for the County system was 158.99 gpd/connection for calendar year 2011 (note: because calculated *per capita* demand is directly proportional to per connection demand, the choice of which to use has no bearing on the following water demand projections).

For this projection, a constant *per capita* retail demand was applied throughout the planning horizon. Annual average *per capita* retail water use data for the period of 2006 to 2011 are presented in Figure 4. Although the figure appears to show a slight declining trend in *per capita* demand, the correlation is weak and it is likely that external factors account for annual variations. For example, as previously described, the drought of 2007 is likely to have resulted in a higher *per capita* water use for irrigation for that year which influences the apparent declining trend in demand.

Nevertheless, it is possible that the assumption of a constant *per capita* retail demand will somewhat overestimate actual future flows for this sector since no allowances have been made for potential demand reduction measures (e.g., water conservation, reuse) that might occur over the planning period. However, it should be noted that, in general, predicting future *per capita* water demand has proven to be difficult, as water use efficiencies in some areas can be offset by increases in others.

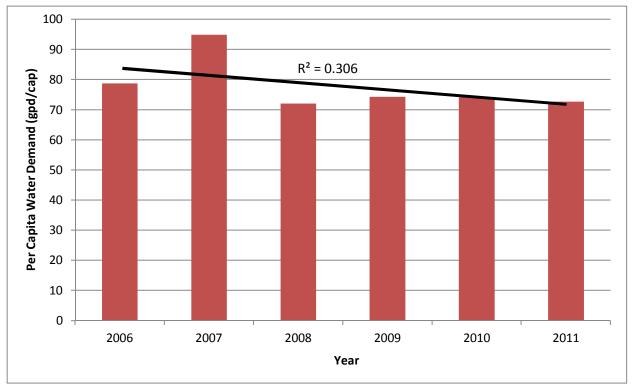
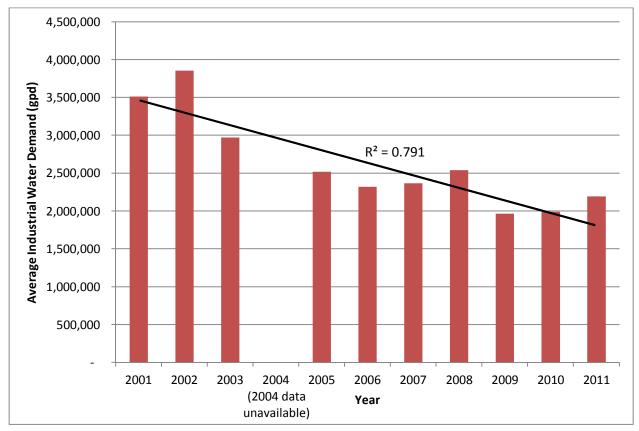



Figure 4. Historical Per Capita Retail Water Demand


#### 3.3.2 Wholesale Water Demand

Although wholesale water demand remained relatively constant (and likewise the proportion of wholesale demand relative to retail demand declined) between 2006 and 2011, a constant wholesale-to-retail demand ratio (based on year 2011 data) was used to project future wholesale water demand. In other words, it was assumed that wholesale water demand will grow at the same rate as will retail demand (i.e., both are assumed to be proportional to projected County population growth). For this assumption to hold true, increases in wholesale water demand will need to come from customer growth for existing wholesale water users, the addition of new wholesale customers to County's water system or some combination of the two.

Despite uncertainties regarding the magnitude of wholesale water demand in the future, it is important to note that the apportioning of demand between retail and wholesale customer sectors should have no impact on total water demand over the planning horizon. The assumption that total non-industrial water demand (retail + wholesale) will increase in proportion to population growth is logical. It may however be that this total non-industrial demand turns out to be apportioned differently between the retail and wholesale sectors than projected.

### 3.3.3 Industrial Water Demand

Large industrial water usage was assumed to be constant over the planning period at the average 2011 demand of 2,192,911 gpd. As illustrated in Figure 5, linear regression of historical annual data shows a relatively strong declining trend in industrial water demand over the past decade, believed to be due to multiple factors, including greater water use efficiency and recycling at industrial facilities and a decreasing number of industrial facilities in the service area. Therefore, it is likely that the assumption of constant industrial water demand over the planning period is conservative (i.e., it may overestimate



industrial demand). However, the addition of one or two large industrial facilities is possible and could have an effect on future industrial sector water demands, so this conservatism may be warranted.

Figure 5. Historical Industrial Water Demand (2001-2011)

### 3.3.4 Non-Revenue Water Demand

Non-revenue water demands including unbilled (operational) uses and unaccounted water were assumed to grow in proportion to population served, using as a basis the latest data from 2011 which shows an average non-revenue demand of approximately 1.33 MGD (approximately 10 percent of the total demand for 2011).

Although it is logical to assume that operational water demands would increase with an increasing population and that unaccounted water demand would increase with additional service connections, pipeline and other infrastructure that could potentially leak, non-revenue water demand for 2006 through 2011 appears to show a declining trend (Figure 6). Additionally, a plot of non-revenue demand versus total billed water demand (which is related to the number of service connections and other infrastructure) shows no clear correlation (Figure 7). Possible explanations for the decreasing trend in unbilled demand with time could include effective programs for reducing leaks and for metering and billing all water users. Conservation efforts undertaken by unbilled (operational) users could also be contributing to the decreasing trend.

Nevertheless, because these apparent trends are somewhat uncertain and because the 2011 non-revenue demand of approximately 10 percent of total demand is in line with typical water system allowances, water demand projection calculations were based on the 2011 non-revenue data, assumed to grow in proportion to population served.

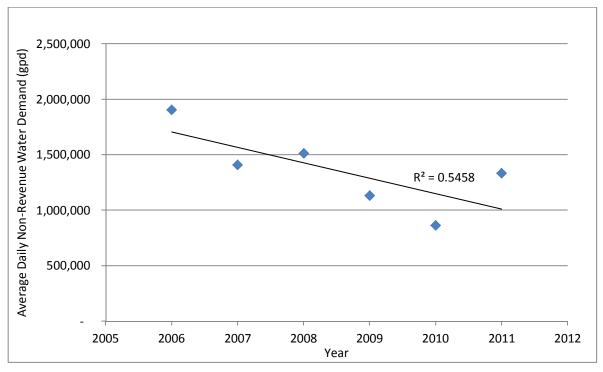



Figure 6. Non-Revenue Water Demand Trend

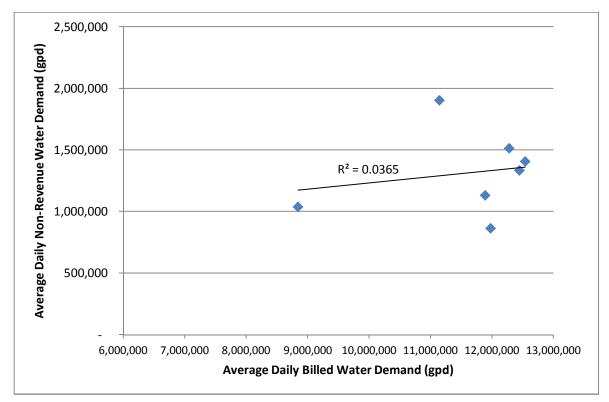



Figure 7. Non-Revenue Water Demand as a Function of Billed Water Demand

### 3.3.5 Peaking Factors

To project future peak day demands, the average annual peak day peaking factor (1.72) from the past 12 years was used. An analysis of annual average, peak month average day and peak day flows for 2000 through 2011 showed modest annual variability (standard deviation of 0.09 or 5.4%) and little correlation between peak day peaking factors and year (Figure 8). By contrast, there is a relatively strong correlation for peak month peaking factor as a function of time ( $R^2 = 0.74$ , relative standard deviation of 10.8%). However, there is no reason to believe that peak month peaking factors will continue to increase and visual observation of Figure 8 appears to show the peak month peaking factor plateauing between 2006 and 2011.

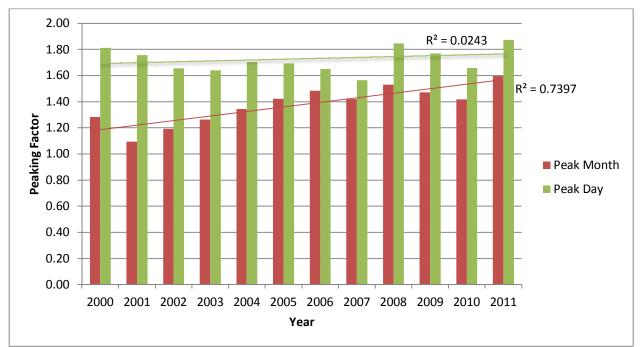



Figure 8. Analysis of Historical Water Demand Peaking Factors

The bottom line for the purposes of projecting water demand is that maximum day peaking factors appear to be historically stable and that there is no compelling reason to believe that the peaking factor will change significantly in the future. For example, although we could speculate that improved irrigation system efficiency should decrease peak water demand at the site scale, more widespread use of irrigation systems (new development and retrofits) could offset individual irrigation unit efficiencies from a systemwide perspective.

## 3.3.6 Future Demand Projection

As indicated, water demand projections are dependent in large part on projected growth in population, as retail, wholesale and non-revenue water demands were assumed to grow at the same rate as population. For example, to project non-revenue water demand in 2020, the non-revenue demand for the most recent calendar year of 2011 was multiplied by the ratio of County population projected for 2020 to the 2011 population (estimated by interpolation between the 2010 and 2020 population numbers). Table 2 provides a summary of the population projections used for this analysis.

Based on the analysis and assumptions described above, Table 3 summarizes water demand projections through 2050 and Figure 9 provides a graphical representation of average and peak day demand for 2000 through 2050.

#### E TETRA TECH

#### Table 2. **Population Projections for Brunswick County**

| Year | Population                 | Percent Change |  |  |
|------|----------------------------|----------------|--|--|
| 2000 | 73,143 <sup>1</sup>        |                |  |  |
| 2010 | 108,176 <sup>1</sup>       | 47.9%          |  |  |
| 2020 | 137,677 <sup>2</sup>       | 27.3%          |  |  |
| 2030 | 167,178 <sup>2</sup>       | 21.4%          |  |  |
| 2040 | 199,323 <sup>3</sup> 19.2% |                |  |  |
| 2050 | 230,483 <sup>3</sup>       | 15.6%          |  |  |

Notes:

<sup>1</sup> Actual population numbers (U.S. Census for 2000 and 2010)

<sup>2</sup> North Carolina State Data Center, <u>http://linc.state.nc.us/</u>
 <sup>3</sup> Based on linear regression of values from 2000-2030.

| Table 3. | Brunswick County | Water Demand | Projections (MGD) |
|----------|------------------|--------------|-------------------|
|          |                  |              |                   |

| Year                               | 2000 <sup>1</sup> | 2010 <sup>1</sup> | 2011 <sup>1</sup> | 2020   | 2030   | 2040   | 2050   |
|------------------------------------|-------------------|-------------------|-------------------|--------|--------|--------|--------|
| Retail Demand                      | 1.903             | 5.088             | 5.370             | 6.653  | 8.078  | 9.631  | 11.137 |
| Industrial Demand                  | 3.934             | 1.993             | 2.193             | 2.193  | 2.193  | 2.193  | 2.193  |
| Wholesale Demand                   | 3.005             | 4.895             | 4.885             | 6.052  | 7.348  | 8.761  | 10.131 |
| Non-Revenue Demand                 | 1.039             | 0.865             | 1.334             | 1.652  | 2.006  | 2.392  | 2.766  |
| Average Demand                     | 9.880             | 12.841            | 13.781            | 16.549 | 19.626 | 22.978 | 26.227 |
| Peak Month Demand <sup>2</sup>     | 12.680            | 18.192            | 22.009            | 26.479 | 31.401 | 36.764 | 41.963 |
| Peak Day Demand <sup>3</sup>       | 17.900            | 21.319            | 25.798            | 28.465 | 33.756 | 39.522 | 45.111 |
| Peak Day Capacity (%) <sup>4</sup> | 60%               | 71%               | 86%               | 95%    | 113%   | 132%   | 150%   |

Notes:

<sup>1</sup> All entries for 2000, 2010 and 2011, including Peak Month and Peak Day, are from actual water demand data

<sup>2</sup> For 2020-2060, Peak Month Demand = Average Demand x 2011 Monthly PF (1.60)

<sup>3</sup> For 2020-2060, Peak Day Demand = Average Demand x 1.72 (average Maximum Day Peaking Factor for the combined output from the plants over the past 12 years)

<sup>4</sup> Peak Day Capacity = Peak Day Demand / 30 MGD (existing treatment capacity)

An examination of Figure 9 shows that the slight decreases in demand between 2008 and 2011 are likely temporary and that the overall trend is increasing in good agreement with projections. Demand for water is expected to accelerate as economic conditions improve and new customers are brought online. To meet this future demand, the County has proposed to expand the existing Northwest WTP from 24 to 36 MGD.

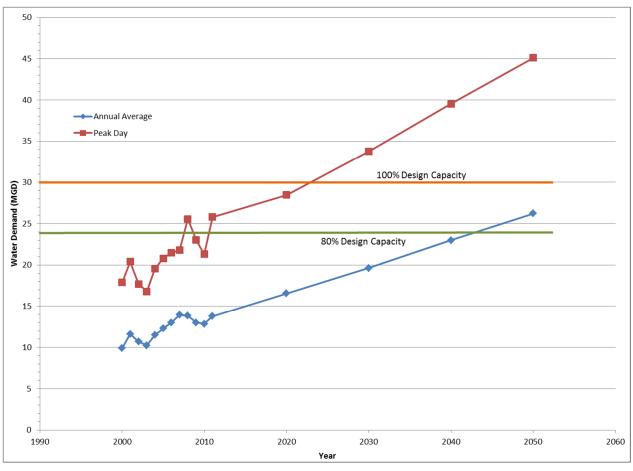



Figure 9. Water Demand (2000-2011) and Projections through 2050

# 4 Water Quality and Aquatic Habitat

The request for an IBT certificate should include a description of the water quality of the source river and receiving river, including information on aquatic habitat for rare, threatened, and endangered species; instream flow data for segments of the source and receiving rivers that may be affected by the transfer; and any waters that are impaired pursuant to section 303(d) of the federal Clean Water Act (33 U.S.C. § 1313(d)). These descriptions for the source (Cape Fear) and receiving (Shallotte) basins are provided below.

## 4.1 CAPE FEAR IBT RIVER BASIN (SOURCE)

The LCFWSA supplies water to the Northwest WTP from an intake on the Cape Fear River above Lock and Dam #1. For this assessment, the study area is composed of a portion of the Cape Fear IBT River Basin in the vicinity of Lock and Dam #1 extending downstream to include the remainder of the basin, hereafter referred to as the *Cape Fear Study Area* (Figure 10). The northern terminus of the study area begins 1 mile north (as Euclidean distance) of the intake above Lock and Dam #1. The inclusion of area above the intake is meant to capture portions of the source basin that might be affected by the withdrawal without including areas farther upstream (extending another 130 miles upstream) that would reasonably be expected to have no impact.

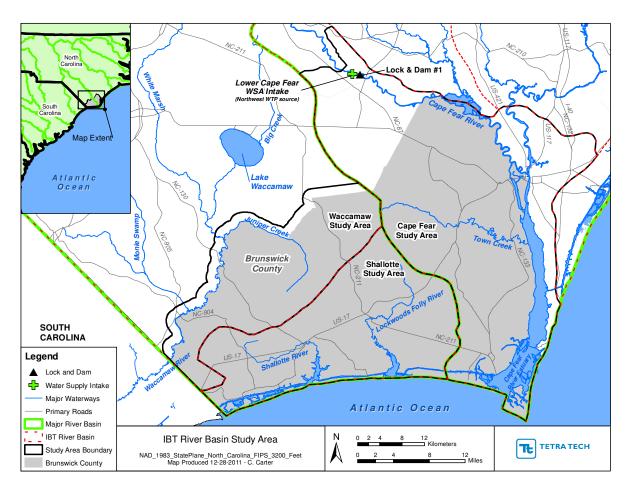



Figure 10. Overview Map of the IBT River Basins Study Area

### 4.1.1 Surface and Groundwater Resources

#### 4.1.1.1 Drainage Basins and Surface Water Supplies

The Cape Fear Study Area is in the Cape Fear *Major* River Basin. The majority of the Cape Fear Study Area is in the Lower Cape Fear subbasin, in U.S. Geological Survey (USGS) Hydrological Unit 03030005, and two North Carolina DWQ subbasins (03-06-16 and 03-06-17). This portion drains the coastal plain wetlands and bay lakes and includes slow-moving tannin stained tributary streams, the large Cape Fear River estuary, and tidal creeks. A small section in the northeast portion of the Cape Fear Study Area is in the Northeast Cape Fear subbasin, in USGS Hydrological Unit 03030007, and North Carolina DWQ subbasin 03-06-23.

#### 4.1.1.2 Surface Water Use Classifications

All surface waters in North Carolina are assigned a primary classification by DWQ. All waters must at least meet the standards for Class C (fishable/swimmable) waters except in the case where natural conditions have led to additional classification (e.g., swampwaters). The other primary classifications provide additional levels of protection for primary water contact recreation (Class B) and drinking water (Water Supply Classes I through V). Classifications for major waterbodies are displayed in Figure 11 and described below.

Most tributaries to and mid-stream sections of the Cape Fear River in the Cape Fear Study Area are classified as C and Sw waters. Class C classification is for waters protected for uses such as secondary recreation, fishing, wildlife, fish consumption, aquatic life, and agriculture. Sw classification is for swamp waters and is a supplemental classification intended to recognize those waters that have low velocities and other natural characteristics that are different from adjacent streams.

Directly downstream from the LCFWSA intake, the waters of the Cape Fear River and associated tributaries (Weyman Creek, Copper Smith Branch, Turkeypen Branch, Turner Branch, Beaverdam Creek, Horsepen Branch, Double Branch, and Natmore Creek) are classified as WS-IV and Sw. WS-IV classification is for waters used as sources of water supply. In the Cape Fear Study Area, waters of Toomers Creek also are classified as WS-IV.

A large portion of the Cape Fear River and the Brunswick River (from source to the Cape Fear River) are classified as SC waters. SC classification is for tidal salt waters protected for secondary recreation such as fishing, boating, and other activities involving minimal skin contact; fish and noncommercial shellfish consumption; aquatic life propagation and survival; and wildlife.

Several of the tidal creeks, outlet channels, the mouth of the Cape Fear River, and the Intracoastal Waterway (ICWW) are classified as SA;HQW waters. SA waters are tidal salt waters that are used for commercial shellfishing or marketing purposes. All SA waters are also HQW by supplemental classification. HQW is a supplemental classification intended to protect waters that are rated excellent on the basis of biological and physical/chemical characteristics through DWQ monitoring or special studies, primary nursery areas designated by the Marine Fisheries Commission, and other functional nursery areas designated by the Marine Fisheries Commission.

Pretty Pond, Clear Pond, Allen Creek (Boiling Springs Lake), and a section of Toomers Creek are all class B and Sw. Class B waters are protected for all Class C uses in addition to primary recreation.

Walden Creek and associated tributaries (White Spring Creek, Nigis Creek, Nancy's Creek, Gum Log Branch, Governors Creek, Fishing Creek), the upstream portion of Dutchman Creek, Beaverdam Creek (from the source to the mouth of Polly Gully Creek), and Polly Gully Creek (from the source to Beaverdam Creek) are SC, Sw, and HQW waters.

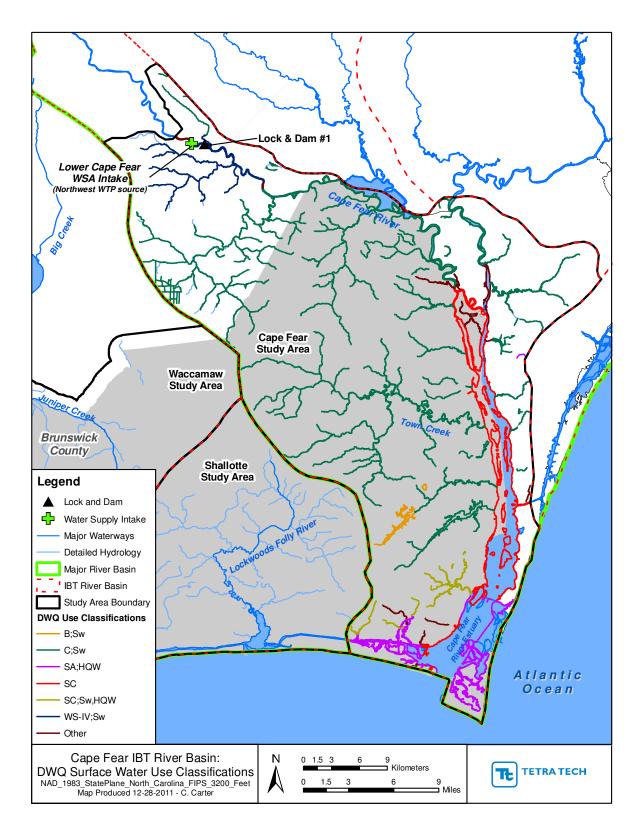



Figure 11. DWQ Surface Water Use Classifications for the Cape Fear Study Area

#### 4.1.1.3 Existing Surface Water Quality

The North Carolina Water Quality Assessment and Impaired Waters List is an integrated report that includes both the Clean Water Act section 305(b) and 303(d) reports. DWQ's 2010 integrated report assessment lists 25 waterbodies in the Cape Fear Study Area as impaired for various designated use categories (e.g., recreation, shellfish harvesting, or aquatic life; NCDWQ, 2010a). Of the 25 waterbodies listed, 19 consist of coastal waters and tidal creeks, the Brunswick River, the Northeast Cape Fear River, Burnt Mill Creek, and Hewletts Creek (Table 4, Figure 12), and the remaining 6 waterbodies are sections of the Cape Fear River (Table 5).

| Table 4. | Waters with Impaired Use Support Rating in the Cape Fear Study Area (not including |
|----------|------------------------------------------------------------------------------------|
|          | the Cape Fear River)                                                               |

| Waterbody                                                                                                 | Use Category            | Reason for<br>Impairment  | Parameter                                              |
|-----------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--------------------------------------------------------|
| Atlantic Ocean (Dolphin Court in Kure<br>Beach to Spartanburg Avenue in<br>Carolina Beach)                | Recreation              | Standard<br>Violation     | Enterococcus                                           |
| Bald Head Creek                                                                                           | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Conditionally Approved Open |
| Beaverdam Creek (from the mouth of Polly Gully Creek to the ICWW)                                         | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |
| Brunswick River                                                                                           | Aquatic Life            | Standard<br>Violation     | Low Dissolved Oxygen                                   |
| Burnt Mill Creek                                                                                          | Aquatic Life            | Poor<br>Bioclassification | Ecological/biological Integrity<br>Benthos             |
| Coward Creek                                                                                              | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |
| Denis Creek                                                                                               | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |
| Dutchman Creek (from CP&L Discharge<br>Canal to the ICWW)                                                 | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |
| Dutchman Creek Outlet Channel                                                                             | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |
| Dutchman Creek Shellfish Area                                                                             | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Conditionally Approved Open |
| Elizabeth River (the section of Elizabeth<br>River exclusive of the Elizabeth River<br>Shellfishing Area) | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |

| Waterbody                                                                       | Use Category            | Reason for<br>Impairment | Parameter                                              |
|---------------------------------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------------------|
| Elizabeth River Shellfishing Area                                               | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-<br>Conditionally Approved Open |
| Fishing Creek                                                                   | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-<br>Conditionally Approved Open |
| Hewletts Creek                                                                  | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-<br>Prohibited                  |
| ICWW                                                                            | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-<br>Prohibited                  |
| Molasses Creek                                                                  | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-<br>Prohibited                  |
| Northeast Cape Fear River (from the mouth of Ness Creek to the Cape Fear River) | Aquatic Life            | Standard<br>Violation    | Copper                                                 |
| Piney Point Creek                                                               | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-<br>Prohibited                  |
| Southport Restricted Area                                                       | Aquatic Life            | Standard<br>Violation    | Arsenic, Copper, Nickel                                |

#### Table 5. Impairment Ratings for the Cape Fear River in the Cape Fear Study Area

| Location along Cape Fear River                                                                              | Use Category            | Reason for<br>Impairment  | Parameter                                              |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------|--------------------------------------------------------|--|
| From a line across the river between                                                                        |                         |                           | Arsenic                                                |  |
| Lilliput Creek and Snows Cut to a line across the river from Walden Creek to                                | Aquatic Life            | Standard<br>Violation     | Copper                                                 |  |
| the basin                                                                                                   |                         |                           | Nickel                                                 |  |
| From the raw water supply intake at<br>Federal Paper Board Corporation<br>(Riegelwood) to Bryant Mill Creek | Aquatic Life            | Fair<br>Bioclassification | Ecological/biological Integrity<br>Benthos             |  |
|                                                                                                             |                         |                           | Turbidity                                              |  |
| From upstream of the mouth of Toomers<br>Creek to a line across the river between                           | Aquatic Life            | Standard<br>Violation     | Copper                                                 |  |
| Lilliput Creek and Snows Cut                                                                                |                         |                           | Low Dissolved Oxygen                                   |  |
|                                                                                                             |                         |                           | Low pH                                                 |  |
| Prohibited area east of the ICWW in the Cape Fear River                                                     | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |  |
|                                                                                                             | Aquatic Life            | Standard<br>Violation     | Arsenic                                                |  |
|                                                                                                             |                         |                           | Copper                                                 |  |
| Prohibited area north of Southport<br>Restricted Area and west of the ICWW in<br>the Cape Fear River        |                         |                           | Nickel                                                 |  |
|                                                                                                             | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |  |
| Prohibited area near Southport                                                                              | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Prohibited                  |  |
| Prohibited area south of the Southport<br>Restricted Area                                                   | Shellfish<br>Harvesting | Loss of Use               | Shellfish Growing Area-<br>Conditionally Approved Open |  |

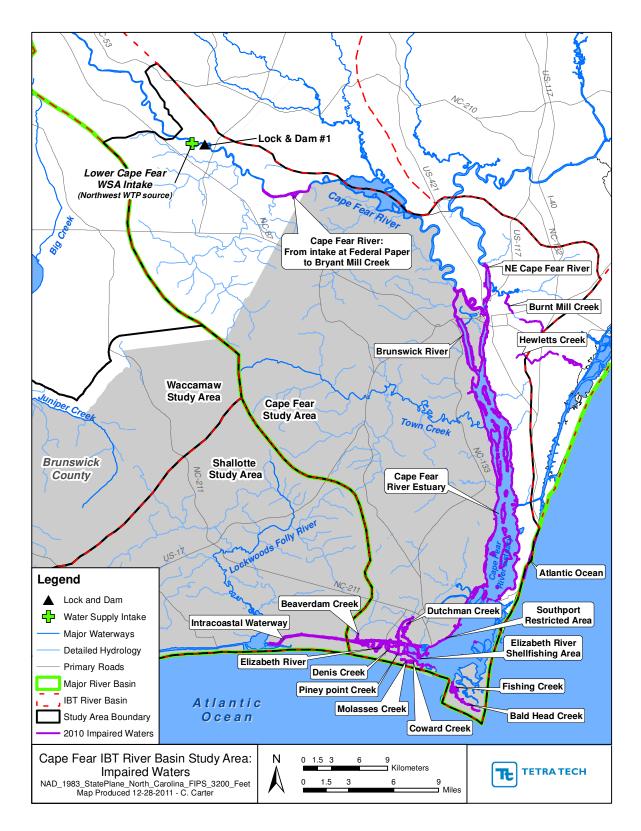



Figure 12. Impaired Waters of the Cape Fear Study Area

#### 4.1.1.4 Total Maximum Daily Load (TMDL)

A TMDL was being developed for the Cape Fear Estuary (NCDWQ, 2005). The Cape Fear Estuary has been listed since 1998 as impaired for aquatic life because of dissolved oxygen standard violations (from upstream mouth of Toomers Creek to a line across the river between Lilliput Creek and Snow's Cut; NCDWQ, 2008). Sources of oxygen demand that cause the low dissolved oxygen levels include a considerable volume of blackwater and swamp drainage that contributes natural sources of oxygen-consuming materials and point and nonpoint sources from anthropogenic sources (e.g., agriculture and urban runoff). This portion of the estuary is influenced both by ocean tides and high freshwater flows from the entire upstream basin and therefore goes through many extreme changes in water column chemistry over the course of a year (NCDWQ, 2005). The University of North Carolina at Charlotte completed a final report discussing the results of the Cape Fear Estuary Dissolved Oxygen Model (Bowen et al. 2009). The model was used to investigate the effects of various organic matter and ammonia load reduction scenarios on the dissolved oxygen concentrations in the estuary. Given questions of natural versus anthropogenic sources of oxygen demand and what the dissolved oxygen criteria for the lower Cape Fear River should actually be, DWQ has placed the TMDL development on hold.

North Carolina has issued a statewide fish consumption advisory for mercury; therefore, all surface waters in the state are considered impaired by mercury (NCDWQ, 2013). As a result, a statewide mercury TMDL was developed by NCDWQ and approved by EPA in October 2012. The TMDL estimated the proportions of mercury contributions to water and fish from wastewater discharges, in-state air sources, and out-of-state air sources, and calculated the reductions needed to protect North Carolina waters from mercury impairment and remove the fish consumption advisory. Using statistical analysis and the Community Multi-scale Air Quality (CMAQ) model, NCDWQ determined that a 67% reduction is needed from the 2002 baseline mercury loading. Reductions in both point and nonpoint sources are required, though the most significant source of mercury is nonpoint atmospheric deposition. The NPDES program will play a role in managing mercury from wastewater point sources, which account for 2% of the mercury load, while reductions in atmospheric deposition will require strategies involving other agencies outside of NCDWQ such as the NC Division of Air Quality.

#### 4.1.1.5 Groundwater

The Cape Fear Study Area is in the Coastal Plain physiographic province in the southern coastal portion of North Carolina. The aquifers underlying the Cape Fear Study Area include the surficial aquifer, the Castle Hayne aquifer, and aquifers of the Cretaceous Aquifer System including the Lower Cape Fear, Upper Cape Fear, Black Creek, and Pee Dee aquifers (NCDWR, 2011).

The surficial aquifer is widely used throughout North Carolina for individual home wells. The surficial aquifer is the shallowest and most susceptible to contamination from septic tank systems and other pollution sources (NCDWR, 2011). It is the saturated portion of the upper layer of sediments. The thickness of this layer, from the surface down to the first major confining bed, is typically from 20 to 50 feet. The surficial aquifer is unconfined, meaning that its upper surface is the water table rather than a confining bed. The composition of the surficial aquifer varies across the region, but it is generally 50 to 70 percent sand, allowing high infiltration rates (Huffman, 1996).

The Castle Hayne aquifer, underlying the eastern half of the Coastal Plain, is the most productive aquifer in the state. It is primarily limestone and sand. The Castle Hayne is noted for its thickness (more than 300 feet in places) and the ease of water movement within it, both of which contribute to high well yields. It lies fairly close to the surface toward the south and west, deepening rapidly toward the east. Water in the Castle Hayne aquifer ranges from hard to very hard because of its limestone composition. Iron concentrations tend to be high near recharge areas but decrease as the water moves further through the limestone (Huffman, 1996).

The Cretaceous aquifer system is a grouping of several of the oldest and deepest sedimentary deposits that lie directly over the basement rock. The Cretaceous is the primary source of water for the western half of the coastal plain with the exception of the Sandhills region. To the east, the Cretaceous dips underneath the Castle Hayne. Toward the west, it rises near the surface, covered only by the surficial deposits. Water cannot move as easily in the Cretaceous as it does in the Castle Hayne, but the Cretaceous aquifer is very thick, allowing deep and productive wells. Water from the Cretaceous is generally soft and slightly alkaline, requiring no treatment for most uses (Huffman, 1996).

### 4.1.2 Aquatic and Wildlife Habitat and Resources

#### 4.1.2.1 Significant Natural Heritage Areas

The North Carolina Department of Environment and Natural Resources, Division of Parks and Recreation, Natural Heritage Program (NHP) in cooperation with the North Carolina Center for Geographic Information and Analysis (NCCGIA), developed the Significant Natural Heritage Areas (SNHAs) digital data to determine the areas containing ecologically significant natural communities or rare species (NCDENR, 2011b).

Just over 25 percent of the Cape Fear Study Area has been identified as SNHA (Figure 13). The NHP has assigned a level of significance to SNHA on the basis of national, state, regional, or county significance. The Cape Fear Study Area has 9 sites that are SNHA and identified as areas of national significance. These sites total approximately 7 percent of the Cape Fear Study Area and include Bald Head Island, Battery Island, Boiling Spring Lakes Wetland Complex, the Green Swamp, MOTSU Governors Creek Natural Area, Northeast Cape Fear River Floodplain, Orton Pond Aquatic Habitat, Town Creek Aquatic Habitat, and Town Creek Marshes and Swamp (Table 6).

Twenty-three sites were identified as areas of state significance and occupy approximately 14 percent of the Cape Fear Study Area (Table 6). Eighteen sites were identified as areas of regional significance and currently occupy approximately 4 percent of the area, and eight sites were identified as areas of county significance and occupy less than 1 percent of the area.

| Significance                                  | Site Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National<br>(6.8% of Cape Fear<br>Study Area) | Bald Head Island, Battery Island, Boiling Spring Lakes Wetland Complex, Green<br>Swamp, MOTSU Governors Creek Natural Area, Northeast Cape Fear River<br>Floodplain, Orton Pond Aquatic Habitat, Town Creek Aquatic Habitat, Town Creek<br>Marshes and Swamp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| State<br>(13.7% of Cape Fear<br>Study Area)   | 421 Sand Ridge, Battle Royal Bay, Bluff Island and East Beach, Boiling Spring Lakes<br>Limesink Complex, Brunswick River/Cape Fear River Marshes, Bryant Mill (Greenbank)<br>Bluff, Carolina Beach State Park, Hog Branch Ponds, Hood Creek Floodplain and<br>Slopes, Lower Black River Swamp, Lower Cape Fear River Aquatic Habitat, Lower<br>Cape Fear River Bird Nesting Islands, MOTSU Buffer Zone Natural Area, MOTSU<br>Northwest Natural Area, MOTSU Three Ponds Natural Area, Natmore Sandhills, Orton<br>Sandhills and Limesinks, Pleasant Oaks/Goose Landing Plantations, Pretty Pond<br>Limesink Complex, Southport Ferry Landing Forest, Upper Smith Creek Natural Area,<br>White Spring Ponds Complex, Zekes Island Estuarine Sanctuary |

Table 6. SNHAs in the Cape Fear Study Area

| Significance                                  | Site Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regional<br>(4.5% of Cape Fear<br>Study Area) | Alligator Branch Sandhill and Flatwoods, Blue Pond/Allen Creek, Cape Fear River<br>Lowlands, Clarendon Plantation Limesinks, Coast Guard Loran Station Natural Area,<br>Doctor Point Hammocks, Fort Caswell Dunes and Marshes, Fort Fisher State<br>Recreation Area, Funston Bays, Goose Pond Limesinks, Lords Creek Natural Area,<br>Middle Island, Neils Eddy Landing, Rabontown Limesinks, Rattlesnake Branch<br>Sandhills, South Wilmington Sandhills, Sturgeon Creek Tidal Wetlands, Winnabow<br>Savanna and Sandhill |
| County<br>(0.3% of Cape Fear<br>Study Area)   | Barnards Creek, Greenfield Lake, Henrytown Savanna, Little Green Swamp, MOTSU<br>Brunswick Forest Natural Area, Mott Creek Natural Area, Orton Powerline Loosestrife<br>Site, Turkey Branch Sandhill                                                                                                                                                                                                                                                                                                                       |

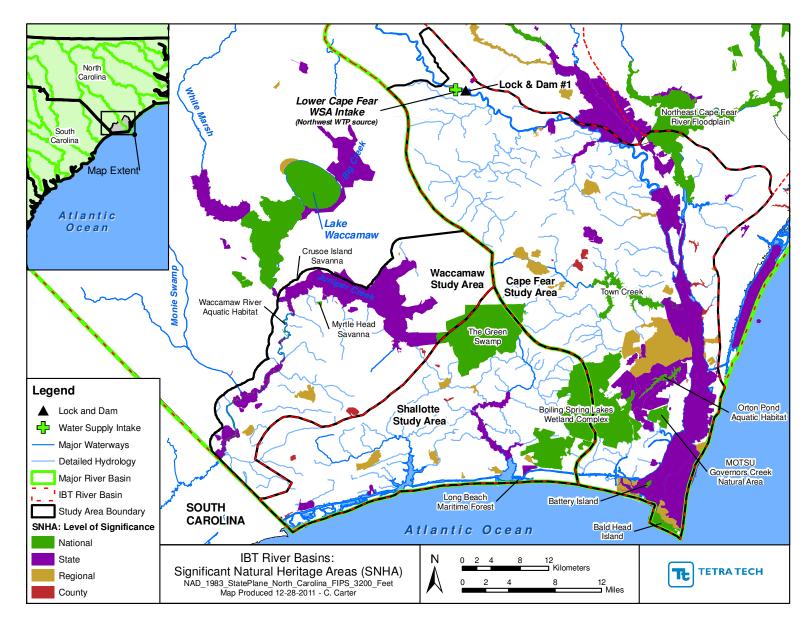



Figure 13. SNHAs in the IBT River Basins Study Area (Sites with National Level of Significance are Labeled)

#### 4.1.2.2 Aquatic Habitat and Resources

The Cape Fear River and its tributaries in the Cape Fear Study Area have low-gradient sandy substrata. Dominant fishes in these waters are the longnose gar (*Lepisosteus osseus*), American eel (*Anguilla rostrata*), shad (*Alosa* and *Dorosoma* spp.), carp (*Cyprinus carpio*), golden shiner (*Notemigonus crysoleucas*), ironcolor shiner (*Notropis chalybaeus*), silver redhorse (*Moxostoma collapsum*), creek chubsucker (*Erimyzon oblongus*), channel catfish (*Ictalurus punctatus*), bullheads (*Ameiurus spp.*), pirate perch (*Aphredoderus sayanus*), Atlantic needlefish (*Strongylura marina*), mosquitofish (*Gambusia affinis*), white perch (*Morone americana*), striped bass (*M. saxatilis*), sunfishes (*Lepomis spp.*), largemouth bass (*Micropterus salmoides*), black crappie (*Pomoxis nigromaculatus*), tessellated darter (*Etheostoma olmstedi*), and yellow perch (*Perca flavescens*) (Marotti, 2011).

The lower reach of the Cape Fear River, an important SNHA, is brackish and supports numerous rare marine fishes, including the endangered shortnose sturgeon (*Acipenser brevirostrum*), and freckled blennies (*Hypsoblennius ionthas*), marked gobies (*Gobionellus stigmaticus*), spinycheek sleepers (*Eleotris pisonis*), and opossum pipefish (*Microphis brachyurus*). The endangered manatee (*Trichechus manatus*) is an occasional visitor, especially in summer (NCDWQ, 2005).

Town Creek, a nationally significant site, is a short creek that flows eastward in eastern Brunswick County and empties into the Cape Fear River. Despite its short length, it contains the only known population of the Greenfield ramshorn snail (*Helisoma eucosmium*), a globally rare and imperiled mollusk, and several other rare animals and plants (NCDWQ, 2005).

In the Cape Fear Study Area, the Cape Fear River, Northeast Cape Fear River, Town Creek, Sturgeon Creek (and its tributary, Mill Creek), Indian Creek, Hood Creek, Liliput Creek, Mallory Creek, Little Mallory Creek, and Livignston Creek are anadromous fish spawning areas (One NC Naturally, 2011) (Figure 14).

In the Cape Fear Study Area, the following areas are designated fish nursery areas: Cape Fear River, Northeast Cape Fear River, tributaries to Walden Creek (Governor's Creek, Nancy's Creek, White Spring Creek, and Nigis Creek), the Intercoastal Waterway, and tidal creeks such as Deep Creek, Cape Creek, Bald Head Creek, Dutchman Creek, Molasses Creek, Denis Creek, Jump and Run Creek, Gulf Gully Creek, Beaverdam Creek, and Polly Gully Creek (Figure 15). Past and present sampling indicates that these areas support a high abundance and diversity of juvenile fish species (One NC Naturally, 2011).

Shellfish Growing Areas (SGAs) open for shellfish harvesting in the Cape Fear Study Area include waters on the east bank near the mouth of the Cape Fear River and Bald Head Island Area, including Bay Creek, Deep Creek, and Cape Creek (NCDEH-SSB, 2011), all other SGAs in waters of the lower Cape Fear River and select tributaries, the Northeast Cape Fear River, Town Creek, and the Intercoastal Waterway and associated tidal creeks are closed for harvesting because of the extent of contamination of waters in each SGA. Of the areas closed for harvesting, Fishing Creek and Bald Head Creek in the Bald Head Island Area and Elizabeth River in the Southport Area are closed only conditionally and could be reopened if water quality in these areas is improved (NCDEH-SSB, 2011) (Figure 16).

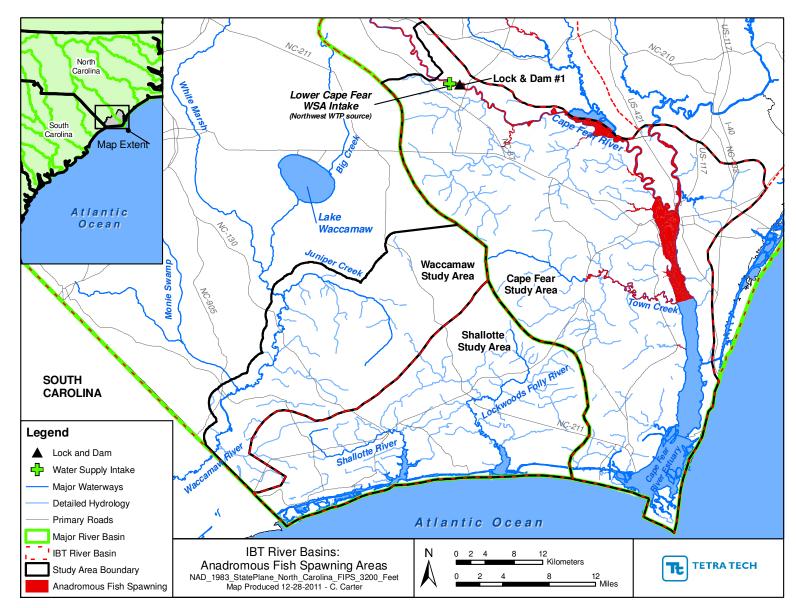



Figure 14. Anadromous Fish Spawning Areas in the IBT River Basins Study Area

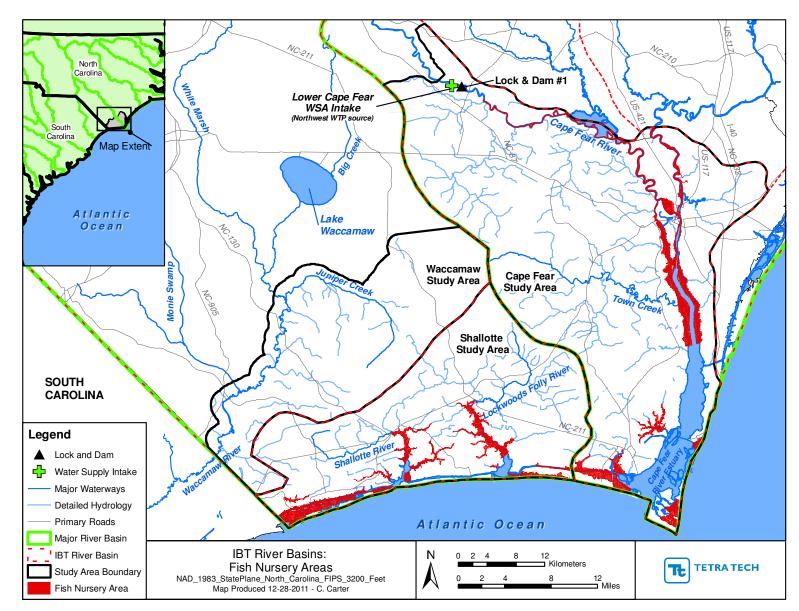



Figure 15. Fish Nursery Areas in the IBT River Basins Study Area

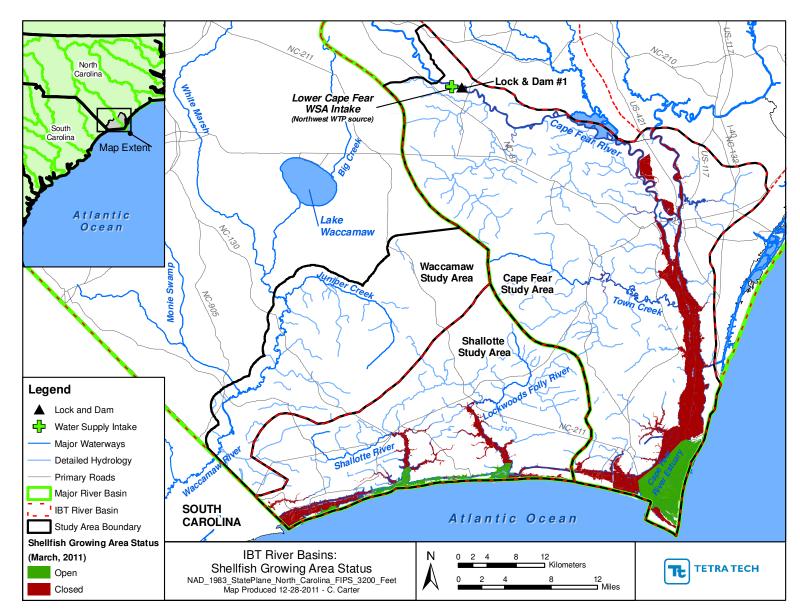



Figure 16. SGAs in the IBT River Basins Study Area

#### 4.1.2.3 Rare and Protected Species

The Cape Fear Study Area boundary includes sections of five counties: Brunswick, New Hanover, Columbus, Bladen, and Pender. In these counties, several species are protected at the state or federal level. North Carolina NHP's Biotic Database (NCNHP, 2011) lists all protected species. In the study area are 28 invertebrate animals, 1 nonvascular plant, 157 vascular plants, and 54 vertebrate animals. A complete list of state and federally protected species in counties of the study area is in Appendix B.

#### 4.1.3 In-Stream Flow

Changes in hydrology can affect habitat for aquatic species. Given the size of the withdrawals relative to the river's low flow regime and the tidal nature of the river below Lock and Dam #1, NCDWR deemed that a field study of stream flow impacts on habitat and recreation downstream of the dam would not be conducted (July 17, 2009 letter from NCDWR to Tetra Tech; provided in the EA). Cumulative withdrawals represent about 3% of mean river flow (5,063 cfs), 6% of median river flow (2,540 cfs), and 17% of 10th percentile river flow (969 cfs) based on the most recent USGS Water Data Report. The cumulative withdrawals incorporate all LCFWSA customers including Brunswick just above the Lock and Dam and are 164 cfs for the 2050 planning horizon. Section 8 provides an analysis of withdrawals on the Cape Fear River using the Cape Fear Hydrologic Model.

## 4.2 SHALLOTTE IBT RIVER BASIN (RECEIVING)

The Shallotte IBT River Basin is entirely within the County and will be referred to as Shallotte Study Area in this section (see Figure 10 at the beginning of this Section 4).

#### 4.2.1 Surface and Groundwater Resources

#### 4.2.1.1 Drainage Basins and Surface Water Supplies

The Shallotte Study Area is in the Lumber River Basin. It contains a small system of coastal rivers that empty into the Atlantic Ocean. The significant majority of the Shallotte Study Area is in the Long Bay Subbasin, in USGS Hydrological Unit 03040208. This subbasin is mainly in the poorly drained flatwoods ecoregion of the Coastal Plain but also has barrier islands, coastal marshes, and swampy peat lands (NCDWQ, 2010b)

#### 4.2.1.2 Surface Water Use Classifications

All surface waters in North Carolina are assigned a primary classification by NCDWQ. Classifications of major waterbodies are displayed in Figure 17 and described below.

The Intercoastal Waterway, mouth of the Shallotte River, mouth of Lockwoods Folly River, Saucepen Creek, and Calabash River are classified as SA and HQW waters. SA waters are tidal salt waters that are used for commercial shellfishing or marketing purposes. All SA waters are also HQW by supplemental classification. HQW is a supplemental classification intended to protect waters that are rated excellent on the basis of biological and physical/chemical characteristics through DWQ monitoring or special studies, primary nursery areas designated by the Marine Fisheries Commission, and other functional nursery areas designated by the Marine Fisheries Commission.

Upstream sections of the mainstem of both the Shallotte River and the Lockwoods Folly River are classified as SC and HQW waters. SC classification is for tidal salt waters protected for secondary recreation such as fishing, boating, and other activities involving minimal skin contact; fish and noncommercial shellfish consumption; aquatic life propagation and survival; and wildlife.

#### E TETRA TECH

Tributaries throughout the Shallotte Study Area and Cawcaw Swamp are generally classified as either C; SW, HQW waters or C and Sw waters. Class C is for waters protected for uses such as secondary recreation, fishing, wildlife, fish consumption, aquatic life, and agriculture.

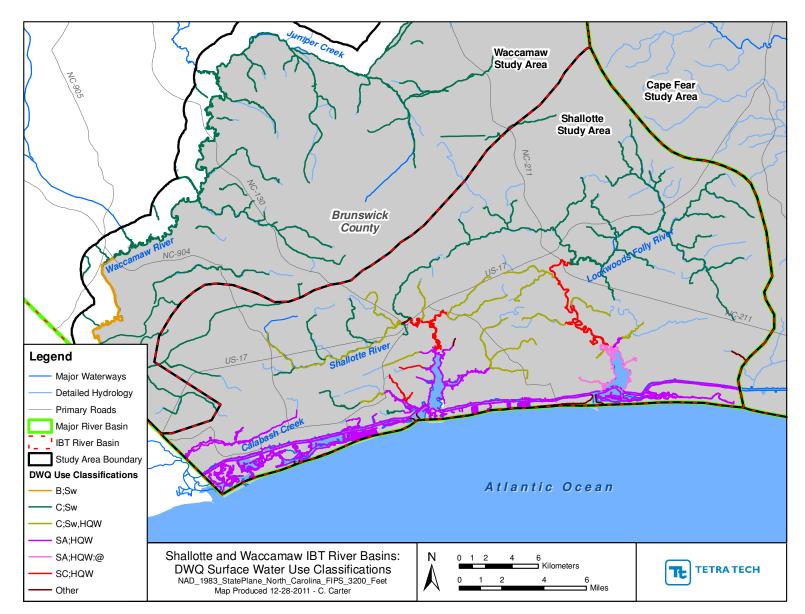



Figure 17. DWQ Surface Water Use Classifications for the Shallotte and Waccamaw Study Areas

#### 4.2.1.3 Existing Surface Water Quality

DWQ's 2010 integrated report assessment of North Carolina waterbodies lists 37 waterbodies in the Shallotte Study Area as impaired for the designated use of shellfish harvesting (Figure 18; NCDWQ, 2010a). Of the 37 waterbodies listed, 2 are also impaired for the aquatic life designated use category. Table 7 lists all impaired waterbodies in the Shallotte Study Area. New coastal stormwater rules as a result of Session Law 2008-211 went into effect on October 1, 2008 place stricter stormwater standards on the County and 19 other coastal counties. Upon implementation, these rules should reduce fecal coliform bacteria from future developments.

| Waterbody                                                     | Use<br>Category         | Reason for<br>Impairment | Parameter                                            |
|---------------------------------------------------------------|-------------------------|--------------------------|------------------------------------------------------|
| Big Gut Slough                                                | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Closed |
| Blane Creek                                                   | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Bonaparte Creek (from the ICWW to the Little River)           | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Bull Creek                                                    | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Calabash River (from the                                      | Aquatic<br>Life         | Standard<br>Violation    | Copper, High Water Temperature, Turbidity            |
| source to the North<br>Carolina-South Carolina<br>state line) | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                    |
| Clam Creek                                                    | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Clayton Creek (from the ICWW to the Little River)             | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Cooter Creek                                                  | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Dead Backwater                                                | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| East River                                                    | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Eastern Channel                                               | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Fox Creek                                                     | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open   |
| Gause Landing Creek (from<br>Kilbart Slough to the            | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                    |

| Table 7. | Waters with Impaired Use Support Rating in the Shallotte Study Area |
|----------|---------------------------------------------------------------------|
|          | Maters with impared ose oupport nating in the onabotic olday Area   |

| Waterbody                                                                 | Use<br>Category         | Reason for<br>Impairment | Parameter                                                                                                 |
|---------------------------------------------------------------------------|-------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------|
| ICWW)                                                                     |                         |                          |                                                                                                           |
| Goose Creek (from<br>Brunswick County SR 1143<br>to Saucepan Creek)       | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Hangman Branch                                                            | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| ICWW (several sections)                                                   | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area (either Conditionally Approved Open, Conditionally Approved Closed, or Prohibited) |
| Jinks Creek (from the<br>Eastern Channel to the<br>ICWW)                  | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open                                                        |
| Jinnys Branch (from<br>Brunswick County SR 1143<br>to Saucepan Creek)     | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Kilbart Slough                                                            | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Little River                                                              | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open                                                        |
| Lockwoods Creek                                                           | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Lockwoods Folly River<br>(several sections)                               | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area (either Prohibited or<br>Conditionally Approved Closed)                            |
| Marina south of the ICWW<br>(Holden Beach Marina)                         | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Mill Creek (from Brunswick<br>County SR 1112 to<br>Lockwoods Folly River) | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Montgomery Slough (from<br>the ICWW west of                               | Aquatic<br>Life         | Standard<br>Violation    | Low Dissolved Oxygen                                                                                      |
| Lockwoods Folly Inlet<br>extending eastward 2.4<br>miles)                 | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Mullet Creek                                                              | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                                                         |
| Salt Boiler Creek                                                         | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open                                                        |

| Waterbody                                                                                                                                             | Use<br>Category         | Reason for<br>Impairment | Parameter                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|--------------------------------------------------------------------------------|
| Sams Branch (from the<br>proposed dam<br>approximately 3/4 mile<br>upstream from the Shallotte<br>River channel to the<br>Shallotte River 0.56 miles) | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                              |
| Saucepan Creek                                                                                                                                        | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                              |
| Shallotte Creek (from Bell<br>Branch to Shallotte River)                                                                                              | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Closed                           |
| Shallotte River (several sections)                                                                                                                    | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area (either Prohibited or<br>Conditionally Approved Closed) |
| Sols Creek (from Eastern<br>Channel to the ICWW)                                                                                                      | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open                             |
| Spring Creek                                                                                                                                          | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Closed                           |
| Still Creek (from Eastern<br>Channel to the ICWW)                                                                                                     | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open                             |
| The Big Narrows (from<br>Jinks Creek to the ICWW)                                                                                                     | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Open                             |
| The Mill Pond (from a point<br>1.0 mile below Brunswick<br>County SR 1145 to the<br>Shallotte River)                                                  | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Prohibited                                              |
| The Swash                                                                                                                                             | Shellfish<br>Harvesting | Loss of Use              | Shellfish Growing Area-Conditionally Approved Closed                           |

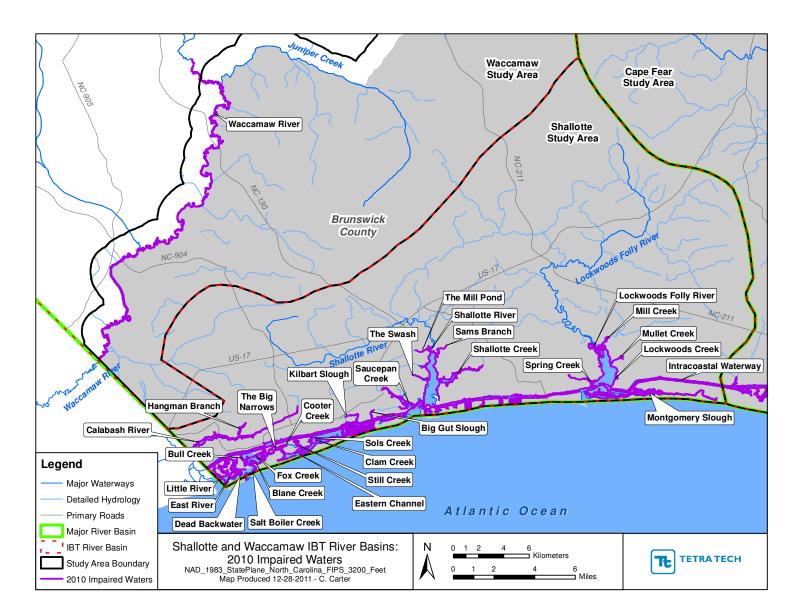



Figure 18. Impaired Waters in the Shallotte and Waccamaw Study Areas

#### 4.2.1.4 Total Maximum Daily Load (TMDL)

The Lockwoods Folly River and the upriver portion of the estuary are prohibited for shellfish harvesting because of excessive levels of fecal coliform bacteria (NCDWQ, 2010c). In 2007 the NCDWQ Watershed Assessment Team completed a water quality study in the Lockwoods Folly River watershed as part of an agreement with the North Carolina Ecosystem Enhancement Program (NCDWQ, 2010c). Also in 2007 a local watershed plan for the Lockwoods Folly watershed was created by the North Carolina Coastal Federation, North Carolina Ecosystem Enhancement Program, North Carolina Department of Transportation, and the North Carolina Shellfish Sanitation Program, with support from Stantec. Nonpoint Source 319 Grant Program funds were subsequently approved to support third-party development of the Lockwoods Folly River Fecal Coliform TMDL. EPA approved the TMDL, and it will be implemented with the goal to reduce high fecal coliform concentrations to levels whereby the designated uses for these waterbodies will be met (NCDWQ, 2010c).

North Carolina has issued a statewide fish consumption advisory for mercury; therefore, all surface waters in the state are considered to be impaired by mercury (NCDWQ, 2011). A brief discussion is provided in Section 4.1.1.4.

#### 4.2.1.5 Groundwater

The Shallotte Study Area is in the Coastal Plain physiographic province in the southern coastal portion of North Carolina. The aquifer underlying the Shallotte Study Area is the surficial aquifer composed of unconsolidated sand and gravel (NCDWR, 2011). Surficial aquifers are described in Section 4.1.1.5.

#### 4.2.2 Aquatic and Wildlife Habitat and Resources

#### 4.2.2.1 Significant Natural Heritage Areas

Approximately 19 percent of the Shallotte Study Area has been identified as SNHA (NCDENR, 2011a) (Figure 13). The Shallotte Study Area has three sites that are SNHA that have been identified as areas of national significance. These sites total approximately 16 percent of the Shallotte Study Area and include the Boiling Spring Lakes Wetland Complex, the Green Swamp, and the Long Beach Maritime Forest (Table 8).

Seven sites were identified as areas of state significance and occupy approximately 2 percent of the Shallotte Study Area (Table 8). Eight sites were identified as areas of regional significance and occupy approximately 1 percent of the Shallotte Study Area, and 4 sites were identified as areas of county significance and occupy less than 1 percent of the area. A description for each level of significance is provided in Section 4.1.2.1.

| Significance                                | Site Name                                                                                                                                                                                                           |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| National<br>(15.9% of Shallotte Study Area) | Boiling Spring Lakes Wetland Complex, Green Swamp, and Long Beach Maritime Forest                                                                                                                                   |
| State<br>(2.0% of Shallotte Study Area)     | Brantley Island, Colkins Neck Remnant, Juniper Creek<br>Floodplain, Juniper Creek/Driving Creek Aquatic Habitat,<br>Lockwoods Folly River Tidal Wetlands, Sunset Beach Wood<br>Stork Ponds, Sunset Harbor/Ash Swamp |

#### Table 8. SNHAs in the Shallotte Study Area

| Significance                               | Site Name                                                                                                                                                                                                                                                    |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Regional<br>(1.4% of Shallotte Study Area) | Big Cypress Bay and Ponds, Bird Island, Fall Swamp/Middle<br>River Limesink Complex, Royal Oak Swamp Marl Outcrop,<br>Sandy Branch Sand Ridge and Bay Complex, Secession<br>Maritime Forest, Shallotte Creek Sandhills, Stanly Road Coastal<br>Fringe Forest |
| County<br>(0.2% of Shallotte Study Area)   | Bonaparte Landing Maritime Forest, Cumbee Pond and Sandhills, Gause Savanna, Middle Swamp                                                                                                                                                                    |

#### 4.2.2.2 Aquatic Habitat and Resources

Carolina flatwoods are regions where flow is often slow and ephemeral. This low flow contributes to the coastal plain being dominated by blackwater systems that often consist of braided streams, wide floodplains and pocosin wetlands. The water is usually absent of sediment but has a dark color from tannins that are leached from organic matter. This tannic acid produces a pH that is naturally much lower than other river systems. Also these low-flow streams and wetlands can have natural dissolved oxygen levels below the 5 milligrams per liter (mg/L) freshwater standard (NCDWQ, 2010b). Two major rivers within the Shallotte Study Area are the Shallotte and Lockwoods Folly rivers.

A unique type of wetland known as Carolina bays are throughout much of the basin. Carolina bays are a type of isolated depressional wetland that range in size from a few acres to several hundred acres. They are on the Atlantic Coastal Plain from northern Florida to southern New Jersey, but are most highly concentrated in southeastern North Carolina and northeastern South Carolina. These depressional wetlands are distinguished from other wetlands by their elliptical shape, orientation, and an eolian sand rim that is most pronounced along the southeastern shoreline. Many of these wetlands, especially the smaller ones, are ephemeral and provide an ideal habitat for amphibians. They have a high degree of biodiversity mainly from varying amounts of soil moisture from inundated in the center to increasingly drier at the edges. Because these wetlands are often isolated from interaction with other surface waters, rare or endemic species are in and around many of them (NCDWQ, 2010b).

In the Shallotte Study Area, the Shallotte River including Sharron Creek, the Lockwoods Folly River including Mill Creek and Pamlico Creek, Long Bay, The Millpond, the ICWW, and Calabash Creek are designated fish nursery areas (Figure 15). Past and present sampling indicates that these areas support a high abundance and diversity of juvenile fish species (One NC Naturally, 2011).

SGAs open for shellfish harvesting in the Shallotte Study Area include waters of the inlets and downstream portions of the Shallotte and Lockwoods Folly rivers, Tubbs Inlet Area, and the Calabash Area (NCDEH-SSB, 2011); all other SGAs in the Shallotte Study Area are closed for harvesting because of the extent of contamination of waters in each SGA. Of the areas closed for harvesting, Shallotte Creek, Saucepen Creek, Davis Creek, upstream portions of the Shallotte and Lockwoods Folly rivers, portions of the Calabash Area and ICWW west of the Shallotte River inlet, Calabash/Sunset Beach/Boneparte Creek Area, and the Ocean Isle Beach Area are closed only conditionally and could be reopened if water quality in these areas is improved (NCDEH-SSB, 2011) (Figure 16).

Anadromous fish spawning areas have not been identified in the Shallotte Study Area (One NC Naturally, 2011).

#### 4.2.2.3 Rare and Protected Species

The Shallotte Study Area is entirely within the County. Several species are protected either on the state or federal level in the County. The North Carolina Natural Heritage Program's (NCNHP's) Biotic Database



(NCNHP, 2011) lists all protected species. In the Shallotte Study Area are 13 invertebrate animals, 1 nonvascular plant, 114 vascular plants, and 43 vertebrate animals. A complete list of state and federally protected species in the Shallotte Study Area is provided in Appendix B.

## **5 Water Conservation Measures**

The County's water demand projections assume a constant *per capita* retail usage throughout the planning period (which is also directly related to the wholesale demand estimates). However, increased water conservation and water reuse could result in lower *per capita* demands over time.

The County has a water conservation program that includes voluntary and mandatory water use restrictions, price signals (tiered water rates and separate irrigation metering), customer education, and water reuse.

### 5.1 WATER USE RESTRICTIONS

The County has the authority to impose water restrictions if a public water supply shortage occurs. All water customers are subject to the water use restrictions. The water use restrictions are organized in stages, with Stage 1 being voluntary and Stages 2 and 3 being mandatory. The stages are defined as follows (Chapter 1-13, Article V of County ordinances, <a href="http://library.municode.com/index.aspx?clientId=19946">http://library.municode.com/index.aspx?clientId=19946</a>):

- Stage 1—Water conservation alert. A Stage 1 water shortage emergency may be declared in the event of an immediate water shortage, as so declared by state and/or local officials, or when there are three (3) consecutive days when water demand exceeds eighty (80) percent of the water production capacity. Water production capacity shall be defined as the maximum volume of water that meets or exceeds state and federal standards that the water treatment process can produce during a twenty-four (24) hour period. Water production capacity can vary depending on system component reliability and/or raw water conditions. During a declared Stage 1 water shortage emergency the following voluntary water conservation practices shall be encouraged:
  - a. Inspect and repair all faulty and defective parts of faucets and toilets.
  - b. Use shower for bathing rather than bathtub and limit shower to no more than five (5) minutes.
  - c. Do not leave faucets running while shaving, brushing teeth, rising or preparing food.
  - d. Limit the use of clothes washers and dishwashers and when used, operate fully loaded. Operate dishwashers after the peak demand hours of 6:00 p.m. to 10:00 p.m.
  - e. Limit lawn watering to that necessary for plant survival. Water lawns before the peak demand hours of 6:00 a.m. to 10:00 a.m.
  - f. Water shrubbery the minimum required. Water shrubbery before the peak demand hours of 6:00 a.m. to 10:00 a.m.
  - g. Limit vehicle washing to a minimum.
  - h. Do not wash down outside areas such as sidewalks, driveways, patios, etc.
  - i. Install water saving showerheads and other water conservation devices.
  - j. Use disposable and biodegradable dishes where possible.
  - k. Install water saving devices in toilets such as early closing flappers.
  - 1. Limit hours of water cooled air conditioners.
  - m. Do not fill swimming or wading pools.
- 2) Stage 2—Water shortage warning. A Stage 2 water shortage emergency may be declared in the

TETRATECH

event of an immediate water shortage, as so declared by state and/or local officials, or when there are two (2) consecutive days when water demand exceeds ninety (90) percent of the water production capacity. Water production capacity shall be defined as the maximum volume of water that meets or exceeds state and federal standards that the water treatment process can produce during a twenty-four (24) hour period. Water production capacity can vary depending on system component reliability and/or raw water conditions. During a declared Stage 2 water shortage emergency the following activities shall be prohibited:

- a. Watering lawns, grass, shrubbery, trees, flower and vegetable gardens except by hand held hoses, container, or drip irrigation system. A person who regularly sells plants will be permitted to use water on their commercial stock. A golf course may water their greens. State and county licensed landscape contractors may water any plants by hand held hose or drip irrigation under a written warranty.
- b. Filling swimming or wading pools, either newly constructed or previously drained. Make up water for pools in operation will be allowed.
- c. Using water-cooled air conditioners or other equipment, in which cooling water is not recycled, unless there are health or safety concerns.
- d. Washing any type of mobile equipment including cars, trucks, trailers, boats or airplanes. Any persons involved in a business of washing motor vehicles may continue to operate.
- e. Washing outside surfaces such as streets, driveways, service station aprons, parking lots or patios.
- f. Washing the exterior of office buildings, homes or apartments.
- g. Using water for any ornamental fountain, pool, pond, etc., unless recycled.
- h. Serving drinking water in food establishments such as restaurants or cafeterias, unless requested to do so by a customer.
- i. Using water from a public or private fire hydrant for any reason other than to suppress a fire or other public emergency or as authorized by director or his authorized representative.
- j. Using water to control or compact dust.
- k. Intentionally wasting water.
- Commercial and industrial water customers shall achieve mandatory reductions in water usage through whatever means are available. A minimum reduction of twenty (20) percent shall be the target, however a greater target reduction percentage may be required depending on the severity of the water shortage emergency. Compliance with the reduction target shall be determined by the director or his authorized representative. Variances to the target reduction may be granted by director or his authorized representative to designated public health facilities.
- 3) Stage 3—Water shortage danger. A Stage 3 water shortage emergency may be declared in the event of an immediate water shortage, as so declared by state and/or local officials, or when there is one (1) day when water demand exceeds one-hundred (100) percent of the water production capacity. Water production capacity shall be defined as the maximum volume of water that meets or exceeds state and federal standards that the water treatment process can produce during a twenty-four (24) hour period. Water production capacity can vary depending on system component reliability and/or raw water conditions. During a declared Stage 3 water shortage emergency the following activities shall be prohibited, in addition to activities prohibited under

Stage 2:

- a. Watering lawns, grass, shrubbery, trees, and flowers.
- b. Washing motor vehicles at commercial car wash establishments.
- c. Watering any vegetable garden except by hand held hose, container, or drip irrigation.
- d. Commercial and industrial water customers shall achieve mandatory reductions in water usage through whatever means are available. A minimum reduction of fifty (50) percent shall be the target, however a greater target reduction percentage may be required depending on the severity of the water emergency. Compliance with the reduction target shall be determined by the director or his authorized representative. Variances to the target reduction may be granted by the director or his authorized representative to designated public health facilities.
- e. In the event that the prohibition of the activities listed above is not sufficient to maintain an adequate supply of water for fire protection, all use of water for purposes other than maintenance of public health and safety shall be prohibited. Residential water use shall be limited to the amount necessary to sustain life through drinking, food preparation and personal hygiene.

### 5.2 PRICING SIGNALS

The main elements of the County's water service pricing that affect water demand are tiered rates and separate metering for outdoor (irrigation) uses.

The rates for retail meters include a base charge that increases with larger service meter sizes from \$11/month (for  $\frac{3}{4}$ -inch retail meters) to \$27/month (for 4-inch retail meters). In addition to this base charge, retail water rates include three usage tiers, charged at \$3.05, \$3.10 and \$3.15 per 1,000 gallons, as monthly usage increases. For  $\frac{3}{4}$  to 1-1/2 inch service connections, the three tiers are 0–6,000 gallons, 6,001-20,000 gallons and > 20,000 gallons. For 2-inch service connections, the three tiers are 0–20,000 gallons, 20,001–100,000 gallons and > 100,000 gallons. For 3- and 4-inch service connections, the tiers are 0–20,000 gallons, the tiers are 0–50,000 gallons, 50,001–250,000 gallons and > 250,000 gallons. Industrial and wholesale water rates are based on a service charge depending on the size of the meter and a constant rate of \$2.76 per 1,000 gallons (there is also a minimum usage charge).

Irrigation meter rates have five tiers, ranging from \$3.05 per 1,000 gallons to \$4.00 per 1,000 gallons. The five residential irrigation meter tiers have usage cutoffs of 6,000, 12,000, 20,000 and 50,000 gallons. Commercial and multifamily irrigation meter cutoffs are at 20,000, 50,000, 100,000 and 200,000 gallons. The monthly base service charge is the same as that for retail meters but is waived for irrigation meters where the facility has another retail meter.

Although the use of irrigation meters is not mandatory, there is a strong incentive to use them because irrigation water is not included in the user's sewer bill, and all residential wastewater flows over 3,000 gallons per month are billed at the relatively high rate of \$6.50 per 1,000 gallons (note that all commercial wastewater flows are billed at a constant rate of \$6.50/1,000 gallons and that industrial wastewater flows are billed using a declining block rate structure).

The County is also in the process of retrofitting meters with Automated Meter Reading, or Advanced Metering Infrastructure systems that will allow meters to be read quickly and remotely, enhancing the County's ability to both analyze water use to improvement management and identify abnormal water usage and notify customers as appropriate. The County is about one-third of the way through retrofitting its retail customers' meters.

Detailed rate and fee information for water and wastewater services are at <a href="http://www.brunsco.net/Departments/LandDevelopment/Utilities/WaterSewerRates.aspx">http://www.brunsco.net/Departments/LandDevelopment/Utilities/WaterSewerRates.aspx</a>.

The County's wholesale customers are required to adopt the County's conservation measures at a minimum. In some cases, the wholesale customer has enacted more stringent measures than the County.

### 5.3 CUSTOMER EDUCATION

The County provides water conservation information to its customers through various means including their website, in water bill mailers and at public events. For example, the County has developed a water conservation brochure which is available in hard copy and on their website at

http://www.brunsco.net/Departments/LandDevelopment/Utilities/BrochuresUtilities.aspx. The County also maintains a Frequently Asked Questions list

(<u>http://www.brunsco.net/Portals/0/bcfiles/finance/fin\_faqs.pdf</u>) and produces annual water quality and wastewater performance reports, available at

http://www.brunsco.net/Departments/LandDevelopment/Utilities/AnnualReports.aspx.

The County also works with the Cooperative Extension Agency on water conservation and sustainable landscaping practices, and with property owners associations in a number of large subdivisions to promote water conservation.

### 5.4 WATER REUSE

The County has four wastewater treatment plants (WWTPs) that are permitted for reuse: Ocean Ridge Plantation, Sea Trail, West Brunswick Regional and Northeast Brunswick Regional. Two additional facilities recharge the surficial groundwater aquifer via spray irrigation: Shallotte and Carolina Shores. Several other small reuse systems and a number of other land application (surface or subsurface) systems are located in the County but not owned or operated by them; these systems are discussed in Section 1.5 below.

The largest water reclamation plant in the County is the West Regional plant, with a permitted capacity of 6.0 MGD. This plant includes a reclaimed water line that extends to four golf courses, in addition to three dedicated land application sites. The Northeast Regional plant produces reuse quality water and is permitted for reuse, but it is not currently reusing water except within the boundaries of the plant.

The County is conducting a study to assess the feasibility of residential water reuse (costs, demand and public acceptance issues) at the Saint James Plantation and Winding River developments. The County estimates that these developments might have a seasonal reclaimed water demand of up to 1.3 MGD.

## 5.5 ASR STUDY

The County is planning a study of aquifer storage and recovery (ASR) at the 211 WTP to reduce withdrawal of surface water during peak demand periods. The technical viability of this option is unknown.

# **6 Water Supply Alternatives**

An analysis of water supply alternatives was conducted as part of the IBT evaluation and environmental documentation and is important for determining the most viable alternative for the County. Options for an increase in IBT associated with an expansion of the Northwest WTP were weighed against alternatives that do not require additional IBT or combinations of alternatives that could limit the quantity of the IBT. Factors considered during alternatives analysis were the technical viability of the option, the constructability of the alternative, potential environmental impacts, technical difficulty, permitting issues, and estimates of opinions of probable costs, both construction costs and O&M. A discussion of the reasons for choosing the preferred alternative over other alternatives is provided.

### 6.1 NO ADDITIONAL IBT ALTERNATIVE

A No Additional IBT alternative must be considered as an alternative to an IBT. This alternative is defined as one in which no amount of water *over the grandfathered IBT* is transferred to customers in the Shallotte IBT River Basin as a result of any changes or improvements to the County's water treatment facilities would occur. The 1999 *Preliminary Engineering Report* (PER) (HDR, 1999a), the 2008 PER (Hazen and Sawyer, 2008), and the *Water Master Plan* (Hazen and Sawyer, 2006) discuss reasons why the system is not reliable in its existing condition and how future water demands could further erode its reliability.

To determine whether a No Additional IBT alternative could be considered viable, future growth projections and current permitted capacities of the County's facilities were examined. This information, which is presented in Section 1.3 (Water Demand Projections), indicates that future growth is projected in the County, resulting in a projected increase in water demand. Nearly half of the future demand is in the Shallotte IBT River Basin.

Typically, municipalities begin a WTP expansion process when the maximum day demand reaches 80 percent of treatment plant capacity. The County provided finished water quantity data of water produced by its WTPs, the Northwest WTP and NC 211 WTP. A review of the 2008 through 2011 data indicates the following:

- In 2008 the daily flow averaged 13.80 MGD. The peak day flow reported for 2010 was 25.55 MGD (approximately 85 percent of permitted water treatment capacity of 30 MGD) on July 5, 2008, resulting in a peak day peaking factor of 1.85.
- In 2010 the daily flow averaged 12.820 MGD. The peak day flow reported for 2010 was 21.32 MGD (approximately 70 percent of permitted water treatment capacity of 30 MGD) on July 5, 2010, resulting in a peak day peaking factor of 1.66.
- In 2011 the daily flow averaged 13.78 MGD. The peak day flow reported for 2011 was 25.80 MGD (approximately 86 percent of permitted water treatment capacity of 30 MGD) on July 6, 2011, resulting in a peak day peaking factor of 1.87.

The data indicate that average and maximum daily flows decreased and then increased since 2008. The most recent annual flows (2011) are similar to the 2008 flows. The 2011 data also indicate that the maximum day demand exceeded 80 percent of the plant capacity in 2008 and 2011, suggesting that a water treatment system expansion process should begin.

If the County's ability to provide reliable, high-quality potable water to its customers is limited, the County will have difficulty in accommodating growth in the service area and particularly in the Shallotte IBT River Basin. On the basis of the data provided, the County has demonstrated the need for an expansion of its water treatment system and a No Additional IBT alternative is not recommended.

### 6.2 INCREASE IN IBT FROM CAPE FEAR - NORTHWEST WTP EXPANSION

The existing Northwest WTP provides the majority of the County's potable water. The WTP is permitted to produce 24 MGD of potable water. The source of the raw water supply is the Cape Fear River. Because the County's water service area is in the Waccamaw and Shallotte IBT river basins of the Lumber Major River Basin in addition to the Cape Fear Major River Basin, increased withdrawals from the Cape Fear River to meet demand would result in an IBT. NCDWR has concluded that full demand for all withdrawals at Lock and Dam #1 would be met through 2050 (NCDWR, 2008).

Various treatment options are discussed in the *Expansion of Brunswick County Northwest Water Treatment Plant Preliminary Engineering Report* (NWWTP PER) prepared by Hazen and Sawyer (2008) and the earlier *Water Supply/Treatment Study* (WS/TS), prepared by HDR (1999b). On the basis of raw water quality results from January 2008 to April 2011, the raw water quality appears to be similar to the raw water quality identified in the 2008 NWWTP PER, and the proposed water treatment processes identified in the 2008 NWWTP PER are still applicable. Review of raw water quality results for DWQ Ambient WQ Station #B8350000 from January 2008 to April 2011 indicates that the average raw water turbidity was approximately 16.2 nephelometric turbidity units (NTU), which is similar to the raw water turbidity documented in the NWWTP PER (17 NTU). Additionally, the average raw water pH from January 2008 to April 2011 was about 6.5 NTU, which is similar to the average pH of approximately 6.7 NTU that is documented in the NWWTP PER.

The WTP expansion will not only include improved treatment capabilities but also increase the capacity of the plant. Construction cost estimates from the 2008 NWWTP PER have been updated to reflect 2012 construction pricing and are used for comparison to other alternatives. Per Table 1 of the 2008 NWWTP PER, the preliminary construction cost estimate for expanding the facility to a treatment capacity of 36 MGD is \$34,640,000. The breakdown of this cost is shown provided in the EA.

This preliminary cost was increased by a factor of 1.12 to account for inflation using *Engineering News-Record's* (ENR's) Construction Cost Index (CCI) for July 2008 (8293) and the March 2012 CCI (9267.57), resulting in a preliminary cost of approximately \$38.8 million as reflected in Table 4-2.

The existing WTP site was master planned in the 2008 NWWTP PER and is considered to have adequate room to support the expansion, so no additional land would need to be acquired. The expansion plans would allow the WTP to maintain its current operations with minimal disruption. An expansion would increase the reliability of the WTP, which is crucial because the WTP is the main potable water supply for the County. The reliability of the WTP has been discussed in the *Preliminary Engineering Report* prepared by HDR (1999a).

The location of the surface water WTP is in the northern portion of the County's service area; the growth is mainly occurring in the southern and southwestern areas. Thus, the expansion alternative includes an evaluation of the costs to upgrade the distribution system and high service pumping as discussed in the WS/TS and further developed in the *Water System Master Plan* prepared by Hazen and Sawyer (2006). The *Water System Master Plan* includes hydraulic modeling to determine the necessary improvements. The following improvements are included in the preliminary opinion of cost to expand the Northwest WTP:

- Modification IIA-3 (Parallel 30-inch Pipeline to Bell Swamp PS)
- Modification IIA-5 (Parallel 30-inch Pipeline, Bell Swamp PS to Highway 211/17 Intersection)
- Modification IIB-3 (Bell Swamp Southwest Booster Pumps)

The preliminary opinion of construction cost for expanding the Northwest WTP from 24 to 36 MGD is \$90.7 million. The breakdown of this cost is provided in the EA.

O&M costs attributed to expanding the Northwest WTP to 36 MGD are based on existing O&M costs as documented by the County and O&M costs that would be associated with the new 30-inch diameter pipelines. The County's budget for years 2010 and 2011 for the Northwest WTP were reviewed to develop budgetary O&M costs for expanding the Northwest WTP from 24 to 36 MGD. It is assumed that no additional personnel will be needed to operate the Northwest WTP at 36 MGD. Costs that are expected to change because of the plant expansion are listed in Table 4-3 below. Annual O&M costs for the pipelines are projected to be 1 percent of the pipeline construction costs and additional annual O&M costs for the Bell Swamp Pump Station are projected to be 2.5 percent of the pump station modification costs.

On the basis of this information, the budgetary O&M costs for expanding the Northwest WTP from 24 to 36 MGD are approximately \$1.54 million per year.

### 6.3 WATER SUPPLY ALTERNATIVES IN RECEIVING BASINS

State policy gives preference to alternatives that involve water supply transfers in the receiving river basin as opposed to alternatives that would require transfer from another major river basin. In the receiving river basin, the potential sources of water include surface water impoundments, purchase of water from other suppliers in the basin, groundwater wells, and seawater desalination. Alternatives for water supply in the receiving river basins are discussed below.

#### 6.3.1 New Surface WTP

A new surface WTP would improve overall system reliability and could be closer to the future growth projected in the southwest portion of the service area. The Waccamaw River is the only potential surface water supply source in the area. The Waccamaw River is in the Waccamaw subbasin of the Lumber River Basin. Withdrawals from the Waccamaw River would require an IBT to transfer water from the Waccamaw to the Shallotte IBT River Basin. The WS/TS (HDR, 1999b) evaluates the Waccamaw River as a source and determined that there are low flows during the summer months and extremely low to potentially no flow during drought conditions. The WS/TS also provides a cursory review of expected water quality and determines that the Waccamaw River water quality is not as desirable as the Cape Fear River water quality because of high color, total and dissolved organic carbon, and possibly high levels of iron and manganese.

To confirm sufficient availability of source water, the most recent 7Q10 low-flow discharge estimate for the Waccamaw River at Highway 130 (upstream of the confluence with Bear Branch) was requested from the USGS. Per North Carolina regulations, no in-stream flow study is required if the run-of-river withdrawal for the proposed project is less than 20 percent of a source's 7O10. Per communication with the USGS in April 2012, the most recent and provisional 7Q10 low-flow discharge estimate for monitoring station #02109500 (Waccamaw River at Freeland, NC) is 1.5 cfs. Twenty percent of 1.5 cfs is 0.3 cfs, which is approximately 193,923 gpd. The Northwest WTP is proposed to be expanded from 24 MGD to 36 MGD. If the Northwest WTP is not expanded, the additional 12 MGD of finished water would need to be provided by another WTP. Up to 12.5 MGD of source water would need to be withdrawn from the Waccamaw River to produce 12 MGD of finished water (accounting for treatment losses). This volume is 60 times greater than 20 percent of the 7Q10 low-flow discharge estimate (193,923 gpd); therefore, an in-stream flow study would be required for a withdrawal on the Waccamaw River. A review of the USGS flow data for station #02109500 beginning October 1, 2010 through September 30, 2011, indicates that, river flow is typically less than 20 cfs (approximately 13 MGD) in June, July, and August. Thus, an in-stream reservoir (i.e., impoundment) on the Waccamaw River, an offstream reservoir, or an Aquifer Storage and Recovery (ASR) system would be necessary to provide the

water supply for a 12-MGD WTP and to ensure supply reliability when Waccamaw River flows are low. It is anticipated that at least a 1.5-billion gallon reservoir covering up to 400 acres would be necessary to store excess flow collected in the wet season to meet average annual water supply demands of a 12-MGD WTP. Flow studies of the Waccamaw River would need to be conducted to determine if enough volume of water could be stored in the wet season to provide source water supply year-round and not affect the ecological health of the Waccamaw River.

Raw water quality data from January 2008 to April 2011 were analyzed to compare the Waccamaw River with the Cape Fear River source waters and provide a basic assessment of the type and level of treatment required compared to the alternative of expanding the Northwest WTP. Review of raw water quality results for DWQ Ambient WQ Station #18970000 from January 2008 to April 2011 indicates that the average raw water turbidity was approximately 4.4 NTU, and all turbidity results were no greater than 12 NTU. The turbidity in the Waccamaw River is generally more variable than for the Cape Fear.

Additionally, the average raw water pH from January 2008 to April 2011 was about 4.7, which is significantly lower than the average pH of the Cape Fear River from January 2008 to April 2011 (6.5) and 6.7 as documented in the 2008 NWWTP PER. A lower pH requires greater volumes of chemicals to adjust the water to a neutral or higher pH for surface water treatment.

Because the Waccamaw WTP would be on an undeveloped site, construction costs are associated with developing a *greenfield* WTP including site work, stormwater facilities, operations and control facilities, and new potable water distribution piping to reach the existing distribution system. Also, the costs for a raw water storage reservoir are included in this option. A factor in evaluating this alternative also includes the increased permitting efforts required for a new facility and its associated storage reservoir and a new withdrawal point along the river. Last, an in-stream flow study would need to be conducted to determine the feasibility of a 12-MGD WTP using Waccamaw River water as source water because of the potential effects on the river's habitat and aquatic biota. Budgetary cost estimates for this alternative are \$162.5 million. The breakdown of this cost is provided in the EA.

The Waccamaw River has average raw water turbidity values (4.4 NTU), which are less than those of the Cape Fear River (16.2 NTU), less coagulant would be required, resulting in lower operational costs. However, because the raw water average pH value for the Waccamaw River (4.7 NTU) is lower than that of the Cape Fear River (6.5 NTU), additional sodium hydroxide (NaOH) would need to be added to raise the pH of the Waccamaw River source water, resulting in increased operational costs. Additionally, per the WS/TS (HDR 1999b), higher color, total and dissolved organic carbon and iron and manganese in the Waccamaw River (as compared to the Cape Fear River) would increase the cost of treating source water from the Waccamaw River.

O&M costs attributed to operating a new 12-MGD WTP are based on existing O&M costs associated with the Northwest WTP and O&M costs that would be associated with the new 30-inch diameter pipeline and with the off-stream reservoir. Additionally, new water treatment personnel would be assigned to the Waccamaw WTP. Annual O&M costs for the pipeline are projected to be 1 percent of the pipeline construction costs.

On the basis of this information, the budgetary O&M costs for a 12-MGD Waccamaw River WTP and associated raw water storage reservoir and pipelines are approximately \$3.4 million per year.

### 6.3.2 Purchase Water from Existing Utility in Receiving Basin

The County has entered into agreements, in the form of a water purchase contract and an water system interconnection infrastructure cooperative agreement, with the Little River Water and Sewerage Company, Inc. (Little River) in South Carolina for Little River to establish an emergency interconnection and to provide up to a maximum of 170,000 gallons per day of potable water to the County. This value is an upper quantity limit, and Little River does not guarantee emergency supply for the County. This



quantity provides additional potable water to the County and will be used to supply the Waccamaw IBT River Basin with future supply (eliminating the need for additional IBT water), but because the maximum quantity is 170,000 gallons per day, the County would need to proceed with an alternative that will supply additional potable water to meet demand in the Shallotte IBT River Basin. The emergency interconnection with the Little River Water Company has been planned for a number of years. No additional infrastructure beyond the actual connection is required since the Little River system is immediately adjacent to the Waccamaw portion of the County's water system.

#### 6.3.3 Expanded or New Groundwater WTP

Withdrawals of raw water from a groundwater source would not require an IBT. Two groundwater source/treatment options have been evaluated. One option is to expand the County's existing 211 WTP in the southeastern portion of the County's service area. The second option is to construct a new groundwater WTP in the western portion of the service area, closer to where future growth is expected to occur.

#### 6.3.3.1 Expansion of 211 WTP

The existing 211 WTP is a lime-softening plant with a permitted capacity of 6 MGD. Its source water is fresh groundwater from the Castle Hayne aquifer, which occurs only in the southeastern portion of the County. The Castle Hayne aquifer is approximately 175 feet below land surface. It is regarded as fairly permeable, but because it has limited thickness (< 60 feet), the transmissivity is fairly low according to the USGS Water Resources Investigations Report 03-4051 (Harden et al. 2003). The low transmissivity would limit the yield of each well, requiring more wells. Increasing withdrawal from the Castle Hayne aquifer could also cause unacceptable effects on surface water quality, existing water users, and sensitive ecological systems. In many areas, the Castle Hayne aquifer is poorly confined or unconfined, and in places exposed to rapid recharge of surface water via sinkholes.

The existing wellfield would need to be expanded to supply additional capacity. Because drawdown is an issue for this aquifer, future wells could require considerable setbacks from other wells so as not to increase the drawdown or reduce the yield of the well site. A review of the existing wellfield layout indicates that, in general, the existing wells are at least 1,500 linear feet away from each other. The existing wellfield includes 15 wells. If the Northwest WTP were not expanded and the 211 WTP were required to produce the additional 12 MGD of water, the 211 WTP would need to be expanded from a 6-MGD plant to an 18-MGD plant. If the new wells produced water quantity and quality similar to the existing groundwater wells, it is expected that 30 additional wells would be required. Groundwater modeling needs to be conducted to determine the potential hydraulic conditions of an expanded wellfield and the potential for migration of higher TDS water into the wellfield.

Lime softening might be an option for treatment and further evaluation of the groundwater quality is necessary to confirm the required treatment process. Because of the potential variability of the groundwater quality and the potential for saltwater intrusion, a nanofiltration water treatment system is proposed, and the costs associated with a nanofiltration system are provided. As documented in the *Water Supply Master Plan* (Hazen & Sawyer, 2006), preliminary costs for a new 6-MGD nanofiltration WTP at the 211 WTP are approximately \$14 million. This cost was increased by a factor of 1.2 to account for inflation using ENR's CCI for July 2006 (7721) and the March 2012 CCI (9267.57) and the preliminary cost is adjusted to account for a 12-MGD WTP.

A review of the County's water mains indicates that the water distribution system piping paralleling Highway 211 from the 211 WTP west to Highway 17 ranges from 12 inches to 16 inches in diameter. The water distribution system piping would need to be upsized or a parallel pipeline would need to be installed along Highway 211 to accommodate the additional 12 MGD of potable water flow from the 211 WTP. Hydraulic modeling would be needed to confirm the recommended diameter of the pipeline. For the purposes of this IBT evaluation, a 30-inch diameter pipeline is assumed in the preliminary opinion of cost for this option. Because the 211 WTP is an existing site, permitting requirements and ancillary facilities are anticipated to be less than for an undeveloped site.

The nanofiltration process produces a concentrate stream that would need to be discharged. Typically, nanofiltration processes operate at 85 to 95 percent recovery, so for a 12-MGD WTP, the concentrate stream would likely range from 0.6 to 2.1 MGD. North Carolina does not allow deep-well injection, so the most feasible option for discharge of the concentrate is to a wastewater collection system or directly to a WWTP. The preliminary opinion of cost, \$141.3 million assumes the installation of a concentrate pump station and pipeline to discharge the concentrate at the West Brunswick Water Reclamation Facility (WRF) (approximately 72,000 LF away). The nanofiltration concentrate is proposed to be discharged at the *tail end* of the West Brunswick WRF so that upsizing of the WRF's treatment processes to accommodate the concentrate flow is minimized. Further evaluation of the concentrate water quality is necessary to confirm the concentrate discharge location at the WRF.

O&M costs attributed to expanding the 211 WTP from 6 to 18 MGD with 12 MGD of nanofiltration treatment are based on O&M costs as documented in the *Technology and Cost Document for the Final Ground Water Rule* (USEPA, 2006) and increased by a factor of 1.2 to account for inflation using ENR's CCI for July 2006 (7721) and the March 2012 CCI (9267.57). Additionally, the cost includes O&M for a concentrate discharge pipeline to the West Brunswick WRF. On the basis of this information, the budgetary O&M costs for adding 12 MGD of nanofiltration treatment at the 211 WTP are approximately \$2.3 million per year.

#### 6.3.3.2 New Groundwater WTP

A new groundwater-source WTP in the western area of the County would use the Peedee aquifer, which is a freshwater source. The Peedee aquifer is present throughout coastal Brunswick County at depths between 30 and 170 feet below sea level (Harden et al. 2003). It comprises sand and clays in the confining beds and calcareous sandstone to sandy limestone in the transmissive beds. It has lower permeability but is much thicker than the Castle Hayne aquifer. In general, the transmissivity is comparable to or greater than that of the Castle Hayne aquifer. A conceptual cost estimate for an exploratory well program and a production wellfield is \$103.1 million. The breakdown of this cost is provided in the EA.

On the basis of water quality data in the USGS report, *Hydrogeology and Ground-water Quality of Brunswick County, North Carolina* (Harden et al., 2003), the required level of treatment can range from lime softening to membrane softening or nanofiltration. Because of the potential variability of the groundwater quality and the potential for saltwater intrusion, a nanofiltration water treatment system is proposed, and the costs associated with a nanofiltration system are provided. As documented in the *Water Supply Master Plan* (Hazen & Sawyer, 2006), preliminary costs for a new 6-MGD nanofiltration WTP at the 211 WTP are approximately \$14 million. This cost was increased by a factor of 1.2 to account for inflation using ENR's CCI for July 2006 (7721) and the March 2012 CCI (9267.57) and the preliminary cost is adjusted to account for a 12-MGD WTP.

The potential for saltwater intrusion must be evaluated as part of a qualitative evaluation of potential environmental impacts. If saltwater intrusion is determined to be an issue for this aquifer, it might not be feasible to proceed with plans to increase fresh groundwater withdrawals.

As with other proposed new WTPs on undeveloped sites, the construction costs and permitting activities would be higher than those associated with expanding existing facilities. Other significant cost elements are land acquisition and off-site distribution. For this estimate, it was assumed that the concentrate discharge from a nanofiltration WTP would be delivered to a County WRF for disposal and that the

groundwater WTP would be close to the WRF such that concentrate discharge pumping and piping costs are minimized. The West Brunswick Regional WRF is rated at 6 MGD and is the County's largest WRF. Because of its capacity and proximity to a large water distribution main (30-inch diameter), it could be considered as a potential location for a co-located groundwater WTP. Distribution system modeling is recommended to determine how 12 MGD of finished water delivered into the 30-inch water main near the West Brunswick Regional WRF (near the intersection of Highway 211 and Highway 17) would affect flow dynamics and distribution system water quality. Water main sizing upgrades might be necessary, but because of the proximity of this south-central location to the projected growth areas, the upgrades might be minimal and no distribution system upgrades are included in the conceptual costs of this alternative.

The County has indicated that a new WRF might be constructed farther west and south of the West Brunswick Regional WRF, on property that the County purchased in the past few years. This WRF would be closer to the areas of population growth. Similar to the discussion above, a new WTP could be colocated on that property to reduce the amount of discharge piping necessary to dispose of the nanofiltration concentrate.

O&M costs attributed to a new 12-MGD groundwater nanofiltration WTP are based on O&M costs as documented in the *Technology and Cost Document for the Final Ground Water Rule* (USEPA 2006) and increased by a factor of 1.2 to account for inflation using ENR's CCI for July 2006 (7721) and the March 2012 CCI (9267.57). On the basis of this information, the budgetary O&M costs for a new 12-MGD nanofiltration treatment plant adjacent to a WRF are approximately \$2.15 million per year.

Further consideration of this alternative would require a groundwater quality and quantity evaluation, which would be included in an exploratory well program. Additionally, confirmation that a water treatment process waste stream could be discharged to and treated by the West Brunswick Regional WRF or another WRF would be necessary. Also, the development of a new raw water source would need to be evaluated to determine if any conflict exists with the County's contract with LCFWSA.

### 6.3.4 Seawater Desalination WTP

The County is adjacent to the ICWW and Atlantic Ocean, which has a virtually unlimited quantity of water available for treatment. A new WTP could be in the County's service area where the population growth is occurring. For the purposes of this evaluation, the Holden Beach area is the area of consideration because it is centrally located along the coastal area of the County. Historically, seawater desalination has proven to be cost-prohibitive compared to treating other sources of raw water. A conceptual level cost evaluation was completed for the treatment facilities, intake structures and raw water mains, distribution mains and site work associated with a new desalination facility. Costs are also included for a distribution system blending water analysis to determine if there are any projected effects on the water quality as the treated seawater mixes with the treated surface water and groundwater from the existing treatment plants.

Disposal of concentrate or brine is typically a costly component for a seawater desalination plant. Because North Carolina does not allow deep injection wells, the most feasible option for concentrate management is to return the concentrate to the ICWW. Water quality modeling of the brine discharge and its effect on the ICWW would need to be performed as part of permitting the facility. Seawater desalination also requires additional environmental permitting for both withdrawal of water and concentrate disposal. It is anticipated that the conceptual costs are \$334 million. These budgetary capital costs were developed using Tetra Tech's historical cost database. The breakdown of this cost is provided in the EA.

Seawater desalination's O&M costs are very high, primarily because of the power costs associated with operating the treatment processes, particularly operating the high-pressure feed pumps for the reverse osmosis treatment process. The budgetary costs for this water supply option are shown below and are expected to be at least \$12.1 million per year.

## 6.4 OTHER OPTIONS FOR REDUCING THE IBT

#### 6.4.1 Surface Water Storage

Two options for storing surface water from the Cape Fear River are being evaluated. One option is a surface water off-line storage reservoir, and the other option is an ASR system. The first ASR system in North Carolina was built by Greenville Utilities Commission and began operation in 2010. The Cape Fear Public Utility Authority (CFPUA) is beginning an ASR Well Testing Program in 2012 at its elevated tank site on Westbrook Avenue in Wilmington. Results from this study will be included in a pending study by the County of whether ASR at the County's 211 plant could result a reduction in supply from surface water withdrawal from the Cape Fear River to meet potable water demands during the dry season and during peak demand events such as the July 4th holiday.

#### 6.4.2 Water Conservation and Reuse

The County's water conservation program is described in detail in Section 5. Further development of water conservation programs in the County is expected to reduce the *per capita* demand for potable water in the service area, although no specific *per capita* demand targets have been set. Although water conservation alone would not be sufficient to offset future water demands and alleviate the need for an IBT, *per capita* water demand would be evaluated annually and used to project future flows as a part of the County's capital planning processes. Likewise, although the reuse of reclaimed wastewater in the Shallotte IBT River Basin will help to offset potable demands and minimize IBTs from the Cape Fear IBT River Basin, consumptive reuse in the Shallotte IBT River Basin would still count toward the proposed IBT. The County's current and future planned water reuse are discussed in Section 5.

### 6.4.3 Return of Wastewater to Source Basin

Treated wastewater in the Shallotte IBT River Basin can be returned to the Cape Fear IBT River Basin for discharge or land application, or as reclaimed water for a variety of residential, commercial and industrial uses. As discussed in Section 1.5, four of the County's six existing municipal WWTPs (representing approximately 89 percent of permitted wastewater treatment capacity) produce reuse quality effluents. Several options exist for returning wastewater from the Shallotte to the Cape Fear IBT River Basins:

- 1) Pumping treated effluent from the West Regional plant to the Cape Fear IBT River Basin for discharge, land application, or reuse. The West Regional Plant already has a 6.0-MGD capacity (half of the proposed IBT) and is expandable to 12 MGD.
- 2) Pumping raw sewage from the Shallotte IBT River Basin to an expanded Northeast Regional plant (or one of the other plants that discharges in the Cape Fear IBT River Basin).
- Building a new treatment plant or multiple decentralized plants in or closer to the Cape Fear IBT River Basin to treat wastewater from Shallotte IBT River Basin for dispersal in the Cape Fear IBT River Basin.

Although each option listed above has merit, it is believed that option #1, pumping treated effluent from the West Regional plant to the Cape Fear IBT River Basin would be the least costly option because a significant portion of the treatment capacity is already installed. Conveyance costs are presumed to be the same order of magnitude for all the options listed. Because option #1 is likely to be least costly, it will be used to provide a baseline cost estimate for the *return of wastewater to source basin* management options.

As indicated, the West Regional plant already has 6 MGD of treatment, storage, and spray irrigation capacity, and plans are to eventually upgrade to the full proposed IBT flow of 12 MGD. Accordingly, treatment costs are not included as a line item for the cost estimates. Capital costs are \$38.7 million for

the rapid infiltration sub-option and \$120.6 million for the spray irrigation sub-option.

Because approval for a new, major discharge to the lower Cape Fear River is likely to be subject to significant permitting obstacles, only land application is considered in this option. On the basis of NRCS soil data for the County, it appears that the Cape Fear IBT River Basin features several areas with Baymeade and Kureb soil series, which are well-drained, sandy soils and are generally suitable for land application. However, without more detailed investigation, it is unclear whether these areas would be available for purchase by the County for effluent dispersal. Assuming that land is available, several options could be considered for land application. Two options have been considered for this option: traditional spray irrigation and rapid infiltration.

The spray irrigation and rapid infiltration options would both require similar transfer pumping and piping (to convey treated effluent from the West Regional plant to the land application area) and distribution system pressurization pumping systems. Compared to rapid infiltration, traditional spray irrigation systems generally require substantial amounts of suitable land on which to apply effluent. Spray irrigation system also require relatively large storage reservoirs to hold treated effluent during wet or freezing periods. Although sizing of storage for spray irrigation systems is based on a site-specific water balance, the DWQ typically requires a minimum of 30 days of storage and, in fact, the existing spray irrigation system at the West Regional plant has 30 days of storage. Depending on soil and site characteristics, rapid infiltration systems (which are defined by DWQ for the Coastal Plain as sites receiving more than 1.75 inches of effluent per week) in the Coastal Plain are often loaded at rates of up to 5 gpd per square foot (gpd/sf) and sometimes up to 10 gpd/sf. Because of their high loading rate, rapid infiltration systems are more susceptible to subsurface constraints that limit the movement of water away from the site and toward a receptor (i.e., surface water). Although sites that are suitable for rapid infiltration typically do not require on-site effluent storage, on the basis of hydrogeologic investigations and modeling, rapid infiltration systems could require artificial drainage to ensure that the resulting groundwater mound that forms beneath the application area does not impede movement out of the infiltration area and that effluent does not surface downgradient.

The County uses a combination of traditional (i.e., slow rate) spray and drip irrigation and rapid infiltration, along with irrigation at golf courses to manage reclaimed water from the West Regional plant. Costs for the County's existing land application/reuse system, sized to manage 6.0 MGD of reclaimed water (in the Shallotte IBT River Basin), were about \$21.5 million, for a unit cost of approximately \$3.58/gpd land application capacity. Land application in the Cape Fear IBT River Basin, not including transmission from the West Regional plant, was estimated to range between \$10,631,250 for 100 percent rapid infiltration to \$92,452,500 for 100 percent spray irrigation, with much of the cost difference attributable to land acquisition, site preparation and storage requirements. For comparison purposes, the unit costs of these options range from \$0.89/gpd (rapid infiltration with gravity subsurface drainage) to \$7.70/gpd (for slow rate spray irrigation). These budgetary capital costs were developed based on a variety of sources including RSMeans CostWorks<sup>®</sup> cost estimation tool using 2012Q1 data for Wilmington, North Carolina, EPA's 2006 update to *Land Treatment of Municipal Wastewater Effluents* guidance manual, the County's previous costs for the West Regional WWTP land application system and professional experience and judgment.

Note that the feasibility of both options is highly dependent on locating and acquiring suitable property of sufficient size and proximity in the Cape Fear IBT River Basin.

Under this option, it is assumed that the existing land application and reuse would be discontinued, or at least greatly decreased, in the Shallotte IBT River Basin and instead shifted to the Cape Fear IBT River Basin. Because the facilities being operated would be very similar to those in operation, there would be no additional O&M demands above those associated with the West Regional WWTP and land application system. Additional O&M demands associated with the new effluent pumping station and conveyance

piping are \$782,000 per year.

### 6.5 SUMMARY OF ALTERNATIVES

The preceding sections provide discussion of a number of alternatives including a No Additional IBT alternative. The No Additional IBT alternative is not recommended because the County has demonstrated the need for an expansion of its water treatment system; not doing so would compromise its ability to provide reliable, high-quality potable water to its customers, particularly those in the Shallotte IBT River Basin. Additional alternatives to the increase in IBT associated with Northwest WTP expansion are summarized in Table 9 including costs and qualitative assessments of permitting and potential environmental impacts. A rating of permitting difficulty reflects the general regulatory requirements, cost, and time involved in obtaining the necessary permits and approval. Technical difficulty is related to the planning, design, permitting, and construction effort to implement the project. For example, a project with low technical difficulty is expected to have the least amount of effort from conception to construction, whereas a project with high technical difficulty is expected to require considerable effort to implement.

Environmental impacts can be direct, secondary, and cumulative in nature. Direct impacts are those effects caused by a project that occur at the same time and place, and result from project construction and the project itself. Secondary and cumulative impacts, particularly growth-inducing effects, on natural resources occur later in time or farther removed in distance as a result of the project's construction and operation.

Additional IBT associated with an expansion of the Northwest WTP is recommended as the preferred alternative because of a lower cost (capital, O&M), low technical difficulty, an equivalent or lower level of permitting difficulty, a low level of direct impacts (e.g., new WTP alternatives would have additional construction impacts for a new site), and an equivalent level of secondary and cumulative impacts. Return of additional wastewater to the source would add a minimum of \$39 million to the cost of the preferred alternative without significant benefit to the resource.

| Alternative                                                       | Estimated<br>Capital<br>Construction<br>Costs<br>(Budgetary) | Estimated<br>Annual<br>O&M Costs | Technical<br>Difficulty | Permitting<br>Difficulty | Direct<br>Environmental<br>Impacts | Secondary<br>and<br>Cumulative<br>Impacts |
|-------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|-------------------------|--------------------------|------------------------------------|-------------------------------------------|
| Additional IBT –<br>(Associated w/<br>Northwest WTP<br>Expansion) | \$90.7M                                                      | \$1.5M                           | Low                     | Medium                   | Low                                | Medium                                    |
| Waccamaw<br>Surface WTP                                           | \$163M                                                       | \$3.4M                           | Medium                  | High                     | High                               | Medium                                    |
| Expand 211<br>WTP                                                 | \$141M                                                       | \$2.3M                           | Medium                  | Medium                   | Low                                | Medium                                    |
| New<br>Groundwater<br>WTP                                         | \$103M                                                       | \$2.1M                           | Medium                  | Medium                   | Medium                             | Medium                                    |
| Seawater<br>Desalination<br>Plant                                 | \$334M                                                       | \$12M                            | High                    | High                     | Medium/High                        | Medium                                    |

| Table 9. Summary Water Supply Alternatives to Additional IE | ЗT |
|-------------------------------------------------------------|----|
|-------------------------------------------------------------|----|

| Alternative                                                                                         | Estimated<br>Capital<br>Construction<br>Costs<br>(Budgetary)                     | Estimated<br>Annual<br>O&M Costs | Technical<br>Difficulty | Permitting<br>Difficulty | Direct<br>Environmental<br>Impacts | Secondary<br>and<br>Cumulative<br>Impacts |
|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------|-------------------------|--------------------------|------------------------------------|-------------------------------------------|
| Return of<br>Additional<br>Wastewater to<br>Source Basins<br>(includes cost<br>to expand NW<br>WTP) | Low End: \$129M<br>(\$38.7M + \$90.7M)<br>High End: \$212M<br>(\$121M + \$90.7M) | \$2.3M<br>(\$0.78M +<br>\$1.5M)  | Medium                  | Medium                   | Medium                             | Medium                                    |

Combined with expansion of the Northwest WTP and associated increase in IBT, the County proposes to use a combination of alternatives to limit transfer of water. As indicated, water conservation and reuse are key elements of the County's current water management plan and they reduce demand and associated IBT. It is not known how changes to these programs would result in additional demand reduction and future water transfer. In addition, the County has reduced the need to transfer additional water by developing an interconnection and agreement to purchase water from the Little River Water and Sewerage Company for potable water service in the Waccamaw River subbasin. The County is conducting a study to assess the feasibility of residential water reuse (costs, demand and public acceptance issues) at the Saint James Plantation and Winding River developments. The County estimates that these developments might have a seasonal reclaimed water demand of up to 1.3 MGD. Finally, the County is planning a study of ASR storage at the 211 plant to reduce withdrawal of surface water during peak demand periods. The technical viability of this option is unknown.

# 7 Cape Fear IBT River Basin Water Supply

The petition for an IBT certificate requires a description of water transfers and withdrawals registered under G.S 143-215.22H or included in a local water supply plan prepared pursuant to G.S. 143-355(l) from the source river basin as well as information on planned or reasonably foreseeable transfers or withdrawals. There are no current IBT certificates within the source basin. Public water systems required to prepare a local water supply plan within the Cape Fear IBT River Basin are summarized in Table 10. Water users withdrawing more than 100,000 gpd (and agricultural users withdrawing more than 1 MGD) are required to register their withdrawal under G.S 143-215.22H. A listing of the current withdrawals in the Cape Fear IBT River Basin is provided in Table 11. Those over 0.1 MGD are included in the Cape Fear Hydrologic Model, which provides the best available tool to analyze existing and future water supply within the source basin. A presentation of analysis conducted using the model is provided in the next section.

| Public Water<br>System ID | System Name                               | System Owner                            | Water Source Name                                                  |
|---------------------------|-------------------------------------------|-----------------------------------------|--------------------------------------------------------------------|
| 0326010                   | Fayetteville PU                           | Fayetteville Public Works<br>Commission | Cape Fear River and Glenville Lake                                 |
| 0326344                   | Fort Bragg                                | Fort Bragg Public Works<br>Center       | Little River (lower)                                               |
| 0343045                   | Harnett Department of<br>Public Utilities | Harnett County                          | Cape Fear River                                                    |
| 0343010                   | City of Dunn                              | City of Dunn                            | Cape Fear River                                                    |
| 0353010                   | City of Sanford                           | City of Sanford                         | Cape Fear River                                                    |
| 0363025                   | Town of Carthage                          | Town of Carthage                        | Nicks Creek                                                        |
| 0410045                   | Brunswick County Water<br>System          | Brunswick County                        | Cape Fear River                                                    |
| 0465010                   | City of Wilmington                        | City of Wilmington                      | Cape Fear River                                                    |
| 0465010                   | City of Wilmington                        | City of Wilmington                      | Cape Fear River (via Lower Cape Fear<br>Water and Sewer Authority) |

| Table 10. | Public Water Systems in the Cape Fear IBT River Basin |
|-----------|-------------------------------------------------------|
|           |                                                       |

#### Table 11. Registered Water Withdrawals in the Cape Fear IBT River Basin

| ID        | Owner Name                      | Facility Name                  | City       |
|-----------|---------------------------------|--------------------------------|------------|
| 0009-0001 | Archer Daniels Midland Company  | Southport Plant 789            | Southport  |
| 0033-0001 | Progress Energy Carolinas, Inc. | Brunswick Steam Electric Plant | Southport  |
| 0033-0004 | Progress Energy Carolinas, Inc. | Cape Fear Steam Electric Plant | Moncure    |
| 0033-0007 | Progress Energy Carolinas, Inc. | Sutton Steam Electric Plant    | Wilmington |
| 0033-0011 | Progress Energy Carolinas, Inc. | Harris Nuclear Plant           | New Hill   |



| ID        | Owner Name                           | Facility Name                            | City           |
|-----------|--------------------------------------|------------------------------------------|----------------|
| 0056-0001 | Capital Power Corp. NC               | Capital Power Corp Southport             | Southport      |
| 0059-0003 | Dupont                               | Dupont Company - Fayetteville            | Fayetteville   |
| 0066-0001 | International Paper                  | Riegelwood Mill                          | Riegelwood     |
| 0141-0001 | Elementis Chromium L.P.              | Elementis Chromium Castle Hayne          | Castle Hayne   |
| 0150-0005 | Pinehurst, Inc.                      | Pinehurst Resort #6                      | Pinehurst      |
| 0150-0007 | Pinehurst, Inc.                      | Pinehurst Resort #8                      | Pinehurst      |
| 0199-0015 | Vulcan Construction Materials, L. P. | Stokesdale Quarry                        | Charlotte      |
| 0218-0003 | Aqua North Carolina                  | Mill Creek Farms                         | Cary           |
| 0218-0004 | Aqua North Carolina                  | Stoney Point - Cumberland                | Cary           |
| 0218-0006 | Aqua North Carolina                  | Bragg Estates                            | Cary           |
| 0218-0008 | Aqua North Carolina                  | Wrightsboro                              | Denver         |
| 0218-0066 | Aqua North Carolina                  | Braxton Hills/Simmons Heights            | Cary           |
| 0218-0079 | Aqua North Carolina                  | Brookwood South                          | Denver         |
| 0218-0116 | Aqua North Carolina                  | Copeland Acres                           | Cary           |
| 0218-0235 | Aqua North Carolina                  | Happy Valley                             | Cary           |
| 0218-0314 | Aqua North Carolina                  | Lake Springs                             | Cary           |
| 0219-0006 | Martin Marietta Materials, Inc.      | Cumberland Quarry                        | Spring Lake    |
| 0219-0039 | Martin Marietta Materials, Inc.      | Fuquay Quarry                            | Raleigh        |
| 0219-0043 | Martin Marietta Materials, Inc.      | Lemon Springs Quarry                     | Sanford        |
| 0293-0001 | Pine Needles & Mid Pines Lodge And   | Pine Needles Lodge & Country Club        | Southern Pines |
| 0293-0002 | Pine Needles & Mid Pines Lodge And   | Mid Pines Inn & Golf Club                | Southern Pines |
| 0340-0007 | Hanson Aggregates Southeast, Inc.    | Elliot Sand & Gravel                     | Morrisville    |
| 0340-0010 | Hanson Aggregates Southeast, Inc.    | Holly Springs Quarry Morrisville         |                |
| 0340-0016 | Hanson Aggregates Southeast, Inc.    | Gardner Quarry Morrisville               |                |
| 0347-0002 | UNC-Chapel Hill                      | Finley Golf Course Chapel Hi             |                |
| 0358-0002 | Invista Sarl                         | Invista Sarl Wilmington                  |                |
| 0378-0053 | Utilities, Inc.                      | Quail Ridge                              | Charlotte      |
| 0378-0057 | Utilities, Inc.                      | Tanglewood Estates Charlotte             |                |
| 0378-0065 | Utilities, Inc.                      | Olde Point                               | Charlotte      |
| 0378-0094 | Utilities, Inc.                      | CWS Systems, INC Treasure Cove Charlotte |                |
| 0379-0001 | Devils Ridge Golf Club               | Devils Ridge Golf Club Holly Springs     |                |
| 0380-0001 | Mcneill Farms                        | McNeill Farms                            | Hope Mills     |
| 0381-0001 | Methodist University                 | Methodist College Golf Course            | Fayetteville   |
| 0381-0002 | Methodist University                 | King's Grant Golf Course                 | Fayetteville   |



| ID        | Owner Name                         | Facility Name                          | City           |
|-----------|------------------------------------|----------------------------------------|----------------|
| 0383-0001 | Performance Fibers Inc.            | Performance Fibers - New Hill Facility | New Hill       |
| 0385-0001 | Arauco Panels USA LLC              | Moncure Division                       | Moncure        |
| 0429-0002 | Smithfield Foods                   | Smithfield Packing - Tar Heel Division | Tar Heel       |
| 0434-0001 | Dak Monomers, LLC                  | DAK Americas - Cape Fear Site          | Leland         |
| 0608-0001 | Bald Head Island Club              | Bald Head Island Club                  | Bald Head      |
| 0615-0001 | Birchwood Farms, Inc.              | Cypress Lakes Golf Course              | Hope Mills     |
| 0628-0001 | Carolina Golf Development          | The Carolina Golf Course               | Whispering     |
| 0628-0002 | Carolina Golf Development          | Woodlake Resort and Country Club       | Vass           |
| 0638-0001 | Carolina Turf Farms                | Bayonet At Puppy Creek                 | Raeford        |
| 0644-0001 | MDC II, LLC                        | Gates Four Golf & Country Club         | Fayetteville   |
| 0646-0001 | Highland Country Club              | Highland Country Club                  | Fayetteville   |
| 0648-0001 | Charlie Walker                     | Beau Rivage Golf Resort                | Wilmington     |
| 0661-0001 | Cape Fear Country Club, Inc.       | Cape Fear Country Club, Inc.           | Wilmington     |
| 0662-0001 | The Clubs at St. James, LLC        | Founders Club at St. James Plantation  | Southport      |
| 0662-0002 | The Clubs at St. James, LLC        | Members Club at St. James Plantation   | Southport      |
| 0662-0004 | The Clubs at St. James, LLC        | Reserve Club at St. James Plantation   | Southport      |
| 0664-0001 | Country Club of Landfall           | Country Club of Landfall               | Wilmington     |
| 0667-0001 | Klaussner Investment Group         | Pinewood Country Club                  | Asheboro       |
| 0681-0001 | Tobacco Road Golf, LLC             | Tobacco Road Golf, LLC                 | Sanford        |
| 0687-0001 | Magnolia Greens, Inc.              | Magnolia Greens Golf Plantation        | Leland         |
| 0694-0001 | Seven Lakes Country Club           | Seven Lakes Country Club               | Seven Lakes    |
| 0703-0001 | Avestra, LLC                       | Country Club of Whispering Pines       | Whispering     |
| 0703-0002 | Avestra, LLC                       | Southern Pines Country Club            | Southern Pines |
| 0710-0001 | Lee, William Denny                 | Farm                                   | Erwin          |
| 0711-0001 | Lee, Charles Benny                 | R. D. Lee Farms, Inc.                  | Sanford        |
| 0725-0001 | Oceanico USA                       | Little River Golf Resort               | Carthage       |
| 0734-0001 | Robert Levy Jr.                    | Mid South Golf Club                    | Southern Pines |
| 0734-0002 | Robert Levy Jr.                    | Talamore Resort                        | Southern Pines |
| 0739-0001 | Eagle Point Golf Club              | Eagle Point Golf Club                  | Wilmington     |
| 0742-0001 | Pinewild Country Club of Pinehurst | Azalea/Challenge Course Pinehurst      |                |
| 0742-0002 | Pinewild Country Club of Pinehurst | Magnolia course Pinehurst              |                |
| 0742-0003 | Pinewild Country Club of Pinehurst | Holly course                           | Pinehurst      |
| 0756-0001 | Claude Smith                       | National Golf Club                     | Pinehurst      |
| 0763-0001 | Carl Bunnell                       | Quail Ridge Golf Course                | Sanford        |



| ID        | Owner Name                    | Facility Name                 | City        |
|-----------|-------------------------------|-------------------------------|-------------|
| 0765-0001 | Bob Hanson                    | Dormie Club                   | West End    |
| 0771-0001 | Coharie Country Club          | Coharie Country Club          | Clinton     |
| 0772-0001 | Anderson Creek Partners       | Anderson Creek Golf Club      | Spring Lake |
| 0779-0001 | Corning Incorporated          | Corning - Wilmington Plant    | Wilmington  |
| 0780-0001 | Carolina Trace Country Club   | Carolina Trace Country Club   | Sanford     |
| 0781-0001 | Starmount Forest Country Club | Starmount Forest Country Club | Greensboro  |
| 0785-0001 | Campbell University           | Keith Hills Country Club      | Lillington  |
| 0790-0001 | G.S. Materials, Inc.          | Hall Rackley & Cameron Pits   | Burlington  |
| 0794-0001 | Funston Land & Timber         | Cape Fear National Golf Club  | Leland      |
| 0804-0001 | United States Army            | Stryker Golf Course           | Fort Bragg  |
| 0804-0002 | United States Army            | Ryder Golf Course             | Fort Bragg  |
| 0823-0001 | American Materials            | Wade Mine                     | Wilmington  |

# 8 Cape Fear IBT River Basin Impact Analysis

This section includes a discussion regarding the potential direct impacts of the proposed IBT. The purpose is to demonstrate that the proposed transfer if added to all other transfers and withdrawals within the source basin would not reduce the amount of water available for use in the source river basin to a degree that would impair existing uses or existing and planned consumptive and nonconsumptive uses of the water.

### 8.1 IMPACT ANALYSIS

Direct impacts associated with the additional IBT alternative include those related to withdrawal of water from the Cape Fear River above Lock and Dam #1. The LCFWSA supplies raw water to the Northwest WTP from an intake on the Cape Fear River above Lock and Dam #1. This low head dam causes the river to impound slightly behind it before spilling over and continuing down the river. The County is one of several LCFWSA customers receiving a portion of the withdrawal. A FONSI for expansion of the LCFWSA's intake to accommodate a 96-MGD withdrawal above Lock and Dam #1 was issued by the NC Division of Environmental Health in 2009. The new LCFWSA intake has now been constructed and is in operation.

The Cape Fear Basin Water Supply Plan (NCDWR, 2002) suggests that a surrogate for safe yield at Lock and Dam #1 is 20 percent of the published 7Q10. However, rather than relying upon a safe yield value such as this, NCDWR requested during scoping for the EA that the County utilize the Cape Fear Hydrologic Model to determine whether any difficulties would exist in meeting future demands. Therefore, the following analysis builds on the previous modeling analysis by DWR and focuses on the direct impact of the County withdrawal and the cumulative impact of all existing and projected withdrawals at the dam, and whether water supply needs are met in the future. In addition, a summary of analysis of potential water quality impacts is provided.

### 8.1.1 Impacts Above Lock and Dam #1

#### 8.1.1.1 Hydrology Analysis

NCDWR (2008) undertook an investigation of surface water supplies in the Cape Fear, including increased withdrawals from behind Lock and Dam # 1, using a calibrated hydrology model. The Cape Fear Hydrologic Model or CFHM (HydroLogics, 2006) is an implementation of OASIS (HydroLogics, 2009), which is a generalized mass balance model designed to assess the impacts of different water allocation policies and facilities over the historic record of inflows.

The existing CFHM is based on records from 46 streamflow gages, running from January 1930 to September 2004. There are approximately 40 irrigation source nodes, 40+ municipal and industrial demand nodes, and 60+ discharge nodes in the model. The original model data stopped in September 2004. The model has already been updated through water year 2005 (NCDWR, 2008), but not for subsequent years. NCDWR is leading a process to update the model, but, it was not available during preparation of the environmental document. Therefore, the existing model is being used to support the County's IBT request.

Previous analysis with a cumulative 2050 withdrawal from behind Lock and Dam #1 indicates that full demand at this model node and throughout the Cape Fear IBT River Basin was met (NCDWR, 2008). To support the IBT request, results of this analysis are presented with data taken directly from the existing model and include updates to the County portion of the withdrawal that are based on revised demand data.

The model's terminus is at Lock and Dam #1. Only one water intake is below Lock and Dam #1: International Paper. The industrial withdrawal is just downstream of the dam. Withdrawals for 2010 averaged 34.7 MGD (NCDWR, 2010); however, nearly all this water is discharged in close proximity of the withdrawal.

Changes in hydrology can affect habitat for aquatic species. Given the size of the withdrawals relative to the river's low flow regime and the tidal nature of the river below Lock and Dam #1, NCDWR deemed that a study of stream flow impacts on habitat and recreation downstream of the dam would not be needed (July 17, 2009 letter from NCDWR to Tetra Tech). Cumulative withdrawals represent about 3% of mean river flow (5,063 cfs), 6% of median river flow (2,540 cfs), and 17% of 10th percentile river flow (969 cfs) based on the most recent USGS Water Data Report. The cumulative withdrawals incorporate all LCFWSA customers including Brunswick just above the Lock and Dam and are 164 cfs for the 2050 planning horizon.

The hydrologic analysis prepared for the EA explores three general scenarios derived from the CFHM: 2003, the baseline condition for the OASIS application, and 2030 and 2050, which are future projected conditions. The 2003 baseline scenario reflects the discharges and withdrawals (represented as monthly averages) that were reported for 2003 applied to the model's long-term simulation (1930–2005). Likewise, the 2030 and 2050 projected scenarios are the projected 2030 and 2050 withdrawals applied to the 76-year simulation. Since the previous CFHM analysis was conducted by NCDWR in the mid-2000s through about 2008, the County has revised its 2030 and 2050 water demand to a small degree. Therefore, the previous withdrawal estimates have been replaced with the revised values. Additional detail is provided within the EA.

Comparison of the incremental increase in the projected withdrawals with and without the additional County withdrawal under the 2050 scenario is shown Table 12. The percent difference from the incremental increase at some of the lowest flows is 5 percent (for flows exceeded 95% of the time).

| Flow<br>Statistic              | Description                  | Simulated Flow<br>with 2050<br>Cumulative<br>Withdrawals<br>Except for<br>Brunswick County<br>at 2003<br>Withdrawal<br>(cfs) | Simulated Flow<br>with 2050<br>Cumulative<br>Withdrawals (cfs) | Percent Difference Due to<br>Increase in Brunswick<br>County Withdrawal<br>(2003 to 2050) |
|--------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 5 <sup>th</sup><br>Percentile  | Flow exceeded<br>95% of time | 525.30                                                                                                                       | 499.10                                                         | -5.0%                                                                                     |
| 10 <sup>th</sup><br>Percentile | Flow exceeded<br>90% of time | 690.97                                                                                                                       | 667.20                                                         | -3.4%                                                                                     |
| 50 <sup>th</sup><br>Percentile | Median Flow                  | 2,807.42                                                                                                                     | 2,784.97                                                       | -0.80%                                                                                    |
| Mean                           | Average Flow                 | 5,130.55                                                                                                                     | 5,108.16                                                       | -0.44%                                                                                    |

| Table 12. | Incremental Impact of Brunswick Withdrawal for 2050 Scenario on Stream Flow |
|-----------|-----------------------------------------------------------------------------|
|           |                                                                             |

An additional 2050 scenario, representing a potential maximum withdrawal, was used to further assess impacts of water withdrawal. This scenario uses the 2050 demands as described previously but assigns maximum daily flow values for the duration of the month of July rather than average monthly values. July

is the month of maximum demand based on consistent historical patterns. The July daily maximum withdrawal just above model junction 820 was based on the 2011 LWSP for LCFWSA. This value is assumed to incorporate all demands at this point in the river (i.e., LCFWSA including Brunswick County, Wilmington or CFPUA, and Bladen County) and assumes a value of 106 MGD or 164 cfs, the reported surface supply in the LWSP. This withdrawal value is also equal to the LCFWSA annual demand of 88.627 MGD for 2050 multiplied by the July peaking factor from 2011 (equal to 1.192), and is only slightly greater that the unadjusted average July withdrawals (149 cfs or 96 MGD) in the base 2050 scenario.

Table 13 shows a minor departure between 2050 average and maximum scenarios with differences of about one percent or less.

Note that while these results represent the impacts of cumulative withdrawal at Lock and Dam #1, a vast majority of the water that is withdrawn remains in the source basin.

| Flow Statistic              | Description               | Simulated<br>Flow with<br>2050 <u>Monthly</u><br><u>Average</u><br>Withdrawals<br>(cfs) | Simulated Flow<br>with 2050<br><u>July Daily</u><br><u>Maximum</u><br>Withdrawals<br>(cfs) | Percent Difference<br>(2050) |
|-----------------------------|---------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------|
| 5 <sup>th</sup> Percentile  | Flow exceeded 95% of time | 499.10                                                                                  | 493.85                                                                                     | -1.1%                        |
| 10 <sup>th</sup> Percentile | Flow exceeded 90% of time | 667.20                                                                                  | 663.48                                                                                     | -0.6%                        |
| 50 <sup>th</sup> Percentile | Median Flow               | 2,784.97                                                                                | 2,783.72                                                                                   | -0.04%                       |
| Mean                        | Average Flow              | 5,108.16                                                                                | 5,105.81                                                                                   | -0.05%                       |

## Table 13. Incremental Impact of Cumulative Withdrawal for July at Daily Maximum for 2050 Scenario on Simulated Flow at Lock and Dam #1

An unimpaired scenario run was performed by NCDWR (2008) representing hypothetical conditions with all discharges, withdrawals, and impoundments in the basin removed. A comparison by NCDWR (2008) showed that under all three demand scenarios, the simulated flows for the scenarios were higher during low flow periods than the unimpaired scenario because of regulation from Jordan Lake.

The preceding analysis does not change NCDWR's (2008) conclusion that full demand for all withdrawals at Lock and Dam #1 and within the Cape Fear IBT River Basin would be met through 2050 because the revisions to Brunswick demand are minor and the maximum withdrawal scenario differs little from the average day scenario. In addition, the increase from the Brunswick County withdrawal would be small, and predicted flows passing over the dam at the 95<sup>th</sup> percentile flow exceedence (i.e., a fairly low flow) in 2050 remain substantial at nearly 500 cfs. Accordingly, the direct impact of the County withdrawal on water supply would not be significant.

### 8.1.1.2 Water Quality Analysis

Water withdrawals could also degrade water quality conditions in the pool behind Lock and Dam #1. While this section of the Cape Fear River is not listed as impaired on the 303(d) list, NCDWQ requested an evaluation of dissolved oxygen, algal dynamics, and pH in this reach. Downstream of Lock and Dam #1, however, the Cape Fear River Estuary is on the 303(d) list of impaired waters for dissolved oxygen and has been the subject of recent study. The potential impacts on water quality upstream and downstream of the dam are discussed in the sections that follow.

A USGS observation station (02105769) and a North Carolina Ambient Monitoring System station (B8350000) were used to investigate possible relationships of flow or water temperature with response variables of dissolved oxygen, pH, and chlorophyll *a*. Several statistical regressions were applied to the data by varying the independent and dependent variables. Insufficient observed data exist for chlorophyll *a* to construct a statistical relationship, so this parameter was removed from consideration (six total observations).

The critical period of interest for the response variables is during the summer (June, July, and August) when withdrawals are typically near the annual maximum, stream flow is generally low, and water temperature is high. Data associated with flows above 5,000 cfs were removed as the relationship of dissolved oxygen to flow appears to change at high flow. On a given sample date, only the surface observations (generally 0.1 meter below the surface) were retained because vertical differences were negligible. The resulting data set included 31 days of observed data over the period from June 26, 1997, through August 12, 2010, with which to investigate relationships.

Predictive models for pH and dissolved oxygen were developed. A predictive model of pH can be formulated and is described in Table 14. All model coefficients are significantly different from zero. Analyses of the data show that neither flow nor water temperature nor their combination provides statistically significant explanatory models of observed dissolved oxygen (Table 15). All attempts resulted in adjusted R<sup>2</sup> values less than zero and the lowest probability value is 0.49 (typically a value of less than 0.05 is required for model significance). In addition, the 95 percent confidence interval on the coefficient on flow is not significantly different from zero.

|       |           | C                    | Coefficients or | 1:                                  |                            |                   |
|-------|-----------|----------------------|-----------------|-------------------------------------|----------------------------|-------------------|
| Model | Intercept | Water<br>Temperature | In (Flow)       | Water<br>Temperature<br>x In (Flow) | Adjusted<br>R <sup>2</sup> | Probability value |
| PH-1  | 15.676    | -0.141               | -0.67           | -                                   | 0.2807                     | 0.004             |

### Table 14. Predictive Models for pH

### Table 15. Predictive Models for Dissolved Oxygen

|       |           | Coefficients on:     |           |                                     |                            |                   |
|-------|-----------|----------------------|-----------|-------------------------------------|----------------------------|-------------------|
| Model | Intercept | Water<br>Temperature | In (Flow) | Water<br>Temperature<br>x In (Flow) | Adjusted<br>R <sup>2</sup> | Probability value |
| DO-1  | 5.716     | 0.024                | 0.014     | -                                   | -0.0687                    | 0.965             |
| DO-2  | 6.739     |                      | -0.035    |                                     | -0.0338                    | 0.889             |
| DO-3  | 5.899     | 0.021                |           |                                     | -0.0319                    | 0.790             |
| DO-4  | -39.48    | 1.65                 | 6.062     | -0.218                              | -0.0178                    | 0.497             |

The statistical models tell us that the variability in observed dissolved oxygen is primarily due to factors

other than flow and temperature. Nonetheless, the coefficients obtained in a least squares fit provide a best unbiased estimate of the partial contribution of these factors to dissolved oxygen. Therefore, estimates can be made of the potential impact of additional water withdrawal using the three models that represent the effect of flow on dissolved oxygen, as well as the model for pH. The analysis focuses on July, a critical period, when the maximum monthly withdrawals typically occur and at mean water temperature of 28.3 °C.

Permitted facilities associated with withdrawal at Lock and Dam #1 include the Northwest WTP (24 MGD), CFPUA's Sweeney WTP (35 MGD), Pender County (2 MGD; expandable to 6 MGD), along with two small industrial users supplied by LCFWSA (~2.6 MGD). For 2011, the max day withdrawal for the County is taken directly from Northwest WTP records. To arrive at the cumulative withdrawal, maximum day values from CFPUA and LCFWSA were combined for a value of 51.13 MGD (41.5 plus 9.63) as provided in their respective LWSPs. The basis for the 2050 cumulative, maximum withdrawal of 106 MGD was discussed previously. Table 16 provides a summary of these withdrawals.

| Table 16. | Maximum Brunswick | County and LCFWSA | Withdrawals for Water | Quality Analysis |
|-----------|-------------------|-------------------|-----------------------|------------------|
|-----------|-------------------|-------------------|-----------------------|------------------|

| Year | Brunswick County<br>Withdrawal (MGD) | Brunswick County<br>Withdrawal (cfs) | Cumulative<br>Withdrawal (MGD) | Cumulative<br>Withdrawal (cfs) |
|------|--------------------------------------|--------------------------------------|--------------------------------|--------------------------------|
| 2011 | 21.3                                 | 33.0                                 | 51.1                           | 79.1                           |
| 2050 | 38.8 <sup>1</sup>                    | 60.5                                 | 106                            | 164                            |

<sup>1</sup> Based on the proposed treatment capacity of 36 MGD finished water for the Northwest WTP plus additional raw water that is withdrawn from the river for backwash, clarifier blowdowns, and process water is not included. This water is discharged back to the Cape Fear source basin via NPDES permit.

To evaluate dissolved oxygen and pH response for an extreme case, the 7Q10 is used. USGS published a previous estimate for the Cape Fear River at Lock and Dam #1 in 2001: 825 cfs or 533 MGD using data reflecting the period of regulation from Jordan Lake, 1982-1997 (Weaver and Pope, 2001). USGS was contacted for an updated 7Q10, and provided a *provisional* value of 500 cfs (323 mgd) using data for 1982–2009 climatic years. The decrease can be attributed to, "a combination of the recent droughts on flows in the Cape Fear River and the regulated flow conditions from Jordan Lake during this period," according to USGS (personal communication; provided in the EA).

The 2011 maximum cumulative withdrawal (i.e., Brunswick plus others) at Lock and Dam #1 was 79.1 cfs, and the potential 2050 maximum cumulative withdrawal is 164 cfs, resulting in an increase in max of withdrawal of 85 cfs. The resulting predicted changes in dissolved oxygen when applied to the provisional 7Q10 flow are shown in Table 17. Two of the models predict increased dissolved oxygen as a result of the increased withdrawal, but none of the changes are significant.

## Table 17. Predicted Dissolved Oxygen (mg/L) Response Maximum Withdrawal at Lock and Dam#1

| Model | Predicted<br>Dissolved Oxygen<br>with 2011 Maximum<br>Cumulative<br>Withdrawal | Predicted<br>Dissolved Oxygen<br>with 2050 Maximum<br>Cumulative<br>Withdrawal | Change in<br>Dissolved<br>Oxygen | Percent Change |
|-------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|----------------|
| DO-1  | 6.4827                                                                         | 6.4801                                                                         | -0.0026                          | -0.04%         |
| DO-2  | 6.5215                                                                         | 6.5280                                                                         | 0.0065                           | 0.10%          |

| Model | Predicted<br>Dissolved Oxygen<br>with 2011 Maximum<br>Cumulative<br>Withdrawal | Predicted<br>Dissolved Oxygen<br>with 2050 Maximum<br>Cumulative<br>Withdrawal | Change in<br>Dissolved<br>Oxygen | Percent Change |
|-------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|----------------|
| DO-4  | 6.5535                                                                         | 6.5743                                                                         | 0.0208                           | 0.32%          |

The regression model for pH predicts an increase in pH from 7.519 to 7.644 under these 2050 7Q10 low flow conditions equal to a 1.66 percent change (Table 18).

Table 18. Predicted pH (s.u.) Response to Increase in Maximum Withdrawal at Lock and Dam #1

| Model | Predicted pH with<br>2011 Maximum<br>Cumulative<br>Withdrawal | Predicted pH with<br>2050 Maximum<br>Cumulative<br>Withdrawal | Change in pH | Percent Change |
|-------|---------------------------------------------------------------|---------------------------------------------------------------|--------------|----------------|
| PH-1  | 7.5191                                                        | 7.6438                                                        | 0.1247       | 1.66%          |

In sum, both the dissolved oxygen and pH changes are predicted to be minimal and insignificant, and further modeling analysis is not warranted.

### 8.1.2 New Fish Passage Structure at Lock and Dam #1

A new fish passage structure (FPS) at Lock and Dam #1 on the Cape Fear River was completed in November 2012 by the US Army Corps of Engineers. The Basis of Design report provided the design, associated analyses (e.g., hydrologic and hydraulic analysis), and the biological rationale for the project (US Army Corps of Engineers, 2010). The rock arch rapids design is a type of rock ramp that provides fish passage over low-head dams by emulation of natural rapids and facilitation of fish hydrodynamics. The FPS alternative was chosen over others including removal of the dam in part due to the need to protect the water supply intake structures located just upstream (e.g., LCFWSA intake).

The FPS is designed to increase fish passage and increase spawning opportunities for anadromous fish. Spawning migration in the Atlantic coastal region occurs primarily during periods of increased but moderate river flow and temperature such as late winter and spring (NOAA, 2013). The design of the FPS accounts for flows during this period including an assumed "spawning flow" of 5,000 cfs, a flow level near the mean flow for the river (5,063 cfs based on 1982-2012), and typical spring flows during March and April which are somewhat greater (i.e., up to about 9,000 cfs; US Army Corps of Engineers, 2010). Maximum, cumulative withdrawals for 2050 (164 cfs; incorporates all LCFWSA customers including Brunswick) just above the FPS represent 2 to 3 percent of these flow values. Maximum withdrawal is more likely to occur in the summer given seasonal water use patterns; therefore, water withdrawals from the river during the spawning migration would represent an even smaller proportion of flow (as would considering only Brunswick's portion). As such the impact of withdrawals on FPS function would be insignificant.

## 8.1.3 Impacts Below Lock and Dam #1

The section of the Lower Cape Fear River Estuary (LCFRE) from upstream of Toomers Creek to a line across the river between Lilliput Creek and Snows Cut has been on North Carolina's 303(d) list as impaired for dissolved oxygen since 1998. In 2006 the DWQ added pH as impaired for this segment, and



in 2008 DWQ added copper and turbidity to the listing. Emphasis by DWQ has been on developing a better understanding of loads and processes influencing dissolved oxygen.

Since the original listing for dissolved oxygen, many technical studies of the LCFRE have been conducted by DWQ, the Lower Cape Fear River Program, other agencies and academic researchers, and consultants. As a result, an extensive technical foundation of knowledge on the LCFRE has been created including information on physical, chemical, and biological features and processes. Monitoring programs have provided insight regarding ambient conditions over many years on water quality, benthos and fish. The Lower Cape Fear River Program has conducted monitoring in coordination with DWQ since 1995, and a considerable amount of data is available before that. Extensive data have been collected by the Middle Cape Fear River Basin Association upstream of Lock and Dam #1 since mid-1998. Additionally, sophisticated hydrodynamic modeling tools have been developed for the entire estuary and the portion of the river up to Lock and Dam #1.

An application of the three-dimensional water quality model Environmental Fluid Dynamics Code (EFDC) was developed for the LCFRE by the University of North Carolina-Charlotte for DWQ (Bowen et al. 2009). The model was used to investigate the effects of various organic matter and ammonia load reduction scenarios, both point and nonpoint source, on the dissolved oxygen concentrations in the estuary. The model region included the tidally affected portions of the Cape Fear (i.e., portion below Lock & Dam 1), Black, and Northeast Cape Fear rivers near Wilmington, North Carolina, and extended south to the mouth of the Cape Fear River near Southport, North Carolina.

The 21 state variable EFDC water quality model included multiple dissolved and particulate organic carbon constituents, and organic and inorganic nutrients, dissolved oxygen, and three phytoplankton constituents. To adequately characterize the various organic matter decomposition rates of the riverine and wastewater inputs, both labile and refractory dissolved organic matter constituents were used. The water quality model considered inputs from the three riverine sources at the model boundaries, 20 wastewater point source inputs in the estuary, and 14 additional point sources that simulated other freshwater inputs to the estuary from tidal creeks and wetlands. Over the 3-year period (2002–2005) for which the freshwater and point source loadings were developed, approximately 10 percent of the organic matter loading and 50 percent of the ammonia loading to the estuary came from the 20 wastewater point sources that discharge directly to the estuary (Bowen et al. 2009).

The calibrated model achieved an excellent fit to observed data (more than 5200 measurements at 18 estuary sites) for complex estuary models. Bowen et al. (2009) report that the mean model error was less than 0.01 mg/L, and the root mean square error was 0.92 mg/L, which corresponds to 13.8 percent of the mean value. DWQ found the calibrated model to be suitable for conducting scenario tests on the effect of changes in organic matter and ammonia loadings on the dissolved oxygen concentrations in the estuary.

A number of scenarios were examined by Bowen and DWQ to test the sensitivity of dissolved oxygen to reductions in point and nonpoint source loads of oxygen-demanding pollutants. With all point sources eliminated, the 10th percentile dissolved oxygen concentration increased by approximately 0.3 mg/L, from 4.3 to 4.5 mg/L. Nonpoint source loading reductions of 30 percent, 50 percent, or 70 percent were assumed for the three river inputs (Cape Fear, Black, and Northeast Cape Fear), and from the 14 creeks and wetland inputs in the estuary. Despite these large reductions, dissolved oxygen concentrations increased by only 0.2, 0.3, and 0.4 mg/L, respectively, from 4.3 to either 4.5, 4.6 or 4.7 mg/L. On the basis of the modeling results, DWQ has temporarily suspended its development of a TMDL for oxygen-demanding loads while it considers the relative impact of natural and anthropogenic sources on the water quality in the LCFRE.

The studies by Bowen et al. (2009) and Hamrick et al. (2001) show that during low-flow summer conditions, hydrology and pollutant transport are dominated by tidal exchange with the ocean. The EFDC model uses a historical period of flow at its upper boundary (i.e., Lock and Dam #1) that reflects flows

above 20 cms (~700 cfs). The withdrawal associated the proposed flow transfer for the County corresponds to 60 cfs (39 mgd), which represents approximately 9 percent of the lowest model flows entering the LCFRE. Because tidal flow dominates pollutant fate and transport during the lowest flow periods and transfer of flow would actually remove some pollutants from entering the LCFRE, the IBT would not be expected to have a noticeable effect on water quality in the river below Lock & Dam #1.

## 8.1.4 Reservoirs in the Cape Fear IBT River Basin

There are no reservoirs located on the Cape Fear River in the Cape Fear IBT River Basin.

# 9 Future Water Supply Needs

An analysis of existing and future water supply needs for the Cape Fear River IBT River Basin was conducted to support the County's request for an IBT certificate. Brunswick County's future water supply needs, summarized in Section 3, were combined with other public water systems in the source basin (listed in Table 10) within the Cape Fear Hydrologic Model described in Section 8. This model provides the best compilation of existing and future water supply needs in the source river basin and provides a platform to determine whether those needs can be met in the future. Water demands in the model were estimated using local water supply plan data and additional information received from water systems and other registered water users. It also includes industrial and agricultural demands as described within NCDWR (2008). The original analysis by NCDWR concluded that demand for future withdrawals within the Cape Fear IBT River Basin is met. Additional analysis conducted for the EA and IBT request using the model, as described in Section 8, supports this conclusion.

### **Brunswick Local Water Supply Plan** 10

Brunswick County's 2011 local water supply plan is provided in Appendix C.



# References

Bowen, J.D., S. Negusse, J.M. Goodman, B. Duclaud, M. Robin, and J. Williams. 2009. Development and use of a three-dimensional water quality model to predict dissolved oxygen concentrations in the lower Cape Fear River Estuary, North Carolina. University of North Carolina at Charlotte.

Boyle, M.F., R.K. Peet, T.R. Wentworth, and M.P. Schafale. 2007. Natural vegetation of the Carolinas: Classification and description of plant communities of Brunswick County, NC and vicinity. University of North Carolina, Carolina Vegetation Survey, Chapel Hill, NC.

Hamrick, J.T. Clements, J. Doll, and J. Butcher. May 2001. 3-Dimensional EFDC Water Quality Model of the Lower Cape Fear River and Its Estuary. Prepared by Tetra Tech for the City of Wilmington and New Hanover County.

Harden, S.L., J.M. Fine, and T.B. Spruill. 2003. Hydrogeology and Ground-Water Quality of Brunswick County, North Carolina. Prepared in cooperation with Brunswick County, North Carolina. USGS Water-Resources Investigations Report 03–4051.

Hazen and Sawyer. 2006. Brunswick County Final Water Master Plan.

Hazen and Sawyer. 2008. Preliminary Engineering Report: Expansion of Brunswick County Northwest Water Treatment Plant.

Huffman, R.L. 1996. Ground Water in the Coastal Plain of North Carolina. North Carolina Cooperative Extension Service. Accessed December 5, 2011.

http://www.bae.ncsu.edu/programs/extension/publicat/wqwm/ag450.html.

HydroLogics. 2006. Modeling the Cape Fear River Basin Operations with OASIS: Addendum to the User Manual for OASIS with OCLTM. Prepared for the Cape Fear River Assembly and Its Partners, including the North Carolina Division of Water Resources. Hydrologics. 2009. User Manual for OASIS with OCL. Model Version 3.10.8, GUI Version 4.6.16. Hydrologics, Inc., Raleigh, NC.

Marotti, W. 2011. Environmental Assessment, Northeast Brunswick Regional Wastewater System, Brunswick County, North Carolina. North Carolina Division of Water Quality Planning Section, Raleigh, NC.

NCDEH-SSB (North Carolina Department of Natural Resources, Division of Environmental Health, Shellfish Sanitation and Recreational Water Quality Section). 2011. Shellfish Growing Areas. North Carolina Department of Natural Resources, Division of Environmental Health, Morehead City, NC. Accessed December 5, 2011. www.nconemap.com.

NCDENR (North Carolina Department of Environment and Natural Resources). 2011a. Significant Natural Heritage Areas – August 2011. North Carolina Department of Environment and Natural Resources, Division of Parks and Recreation, Natural Heritage Program, Raleigh, NC. Accessed December 5, 2011. www.ncnhp.org.

NCDENR (North Carolina Department of Environment and Natural Resources). 2011b. Guidance for Preparing SEPA Documents and Addressing Secondary and Cumulative Impacts. North Carolina Department of Environment and Natural Resources, Raleigh, NC.

NCDWQ (North Carolina Division of Water Quality). 2005. October 2005 Cape Fear River Basinwide Water Quality Plan. Accessed December 17, 2011. http://h2o.enr.state.nc.us/basinwide/draftCPFApril2005.htm.

NCDWQ (North Carolina Division of Water Quality). 2008. 2008 North Carolina Integrated Report Categories 4 and 5 (Impaired Waters List). Accessed January 6, 2012.

http://portal.ncdenr.org/c/document\_library/get\_file?uuid=9f453bf9-2053-4329-b943-6614bd4e709a&groupId=38364.

NCDWQ (North Carolina Division of Water Quality). 2010a. NC 2010 Integrated Report Categories 4 and 5 Impaired Waters. Category 5 – 303(d) List Approved by EPA August 31, 2010. North Carolina Department of Environment and Natural Resources Division of Water Quality, Raleigh, NC.

NCDWQ (North Carolina Division of Water Quality). 2010b. Lumber River Basinwide Water Quality Plan. North Carolina Department of Environment and Natural Resources Division of Water Quality. Accessed December 20, 2011. http://h2o.enr.state.nc.us/basinwide/lumber/Lumber2009.htm.

NCDWQ (North Carolina Division of Water Quality). 2010c. Total Maximum Daily Loads of Fecal Coliform for the Shellfish Harvesting Areas in the Lockwoods Folly River, Lumber River Basin, Brunswick County, NC. Accessed December 20, 2011. http://portal.ncdenr.org/c/document\_library/get\_file?uuid=78c1b25d-1611-41ea-9442-bc0d6fc1f1cc&groupId=38364.

NCDWQ (North Carolina Division of Water Quality). 2013. North Carolina Statewide Mercury TMDL. North Carolina Division of Water Quality. Accessed March 20, 2013. http://portal.ncdenr.org/web/wq/ps/mtu/tmdl/tmdls/mercury.

NCDWQ (North Carolina Division of Water Quality). 2012. Ambient Monitoring System (AMS). North Carolina Division of Water Quality, Environmental Sciences Section, Raleigh, NC. http://portal.ncdenr.org/web/wq/ess/eco/ams.

NCDWR (North Carolina Division of Water Resources). 2002. Cape Fear River Basin Water Supply Plan. Second Draft. March 2002. North Carolina Division of Water Resources, North Carolina Department of Environment and Natural Resources, Raleigh, NC.

NCDWR (North Carolina Division of Water Resources). 2008. Cape Fear River Basin Surface Water Assessment: Modeling of Future Water Use Scenarios. North Carolina Division of Water Resources, Raleigh, NC.

NCDWR (North Carolina Division of Water Resources). 2010. North Carolina Division of Water Resources Water Withdrawal Registration Annual Water Use Report. International Paper, Riegelwood, NC.

NCDWR (North Carolina Division of Water Resources). 2011. North Carolina Aquifers. North Carolina Department of Environment and Natural Resources Division of Water Resources. Accessed December 5, 2011.

http://www.ncwater.org/Education\_and\_Technical\_Assistance/Ground\_Water/AquiferCharacteristics/.

NCNHP (North Carolina Natural Heritage Program). 2011. Biotics Database. North Carolina Department of Environment and Natural Resources, Natural Heritage Program, Raleigh, NC.

NOAA (National Oceanic and Atmospheric Administraion). 2013. Diadromous Fish Passage: A Primer on Technology, Planning, and Design for the Atlantic and Gulf Coasts. National Marine Fisheries Service. Accessed March 20, 2013. http://www.nero.noaa.gov/hcd/docs/FishPassagePrimer.pdf.

U.S. Census. 2000. Profile of General Demographic Characteristics: 2000. Geographic Area: Brunswick County, North Carolina. http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml

U.S. Census. 2010. Brunswick County QuickFacts from the US Census Bureau. http://quickfacts.census.gov/qfd/states/37/37019.html

U.S. Army Corps of Engineers. 2010. Fish Passage at Lock and Dam No. 1, Cape Fear River, Bladen County, North Carolina. 100% Design Submittal. Basis of Design. Prepared by SEPI Engineering and

Construction and Tetra Tech, Inc.

USEPA (U.S. Environmental Protection Agency). 2006. Technology and Cost Document for the Final Ground Water Rule. U.S. Environmental Protection Agency, Washington, DC.

Weaver, J.C., and B.F. Pope. 2001. Low-Flow Characteristics and Discharge Profiles for Selected Streams in the Cape Fear River Basin, North Carolina, through 1998. Water-Resources Investigation Report 01-4094. U.S. Geological Survey, Raleigh, NC.

# Appendix A Finding of No Significant Impact



North Carolina Department of Environment and Natural Resources

Pat McCrory Governor Division of Water Resources Thomas A. Reeder Director

John E. Skvarla, III Secretary

### FINDING OF NO SIGNIFICANT IMPACT ENVIRONMENTAL ASSESSMENT FOR THE BRUNSWICK COUNTY PUBLIC UTILITIES INTERBASIN TRANSFER CERTIFICATE

Pursuant to the requirements of the Surface Water Transfers Act [G.S. 143-215.22I] and the State Environmental Policy Act (G.S. 113A), Brunswick County Public Utilities (the County) has prepared an environmental assessment (EA) to support the County's request for an interbasin transfer certificate.

Brunswick County Public Utilities currently provides water to more than 34,000 retail customers and 11 wholesale customers through its two water treatment plants (WTP). The Northwest WTP, permitted for 24 million gallons per day (MGD), is located near the City of Northwest and receives raw water from the Cape Fear River via the Lower Cape Fear Water and Sewer Authority. The 211 WTP is permitted for 6 MGD and treats groundwater from the Castle Hayne Aquifer. Wastewater within the County is handled through individual onsite septic systems, clustered and centralized land application, reuse, and surface water discharging systems. This treatment, service, and disposal of water creates an interbasin transfer from the Cape Fear River Basin to the Shallotte and Waccamaw River Basins, both of which are subbasins to the Lumber River Basin.

The County is requesting an interbasin transfer certificate from the Environmental Management Commission to transfer 18.3 MGD, limited on a maximum daily basis, from the Cape Fear River Basin to the Shallotte River Basin. The County currently has a grandfathered transfer capacity of 10.5 MGD. This increase is based on a 30-year water demand projection (through the year 2042). No increase in IBT is being requested for the Waccamaw IBT River Basin: minor growth is expected in this area and future water will be supplied by the Little River Water and Sewerage Company in South Carolina via an agreement with the County.

A hydrologic analysis was performed using the Division of Water Resources' Cape Fear Hydrologic Model to evaluate the County's impact on flow in the Cape Fear River, and determine whether future demands will be met for public water systems in the source basin. The proposed IBT increase did not change NCDWR's (2008) previous conclusion that full demand for all withdrawals at Lock and Dam #1 are met through 2050. Similarly, the impacts of the transfer on water quality are predicted to be insignificant based on a statistical data analysis and the Division of Water Quality's water quality model of the Lower Cape Fear River Estuary.

Secondary and cumulative impacts for the project are those that could be derived from growth inducement in the Shallotte IBT River Basin. Future growth in the County is expected to primarily occur as low- and medium-density residential uses. Due to the fact that Brunswick County falls under the Coastal Area Management Act (CAMA), there are numerous state and local regulatory measures in place

1611 Mail Service Center, Raleigh, North Carolina 27699-1611 Location: 512 N. Salisbury St. Raleigh, North Carolina 27604 Phone: 919-707-9000\ FAX: 919-733-3588 Internet: www.ncwater.org

An Equal Opportunity \ Affirmative Action Employer

Environmental Assessment Finding of No Significant Impact Brunswick County Public Utilities Request for an Interbasin Transfer Certificate

to mitigate the effects of growth including the CAMA Land Use Plan and Areas of Environmental Concern requirements, the 20 Coastal Counties Stormwater Law, and the NPDES Phase II Stormwater Rules.

There are no construction activities associated with this request. Any potential impacts associated with construction of WTP improvements and transmission lines in the source or receiving basin would be reviewed under environmental documents prepared under SEPA specifically for these projects as required by state and federal regulations. An EA for the Northwest WTP plant expansion and associated improvements will be prepared as required by SEPA if an IBT certificate is approved.

Based on the findings of the EA, the Division of Water Resources has concluded that the proposed project will not result in significant adverse effect on the environment. This decision is based upon the requirements of NC GS 143-215.22I, information in the attached EA, and review by governmental agencies. Therefore the EA supports a Finding of No Significant Impact such that preparation of an environmental impact statement will not be required. This FONSI completes the environmental review record, which is available for inspection and comment for 30 days at the State Clearinghouse.

Thomas A. Reeder Director, Division of Water Resources

# Appendix B Protected Species

## Table B-1. State and Federally Protected Species in Counties of the Cape Fear IBT River Basin Study Area

| Common Name                | Row Labels                 | State<br>Status | Federal<br>Status | County             |
|----------------------------|----------------------------|-----------------|-------------------|--------------------|
| Invertebrate Animal        |                            |                 |                   |                    |
| a dart moth                | Agrotis carolina           | SR              | FSC               | Bla, Bru, Pen      |
| Waccamaw Snail             | Amnicola sp. 1             | SC              | -                 | Col                |
| Barrel Floater             | Anodonta couperiana        | E               | -                 | Bla, NH            |
| Arogos Skipper             | Atrytone arogos arogos     | SR              | FSC               | Bru, NH            |
| Loammi Skipper             | Atrytonopsis loammi        | SR              | FSC               | Bru, NH            |
| Waccamaw Ambersnail        | Catinella waccamawensis    | Т               | -                 | Col                |
| Waccamaw Siltsnail         | Cincinnatia sp. 1          | SC              | -                 | Col                |
| Pod Lance                  | Elliptio folliculata       | SC              | -                 | Bla, Bru, Col, Pen |
| Cape Fear Spike            | Elliptio marsupiobesa      | SC              | -                 | Bla, NH, Pen       |
| Roanoke Slabshell          | Elliptio roanokensis       | Т               | -                 | Bla                |
| Waccamaw Spike             | Elliptio waccamawensis     | E               | FSC               | Bru, Col           |
| Atlantic Pigtoe            | Fusconaia masoni           | E               | FSC               | Bla, Pen           |
| Greenfield Rams-horn       | Helisoma eucosmium         | E               | FSC               | Bru, NH            |
| Venus Flytrap Cutworm Moth | Hemipachnobia subporphyrea | SR              | FSC               | Bla, Bru, Pen      |
| Yellow Lampmussel          | Lampsilis cariosa          | E               | FSC               | Bla, Col, Pen      |
| Waccamaw Fatmucket         | Lampsilis fullerkati       | Т               | FSC               | Col                |
| Eastern Lampmussel         | Lampsilis radiata          | т               | -                 | Bla, Col, Pen      |
| Tidewater Mucket           | Leptodea ochracea          | Т               | -                 | Col                |
| Eastern Pondmussel         | Ligumia nasuta             | Т               | -                 | Bru                |
| Graceful Clam Shrimp       | Lynceus gracilicornis      | SC              | -                 | NH                 |
| Magnificent Rams-horn      | Planorbella magnifica      | E               | FSC               | Bru, NH            |
| Rare Skipper               | Problema bulenta           | SR              | FSC               | Bru, NH            |

| Common Name                | Row Labels                | State<br>Status | Federal<br>Status | County                 |
|----------------------------|---------------------------|-----------------|-------------------|------------------------|
| Waccamaw Crayfish          | Procambarus braswelli     | SC              | -                 | Bru, Col               |
| Belle's Sanddragon         | Progomphus bellei         | SR              | FSC               | Bla                    |
| Carter's Noctuid Moth      | Spartiniphaga carterae    | SR              | FSC               | Bla, Bru, Pen          |
| Townes' Clubtail           | Stylurus townesi          | SR              | FSC               | Col                    |
| Savannah Lilliput          | Toxolasma pullus          | E               | FSC               | Col                    |
| Cape Fear Threetooth       | Triodopsis soelneri       | Т               | FSC               | Bru, Col, NH           |
| Nonvascular Plant          |                           |                 | ,                 |                        |
| Savanna Campylopus         | Campylopus carolinae      | SR-T            | FSC               | Bru                    |
| Vascular Plant             |                           |                 |                   |                        |
| Venus Hair Fern            | Adiantum capillus-veneris | т               | -                 | Col                    |
| Branched Gerardia          | Agalinis virgata          | т               | -                 | Bru, NH, Pen           |
| Savanna Onion              | Allium sp. 1              | SR-L            | FSC               | Bru, Pen               |
| Seabeach Amaranth          | Amaranthus pumilus        | т               | Т                 | Bru, NH, Pen           |
| Savanna Indigo-bush        | Amorpha confusa           | т               | FSC               | Bla, Bru, Col, NH      |
| Georgia Indigo-bush        | Amorpha georgiana         | E               | FSC               | Pen                    |
| Bog Bluestem               | Andropogon mohrii         | т               | -                 | Bru, Col, Pen          |
| Big Three-awn Grass        | Aristida condensata       | т               | -                 | Bla, NH, Pen           |
| Chapman's Three-awn        | Aristida simpliciflora    | E               | -                 | Bru, Col, Pen          |
| Savanna Indian-plantain    | Arnoglossum ovatum        | E               | -                 | Bla, Bru, Col, Pen     |
| Savanna Milkweed           | Asclepias pedicellata     | SC-V            | -                 | Bla, Bru, Col, NH, Pen |
| Carolina Spleenwort        | Asplenium heteroresiliens | E               | FSC               | Bla                    |
| Sandhills Milk-vetch       | Astragalus michauxii      | SC-V            | FSC               | Bla, NH, Pen           |
| Silverling                 | Baccharis glomeruliflora  | SC-H            | -                 | Bru                    |
| Blue Water-hyssop          | Bacopa caroliniana        | т               | -                 | Bla, Bru, Col, NH, Pen |
| Tropical Water-hyssop      | Bacopa innominata         | SC-H            | -                 | NH, Pen                |
| Purple-disk Honeycomb-head | Balduina atropurpurea     | E               | FSC               | Bla, Bru               |
|                            | •                         |                 | •                 | •                      |

| Common Name             | Row Labels                                 | State<br>Status | Federal<br>Status | County                 |
|-------------------------|--------------------------------------------|-----------------|-------------------|------------------------|
| Ware's Hair Sedge       | Bulbostylis warei                          | SC-H            | -                 | Bru                    |
| Many-flower Grass-pink  | Calopogon multiflorus                      | E               | FSC               | Bru, Pen               |
| Long's Bittercress      | Cardamine longii                           | SC-V            | -                 | Bla, NH, Pen           |
| Cherokee Sedge          | Carex cherokeensis                         | E               | -                 | Pen                    |
| Cypress Knee Sedge      | Carex decomposita                          | SC-V            | -                 | Bru, NH                |
| Golden Sedge            | Carex lutea                                | E               | E                 | Pen                    |
| Kidney Sedge            | Carex reniformis                           | т               | -                 | Bla, Pen               |
| Nutmeg Hickory          | Carya myristiciformis                      | E               | -                 | Bru, Pen               |
| A Spanglegrass          | Chasmanthium nitidum                       | Т               | -                 | Pen                    |
| Woody Goldenrod         | Chrysoma pauciflosculosa                   | E               | -                 | Col                    |
| Leconte's Thistle       | Cirsium lecontei                           | SC-V            | -                 | Bla, Bru, Col, Pen     |
| Georgia Calamint        | Clinopodium georgianum                     | E               | -                 | Bru, Pen               |
| Roughleaf Dogwood       | Cornus asperifolia                         | E               | -                 | Pen                    |
| Swamp-lily              | Crinum americanum                          | SC-H            | -                 | NH                     |
| Carolina Sunrose        | Crocanthemum carolinianum                  | E               | -                 | Bru, NH, Pen           |
| Pinebarren Sunrose      | Crocanthemum corymbosum                    | т               | -                 | Bru                    |
| Georgia Sunrose         | Crocanthemum georgianum                    | E               | -                 | Bru, NH                |
| Florida Scrub Frostweed | Crocanthemum nashii                        | E               | -                 | Bru, NH                |
| Toothed Flatsedge       | Cyperus dentatus                           | SC-H            | -                 | Bru                    |
| Leconte's Flatsedge     | Cyperus lecontei                           | Т               | -                 | Bru, NH                |
| Four-angled Flatsedge   | Cyperus tetragonus                         | SC-V            | -                 | Bru, NH, Pen           |
| Nerved Witch Grass      | Dichanthelium aciculare ssp.<br>neuranthum | SC-V            | -                 | Bru, NH                |
| Blue Witch Grass        | Dichanthelium caerulescens                 | E               | -                 | Bru, Pen               |
| Venus Flytrap           | Dionaea muscipula                          | SC-V            | FSC               | Bla, Bru, Col, NH, Pen |
| Sebastian-bush          | Ditrysinia fruticosa                       | SC-V            | -                 | Bru, Col, Pen          |

| Common Name                   | Row Labels                           | State<br>Status | Federal<br>Status | County                 |
|-------------------------------|--------------------------------------|-----------------|-------------------|------------------------|
| Threadleaf Sundew             | Drosera filiformis                   | SC-V            | -                 | Bla, Bru, Col          |
| Dwarf Burhead                 | Echinodorus tenellus                 | Е               | -                 | Bru                    |
| Florida Spikerush             | Eleocharis elongata                  | E               | -                 | Bru                    |
| Robbins' Spikerush            | Eleocharis robbinsii                 | SC-V            | -                 | Bla, Bru, NH           |
| Viviparous Spikerush          | Eleocharis vivipara                  | E               | -                 | NH, Pen                |
| Terrell Grass                 | Elymus virginicus var.<br>halophilus | SC-V            | -                 | Bru                    |
| Green Fly Orchid              | Epidendrum magnoliae                 | Т               | -                 | Bla, Bru, Col, NH, Pen |
| Seven-angled Pipewort         | Eriocaulon aquaticum                 | SC-V            | -                 | Bla, Bru, Col          |
| Southern Wild-buckwheat       | Eriogonum tomentosum                 | SC-H            | -                 | Bla                    |
| Coralbean                     | Erythrina herbacea                   | E               | -                 | Bru, NH                |
| Limesink Dog-fennel           | Eupatorium leptophyllum              | E               | -                 | Bru, NH                |
| Heartleaf Sandmat             | Euphorbia cordifolia                 | Т               | -                 | Bla                    |
| Harper's Fimbry               | Fimbristylis perpusilla              | т               | FSC               | Bru, Col               |
| Soft Milk-pea                 | Galactia mollis                      | Т               | -                 | Bru                    |
| Confederate Huckleberry       | Gaylussacia nana                     | E               | -                 | NH                     |
| Swamp Jessamine               | Gelsemium rankinii                   | SC-V            | -                 | Bru, Col, NH, Pen      |
| Golden Hedge-hyssop           | Gratiola aurea                       | SC-V            | -                 | Bla, Bru, Col, Pen     |
| Littleleaf Sneezeweed         | Helenium brevifolium                 | E               | -                 | Bru                    |
| Spring Sneezeweed             | Helenium vernale                     | Е               | -                 | Bru, Col               |
| Florida Sunflower             | Helianthus floridanus                | т               | -                 | Bla, Bru, Col          |
| Comfortroot                   | Hibiscus aculeatus                   | т               | -                 | NH                     |
| Waccamaw River Spiderlily     | Hymenocallis pygmaea                 | Т               | FSC               | Bru, Col               |
| Coastal Plain St. John's-wort | Hypericum brachyphyllum              | SC-V            | -                 | Bru, Col, Pen          |
| Peelbark St. John's-wort      | Hypericum fasciculatum               | E               | -                 | NH                     |
| Pineland St. John's-wort      | Hypericum suffruticosum              | SC-H            | -                 | Bla                    |
| Beach Morning-glory           | Ipomoea imperati                     | т               | -                 | Bru                    |

| Common Name                         | Row Labels                               | State<br>Status | Federal<br>Status | County                 |
|-------------------------------------|------------------------------------------|-----------------|-------------------|------------------------|
| Thin-wall Quillwort                 | lsoetes microvela                        | т               | FSC               | Bru, Pen               |
| Brown Bogbutton                     | Lachnocaulon minus                       | т               | -                 | Bru, NH, Pen           |
| Torrey's Pinweed                    | Lechea torreyi                           | E               | -                 | Bru, Pen               |
| Long-awned Spangletop               | Leptochloa fascicularis var.<br>maritima | E               | -                 | Bru                    |
| Pondberry                           | Lindera melissifolia                     | E               | E                 | Bla                    |
| Yellow-fruited Flax                 | Linum floridanum var.<br>chrysocarpum    | т               | -                 | Bru, Col, Pen          |
| Small-flowered Hemicarpha           | Lipocarpha micrantha                     | SC-H            | -                 | Col                    |
| Pondspice                           | Litsea aestivalis                        | SC-V            | FSC               | Bla, Bru, NH           |
| Boykin's Lobelia                    | Lobelia boykinii                         | E               | FSC               | Bla                    |
| Golden-crest                        | Lophiola aurea                           | E               | -                 | Bru, Col, NH           |
| Lanceleaf Seedbox                   | Ludwigia lanceolata                      | E               | -                 | Bru, NH                |
| Flaxleaf Seedbox                    | Ludwigia linifolia                       | т               | -                 | Bru, Col, NH           |
| Raven's Seedbox                     | Ludwigia ravenii                         | т               | FSC               | Bru, Col, NH           |
| Globe-fruit Seedbox                 | Ludwigia sphaerocarpa                    | E               | -                 | Bla, Col, NH           |
| Shrubby Seedbox                     | Ludwigia suffruticosa                    | т               | -                 | Bla, Bru, NH           |
| Rough-leaf Loosestrife              | Lysimachia asperulifolia                 | E               | E                 | Bla, Bru, Col, NH, Pen |
| Carolina Bogmint                    | Macbridea caroliniana                    | E               | FSC               | Bla, Bru, Col, Pen     |
| Florida Adder's-mouth               | Malaxis spicata                          | SC-V            | -                 | Bru, Pen               |
| Pinebarren Smokegrass               | Muhlenbergia torreyana                   | SC-V            | -                 | Bru, Pen               |
| Loose Water-milfoil                 | Myriophyllum laxum                       | E               | FSC               | Bru                    |
| Leafless Water-milfoil              | Myriophyllum tenellum                    | E               | -                 | Bla                    |
| Bosc's Bluet                        | Oldenlandia boscii                       | E               | -                 | Bru, Col               |
| Large-seed Pellitory                | Parietaria praetermissa                  | SC-V            | -                 | Bru, NH                |
| Carolina Grass-of-parnassus         | Parnassia caroliniana                    | т               | FSC               | Bla, Bru, Col, Pen     |
| Large-leaved Grass-of-<br>parnassus | Parnassia grandifolia                    | т               | FSC               | Bru, Col, Pen          |

| Common Name              | Row Labels                                  | State<br>Status | Federal<br>Status | County                 |
|--------------------------|---------------------------------------------|-----------------|-------------------|------------------------|
| Mudbank Crown Grass      | Paspalum dissectum                          | E               | -                 | Bru, Col, Pen          |
| Hairy Smartweed          | Persicaria hirsuta                          | E               | -                 | Bru                    |
| Small Butterwort         | Pinguicula pumila                           | E               | -                 | Pen                    |
| A Silkgrass              | Pityopsis graminifolia var.<br>graminifolia | E               | -                 | Bru, Col               |
| Pineland Plantain        | Plantago sparsiflora                        | Т               | FSC               | Bla, Bru, Col, Pen     |
| Yellow Fringeless Orchid | Platanthera integra                         | SC-V            | -                 | Bru, Col, Pen          |
| Snowy Orchid             | Platanthera nivea                           | Т               | -                 | Bla, Bru, Col, NH, Pen |
| Hooker's Milkwort        | Polygala hookeri                            | SC-V            | -                 | Bru, Col, NH, Pen      |
| Seabeach Knotweed        | Polygonum glaucum                           | E               | -                 | Bru, NH                |
| Shadow-witch             | Ponthieva racemosa                          | т               | -                 | Bru, Pen               |
| Spiked Medusa            | Pteroglossaspis ecristata                   | E               | FSC               | Bla, NH                |
| Carolina Bishop-weed     | Ptilimnium ahlesii                          | SR-L            | FSC               | Bru, NH                |
| Ribbed Bishop-weed       | Ptilimnium costatum                         | т               | -                 | Bru, NH                |
| Sandhills Pyxie-moss     | Pyxidanthera brevifolia                     | SR-L            | FSC               | Bru                    |
| Awned Meadow-beauty      | Rhexia aristosa                             | SC-V            | FSC               | Bla, Bru               |
| Swamp Forest Beaksedge   | Rhynchospora decurrens                      | т               | FSC               | Bru, Col               |
| Harper's Beaksedge       | Rhynchospora harperi                        | SC-V            | -                 | Bru                    |
| Fragrant Beaksedge       | Rhynchospora odorata                        | SC-V            | -                 | Bru, Pen               |
| Coastal Beaksedge        | Rhynchospora pleiantha                      | т               | FSC               | Bru, NH                |
| Thorne's Beaksedge       | Rhynchospora thornei                        | SC-V            | FSC               | Bru, Pen               |
| Tracy's Beaksedge        | Rhynchospora tracyi                         | Т               | -                 | Bru, NH                |
| Limestone Wild-petunia   | Ruellia strepens                            | E               | -                 | Pen                    |
| Cabbage Palm             | Sabal palmetto                              | т               | -                 | Bru                    |
| Plymouth Gentian         | Sabatia kennedyana                          | т               | -                 | Bru, Col               |
| Small-flowered Buckthorn | Sageretia minutiflora                       | т               | -                 | Pen                    |
| Chapman's Arrowhead      | Sagittaria chapmanii                        | E               | -                 | Bla, Col               |

| Common Name                 | Row Labels                               | State<br>Status | Federal<br>Status | County                 |
|-----------------------------|------------------------------------------|-----------------|-------------------|------------------------|
| Quillwort Arrowhead         | Sagittaria isoetiformis                  | Т               | -                 | Bla, Bru, Col, NH      |
| Grassleaf Arrowhead         | Sagittaria weatherbiana                  | E               | FSC               | Bla, Bru, Col, NH, Pen |
| Hooded Pitcher Plant        | Sarracenia minor                         | E               | -                 | Bru, Col, NH           |
| Chaffseed                   | Schwalbea americana                      | E               | E                 | Bla, Pen               |
| Drooping Bulrush            | Scirpus lineatus                         | Т               | -                 | Bru, NH, Pen           |
| Baldwin's Nutrush           | Scleria baldwinii                        | Т               | -                 | Bru, Col, Pen          |
| Netted Nutrush              | Scleria reticularis                      | т               | -                 | Bru, NH                |
| Smooth-seeded Hairy Nutrush | Scleria sp. 1                            | SR-L            | FSC               | Pen                    |
| Sticky Afzelia              | Seymeria pectinata                       | SC-H            | -                 | Bru                    |
| Tough Bumelia               | Sideroxylon tenax                        | Т               | FSC               | Bru, NH                |
| Leavenworth's Goldenrod     | Solidago leavenworthii                   | Т               | -                 | Col                    |
| Twisted-leaf Goldenrod      | Solidago tortifolia                      | E               | -                 | Bla, Bru, NH           |
| Spring-flowering Goldenrod  | Solidago verna                           | SR-O            | FSC               | Bla, Bru, Col, NH, Pen |
| Coastal Goldenrod           | Solidago villosicarpa                    | E               | FSC               | Bru, NH, Pen           |
| Eaton's Ladies'-tresses     | Spiranthes eatonii                       | E               | -                 | Bla, Bru, Pen          |
| Lace-lip Ladies'-tresses    | Spiranthes laciniata                     | SC-V            | -                 | Bla, Bru, Col, NH      |
| Giant Spiral Orchid         | Spiranthes longilabris                   | E               | -                 | Bla, Bru, Pen          |
| Wireleaf Dropseed           | Sporobolus teretifolius                  | т               | FSC               | Bru, Col               |
| Saltmarsh Dropseed          | Sporobolus virginicus                    | т               | -                 | Bru                    |
| Water Dawnflower            | Stylisma aquatica                        | E               | -                 | Bru                    |
| Pickering's Dawnflower      | Stylisma pickeringii var.<br>pickeringii | SC-V            | FSC               | Bla, Bru, NH, Pen      |
| Cooley's Meadowrue          | Thalictrum cooleyi                       | E               | E                 | Bru, Col, NH, Pen      |
| Small-leaved Meadowrue      | Thalictrum macrostylum                   | SR-L            | FSC               | NH, Pen                |
| Appalachian Golden-banner   | Thermopsis mollis                        | SC-V            | -                 | Col                    |
| Dune Bluecurls              | Trichostema sp. 1                        | SR-L            | FSC               | Bru, NH                |
| Chapman's Redtop            | Tridens chapmanii                        | т               | -                 | Bla, Pen               |

| Common Name                                              | Row Labels                           | State<br>Status | Federal<br>Status | County                 |
|----------------------------------------------------------|--------------------------------------|-----------------|-------------------|------------------------|
| Spike Triodia                                            | Tridens strictus                     | SC-H            | -                 | Pen                    |
| Carolina Clover                                          | Trifolium carolinianum               | SC-H            | -                 | NH                     |
| Carolina Least Trillium                                  | Trillium pusillum var. pusillum      | E               | FSC               | Pen                    |
| Horned Bladderwort                                       | Utricularia cornuta                  | Т               | -                 | Bru, Col, NH           |
| Two-flowered Bladderwort                                 | Utricularia geminiscapa              | SC-V            | -                 | Pen                    |
| Dwarf Bladderwort                                        | Utricularia olivacea                 | т               | -                 | Bru, NH, Pen           |
| Northeastern Bladderwort                                 | Utricularia resupinata               | E               | -                 | Col                    |
| Cranberry                                                | Vaccinium macrocarpon                | Т               | -                 | Bla, Bru               |
| Florida Yellow-eyed-grass                                | Xyris floridana                      | Т               | -                 | Bru, Col, Pen          |
| Acid-swamp Yellow-eyed-<br>grass                         | Xyris serotina                       | т               | -                 | Col                    |
| Pineland Yellow-eyed-grass                               | Xyris stricta                        | E               | -                 | Bru, Pen               |
| Rain Lily                                                | Zephyranthes simpsonii               | E               | FSC               | Bru                    |
| Vertebrate Animal                                        |                                      |                 |                   |                        |
| Shortnose Sturgeon                                       | Acipenser brevirostrum               | E               | Е                 | Bla, Bru, Col, NH, Pen |
| American Alligator                                       | Alligator mississippiensis           | Т               | T(S/A)            | Bla, Bru, Col, NH, Pen |
| Eastern Henslow's Sparrow                                | Ammodramus henslowii<br>susurrans    | SC              | FSC               | Bru, Col, Pen          |
| Loggerhead Seaturtle                                     | Caretta caretta                      | Т               | Т                 | Bru, NH, Pen           |
| Atlantic Highfin Carpsucker                              | Carpiodes sp. cf. velifer            | SC              | -                 | Bla                    |
| Piping Plover                                            | Charadrius melodus                   | Т               | Т                 | Bru, NH, Pen           |
| Wilson's Plover                                          | Charadrius wilsonia                  | SC              | -                 | Bru, NH, Pen           |
| Green Seaturtle                                          | Chelonia mydas                       | Т               | Т                 | Bru, NH, Pen           |
| Star-nosed Mole - Coastal<br>Plain population            | Condylura cristata pop. 1            | SC              | -                 | Bla, Bru, Col, NH, Pen |
| Rafinesque's Big-eared Bat -<br>Coastal Plain subspecies | Corynorhinus rafinesquii<br>macrotis | SC              | FSC               | Bla, Bru, Col, NH, Pen |
| Eastern Diamondback<br>Rattlesnake                       | Crotalus adamanteus                  | E               | -                 | Bla, Bru, Col, NH, Pen |

| Common Name                                                | Row Labels               | State<br>Status | Federal<br>Status | County                 |
|------------------------------------------------------------|--------------------------|-----------------|-------------------|------------------------|
| Timber Rattlesnake                                         | Crotalus horridus        | SC              | -                 | Bla, Bru, Col, NH, Pen |
| Thinlip Chub                                               | Cyprinella sp. 1         | SC              | -                 | Bla                    |
| Black-throated Green Warbler<br>- Coastal Plain population | Dendroica virens waynei  | SR              | FSC               | Bla, Bru               |
| Leatherback Seaturtle                                      | Dermochelys coriacea     | E               | E                 | Bru, NH                |
| Little Blue Heron                                          | Egretta caerulea         | SC              | -                 | Bru, Col, NH           |
| Snowy Egret                                                | Egretta thula            | SC              | -                 | Bru, Col, NH           |
| Tricolored Heron                                           | Egretta tricolor         | SC              | -                 | Bru, NH                |
| Carolina Pygmy Sunfish                                     | Elassoma boehlkei        | Т               | FSC               | Bru, Col               |
| Pinewoods Darter                                           | Etheostoma mariae        | SC              | FSC               | Bla                    |
| Waccamaw Darter                                            | Etheostoma perlongum     | Т               | FSC               | Col                    |
| Dwarf Salamander                                           | Eurycea quadridigitata   | SC              | -                 | Bla, Col               |
| Peregrine Falcon                                           | Falco peregrinus         | E               | -                 | Bru                    |
| Waccamaw Killifish                                         | Fundulus waccamensis     | SC              | FSC               | Col                    |
| Gull-billed Tern                                           | Gelochelidon nilotica    | Т               | -                 | Bru, NH                |
| American Oystercatcher                                     | Haematopus palliatus     | SC              | -                 | Bru, NH, Pen           |
| Bald Eagle                                                 | Haliaeetus leucocephalus | Т               | -                 | Bla, Bru, Col, NH, Pen |
| Four-toed Salamander                                       | Hemidactylium scutatum   | SC              | -                 | Bla, Pen               |
| Least Killifish                                            | Heterandria formosa      | SC              | -                 | Bru, NH                |
| Southern Hognose Snake                                     | Heterodon simus          | SC              | FSC               | Bla, Bru, NH, Pen      |
| Least Bittern                                              | Ixobrychus exilis        | SC              | -                 | Bru, NH, Pen           |
| Loggerhead Shrike                                          | Lanius ludovicianus      | SC              | -                 | Bla, Bru, Col, NH      |
| Northern Yellow Bat                                        | Lasiurus intermedius     | SC              | -                 | Bru, NH                |
| Black Rail                                                 | Laterallus jamaicensis   | SC              | FSC               | NH                     |
| Kemp's Ridley Seaturtle                                    | Lepidochelys kempii      | E               | E                 | Bru                    |
| Diamondback Terrapin                                       | Malaclemys terrapin      | SC              | FSC, in<br>part   | Bru, NH, Pen           |

| Common Name                                   | Row Labels                             | State<br>Status | Federal<br>Status | County                 |
|-----------------------------------------------|----------------------------------------|-----------------|-------------------|------------------------|
| Waccamaw Silverside                           | Menidia extensa                        | Т               | т                 | Col                    |
| Eastern Coral Snake                           | Micrurus fulvius                       | E               | -                 | Bla, Bru, NH, Pen      |
| Wood Stork                                    | Mycteria americana                     | E               | E                 | Bru, Col               |
| Southeastern Myotis                           | Myotis austroriparius                  | SC              | FSC               | Bla, Col, NH, Pen      |
| Eastern Woodrat - Coastal<br>Plain population | Neotoma floridana floridana            | Т               | -                 | Bru, NH, Pen           |
| Broadtail Madtom                              | Noturus sp. 2                          | SC              | FSC               | Bla, Bru, Col, Pen     |
| Mimic Glass Lizard                            | Ophisaurus mimicus                     | SC              | FSC               | Bla, Bru, Col, NH      |
| Eastern Painted Bunting                       | Passerina ciris ciris                  | SC              | FSC               | Bru, NH, Pen           |
| Bachman's Sparrow                             | Peucaea aestivalis                     | SC              | FSC               | Bla, Bru, Col, Pen     |
| Red-cockaded Woodpecker                       | Picoides borealis                      | E               | E                 | Bla, Bru, Col, NH, Pen |
| Northern Pine Snake                           | Pituophis melanoleucus<br>melanoleucus | SC              | FSC               | Bru, NH                |
| Glossy Ibis                                   | Plegadis falcinellus                   | SC              | -                 | Bru, NH                |
| Carolina Gopher Frog                          | Rana capito                            | Т               | FSC               | Bla, Bru, NH, Pen      |
| Black Skimmer                                 | Rynchops niger                         | SC              | -                 | Bru, NH, Pen           |
| Pigmy Rattlesnake                             | Sistrurus miliarius                    | SC              | -                 | Bla, Bru, NH, Pen      |
| Common Tern                                   | Sterna hirundo                         | SC              | -                 | NH, Pen                |
| Least Tern                                    | Sternula antillarum                    | SC              | -                 | Bru, NH, Pen           |
| West Indian Manatee                           | Trichechus manatus                     | E               | E                 | Bru, NH, Pen           |

| Table B-2. | State and Federally Protected Species in Counties of the Shallotte IBT River Basin |
|------------|------------------------------------------------------------------------------------|
|            | Study Area                                                                         |

| Common Name                | Scientific Name            | State<br>Status | Federal<br>Status | County |
|----------------------------|----------------------------|-----------------|-------------------|--------|
| Invertebrate Animal        |                            |                 |                   |        |
| a dart moth                | Agrotis carolina           | SR              | FSC               | Bru    |
| Arogos Skipper             | Atrytone arogos arogos     | SR              | FSC               | Bru    |
| Loammi Skipper             | Atrytonopsis loammi        | SR              | FSC               | Bru    |
| Pod Lance                  | Elliptio folliculata       | SC              | -                 | Bru    |
| Waccamaw Spike             | Elliptio waccamawensis     | E               | FSC               | Bru    |
| Greenfield Rams-horn       | Helisoma eucosmium         | E               | FSC               | Bru    |
| Venus Flytrap Cutworm Moth | Hemipachnobia subporphyrea | SR              | FSC               | Bru    |
| Eastern Pondmussel         | Ligumia nasuta             | Т               | -                 | Bru    |
| Magnificent Rams-horn      | Planorbella magnifica      | E               | FSC               | Bru    |
| Rare Skipper               | Problema bulenta           | SR              | FSC               | Bru    |
| Waccamaw Crayfish          | Procambarus braswelli      | SC              | -                 | Bru    |
| Carter's Noctuid Moth      | Spartiniphaga carterae     | SR              | FSC               | Bru    |
| Cape Fear Threetooth       | Triodopsis soelneri        | т               | FSC               | Bru    |
| Nonvascular Plant          |                            |                 |                   |        |
| Savanna Campylopus         | Campylopus carolinae       | SR-T            | FSC               | Bru    |
| Vascular Plant             |                            |                 |                   |        |
| Branched Gerardia          | Agalinis virgata           | Т               | -                 | Bru    |
| Savanna Onion              | Allium sp. 1               | SR-L            | FSC               | Bru    |
| Seabeach Amaranth          | Amaranthus pumilus         | т               | Т                 | Bru    |
| Savanna Indigo-bush        | Amorpha confusa            | т               | FSC               | Bru    |
| Bog Bluestem               | Andropogon mohrii          | Т               | -                 | Bru    |
| Chapman's Three-awn        | Aristida simpliciflora     | E               | -                 | Bru    |
| Savanna Indian-plantain    | Arnoglossum ovatum         | E               | -                 | Bru    |
| Savanna Milkweed           | Asclepias pedicellata      | SC-V            | -                 | Bru    |

| Common Name                | Scientific Name                            | State<br>Status | Federal<br>Status | County |
|----------------------------|--------------------------------------------|-----------------|-------------------|--------|
| Silverling                 | Baccharis glomeruliflora                   | SC-H            | -                 | Bru    |
| Blue Water-hyssop          | Bacopa caroliniana                         | Т               | -                 | Bru    |
| Purple-disk Honeycomb-head | Balduina atropurpurea                      | E               | FSC               | Bru    |
| Ware's Hair Sedge          | Bulbostylis warei                          | SC-H            | -                 | Bru    |
| Many-flower Grass-pink     | Calopogon multiflorus                      | E               | FSC               | Bru    |
| Cypress Knee Sedge         | Carex decomposita                          | SC-V            | -                 | Bru    |
| Nutmeg Hickory             | Carya myristiciformis                      | E               | -                 | Bru    |
| Leconte's Thistle          | Cirsium lecontei                           | SC-V            | -                 | Bru    |
| Georgia Calamint           | Clinopodium georgianum                     | E               | -                 | Bru    |
| Carolina Sunrose           | Crocanthemum carolinianum                  | E               | -                 | Bru    |
| Pinebarren Sunrose         | Crocanthemum corymbosum                    | Т               | -                 | Bru    |
| Georgia Sunrose            | Crocanthemum georgianum                    | E               | -                 | Bru    |
| Florida Scrub Frostweed    | Crocanthemum nashii                        | E               | -                 | Bru    |
| Toothed Flatsedge          | Cyperus dentatus                           | SC-H            | -                 | Bru    |
| Leconte's Flatsedge        | Cyperus lecontei                           | Т               | -                 | Bru    |
| Four-angled Flatsedge      | Cyperus tetragonus                         | SC-V            | -                 | Bru    |
| Nerved Witch Grass         | Dichanthelium aciculare ssp.<br>Neuranthum | SC-V            | -                 | Bru    |
| Blue Witch Grass           | Dichanthelium caerulescens                 | E               | -                 | Bru    |
| Venus Flytrap              | Dionaea muscipula                          | SC-V            | FSC               | Bru    |
| Sebastian-bush             | Ditrysinia fruticosa                       | SC-V            | -                 | Bru    |
| Threadleaf Sundew          | Drosera filiformis                         | SC-V            | -                 | Bru    |
| Dwarf Burhead              | Echinodorus tenellus                       | E               | -                 | Bru    |
| Florida Spikerush          | Eleocharis elongata                        | E               | -                 | Bru    |
| Robbins' Spikerush         | Eleocharis robbinsii                       | SC-V            | -                 | Bru    |
| Terrell Grass              | Elymus virginicus var.<br>halophilus       | SC-V            | -                 | Bru    |

| Common Name                   | Scientific Name                          | State<br>Status | Federal<br>Status | County |
|-------------------------------|------------------------------------------|-----------------|-------------------|--------|
| Green Fly Orchid              | Epidendrum magnoliae                     | т               | -                 | Bru    |
| Seven-angled Pipewort         | Eriocaulon aquaticum                     | SC-V            | -                 | Bru    |
| Coralbean                     | Erythrina herbacea                       | E               | -                 | Bru    |
| Limesink Dog-fennel           | Eupatorium leptophyllum                  | E               | -                 | Bru    |
| Harper's Fimbry               | Fimbristylis perpusilla                  | т               | FSC               | Bru    |
| Soft Milk-pea                 | Galactia mollis                          | т               | -                 | Bru    |
| Swamp Jessamine               | Gelsemium rankinii                       | SC-V            | -                 | Bru    |
| Golden Hedge-hyssop           | Gratiola aurea                           | SC-V            | -                 | Bru    |
| Littleleaf Sneezeweed         | Helenium brevifolium                     | E               | -                 | Bru    |
| Spring Sneezeweed             | Helenium vernale                         | E               | -                 | Bru    |
| Florida Sunflower             | Helianthus floridanus                    | т               | -                 | Bru    |
| Waccamaw River Spiderlily     | Hymenocallis pygmaea                     | Т               | FSC               | Bru    |
| Coastal Plain St. John's-wort | Hypericum brachyphyllum                  | SC-V            | -                 | Bru    |
| Beach Morning-glory           | Ipomoea imperati                         | т               | -                 | Bru    |
| Thin-wall Quillwort           | Isoetes microvela                        | т               | FSC               | Bru    |
| Brown Bogbutton               | Lachnocaulon minus                       | т               | -                 | Bru    |
| Torrey's Pinweed              | Lechea torreyi                           | E               | -                 | Bru    |
| Long-awned Spangletop         | Leptochloa fascicularis var.<br>maritime | E               | -                 | Bru    |
| Yellow-fruited Flax           | Linum floridanum var.<br>chrysocarpum    | т               | -                 | Bru    |
| Pondspice                     | Litsea aestivalis                        | SC-V            | FSC               | Bru    |
| Golden-crest                  | Lophiola aurea                           | E               | -                 | Bru    |
| Lanceleaf Seedbox             | Ludwigia lanceolata                      | E               | -                 | Bru    |
| Flaxleaf Seedbox              | Ludwigia linifolia                       | т               | -                 | Bru    |
| Raven's Seedbox               | Ludwigia ravenii                         | Т               | FSC               | Bru    |
| Shrubby Seedbox               | Ludwigia suffruticosa                    | т               | -                 | Bru    |
|                               |                                          |                 | •                 | •      |

| Common Name                         | Scientific Name                             | State<br>Status | Federal<br>Status | County |
|-------------------------------------|---------------------------------------------|-----------------|-------------------|--------|
| Rough-leaf Loosestrife              | Lysimachia asperulifolia                    | E               | E                 | Bru    |
| Carolina Bogmint                    | Macbridea caroliniana                       | E               | FSC               | Bru    |
| Florida Adder's-mouth               | Malaxis spicata                             | SC-V            | -                 | Bru    |
| Pinebarren Smokegrass               | Muhlenbergia torreyana                      | SC-V            | -                 | Bru    |
| Loose Water-milfoil                 | Myriophyllum laxum                          | E               | FSC               | Bru    |
| Bosc's Bluet                        | Oldenlandia boscii                          | E               | -                 | Bru    |
| Large-seed Pellitory                | Parietaria praetermissa                     | SC-V            | -                 | Bru    |
| Carolina Grass-of-parnassus         | Parnassia caroliniana                       | Т               | FSC               | Bru    |
| Large-leaved Grass-of-<br>parnassus | Parnassia grandifolia                       | т               | FSC               | Bru    |
| Mudbank Crown Grass                 | Paspalum dissectum                          | E               | -                 | Bru    |
| Hairy Smartweed                     | Persicaria hirsuta                          | E               | -                 | Bru    |
| A Silkgrass                         | Pityopsis graminifolia var.<br>graminifolia | E               | -                 | Bru    |
| Pineland Plantain                   | Plantago sparsiflora                        | Т               | FSC               | Bru    |
| Yellow Fringeless Orchid            | Platanthera integra                         | SC-V            | -                 | Bru    |
| Snowy Orchid                        | Platanthera nivea                           | Т               | -                 | Bru    |
| Hooker's Milkwort                   | Polygala hookeri                            | SC-V            | -                 | Bru    |
| Seabeach Knotweed                   | Polygonum glaucum                           | E               | -                 | Bru    |
| Shadow-witch                        | Ponthieva racemosa                          | т               | -                 | Bru    |
| Carolina Bishop-weed                | Ptilimnium ahlesii                          | SR-L            | FSC               | Bru    |
| Ribbed Bishop-weed                  | Ptilimnium costatum                         | т               | -                 | Bru    |
| Sandhills Pyxie-moss                | Pyxidanthera brevifolia                     | SR-L            | FSC               | Bru    |
| Awned Meadow-beauty                 | Rhexia aristosa                             | SC-V            | FSC               | Bru    |
| Swamp Forest Beaksedge              | Rhynchospora decurrens                      | т               | FSC               | Bru    |
| Harper's Beaksedge                  | Rhynchospora harperi                        | SC-V            | -                 | Bru    |
| Fragrant Beaksedge                  | Rhynchospora odorata                        | SC-V            | -                 | Bru    |

| Common Name                | Scientific Name                          | State<br>Status | Federal<br>Status | County |
|----------------------------|------------------------------------------|-----------------|-------------------|--------|
| Coastal Beaksedge          | Rhynchospora pleiantha                   | Т               | FSC               | Bru    |
| Thorne's Beaksedge         | Rhynchospora thornei                     | SC-V            | FSC               | Bru    |
| Tracy's Beaksedge          | Rhynchospora tracyi                      | Т               | -                 | Bru    |
| Cabbage Palm               | Sabal palmetto                           | Т               | -                 | Bru    |
| Plymouth Gentian           | Sabatia kennedyana                       | Т               | -                 | Bru    |
| Quillwort Arrowhead        | Sagittaria isoetiformis                  | Т               | -                 | Bru    |
| Grassleaf Arrowhead        | Sagittaria weatherbiana                  | E               | FSC               | Bru    |
| Hooded Pitcher Plant       | Sarracenia minor                         | E               | -                 | Bru    |
| Drooping Bulrush           | Scirpus lineatus                         | Т               | -                 | Bru    |
| Baldwin's Nutrush          | Scleria baldwinii                        | Т               | -                 | Bru    |
| Netted Nutrush             | Scleria reticularis                      | Т               | -                 | Bru    |
| Sticky Afzelia             | Seymeria pectinata                       | SC-H            | -                 | Bru    |
| Tough Bumelia              | Sideroxylon tenax                        | Т               | FSC               | Bru    |
| Twisted-leaf Goldenrod     | Solidago tortifolia                      | E               | -                 | Bru    |
| Spring-flowering Goldenrod | Solidago verna                           | SR-O            | FSC               | Bru    |
| Coastal Goldenrod          | Solidago villosicarpa                    | E               | FSC               | Bru    |
| Eaton's Ladies'-tresses    | Spiranthes eatonii                       | E               | -                 | Bru    |
| Lace-lip Ladies'-tresses   | Spiranthes laciniata                     | SC-V            | -                 | Bru    |
| Giant Spiral Orchid        | Spiranthes longilabris                   | E               | -                 | Bru    |
| Wireleaf Dropseed          | Sporobolus teretifolius                  | Т               | FSC               | Bru    |
| Saltmarsh Dropseed         | Sporobolus virginicus                    | Т               | -                 | Bru    |
| Water Dawnflower           | Stylisma aquatica                        | E               | -                 | Bru    |
| Pickering's Dawnflower     | Stylisma pickeringii var.<br>pickeringii | SC-V            | FSC               | Bru    |
| Cooley's Meadowrue         | Thalictrum cooleyi                       | E               | E                 | Bru    |
| Dune Bluecurls             | Trichostema sp. 1                        | SR-L            | FSC               | Bru    |
| Horned Bladderwort         | Utricularia cornuta                      | Т               | -                 | Bru    |

| Common Name                                                | Scientific Name                      | State<br>Status | Federal<br>Status | County |
|------------------------------------------------------------|--------------------------------------|-----------------|-------------------|--------|
| Dwarf Bladderwort                                          | Utricularia olivacea                 | т               | -                 | Bru    |
| Cranberry                                                  | Vaccinium macrocarpon                | Т               | -                 | Bru    |
| Florida Yellow-eyed-grass                                  | Xyris floridana                      | Т               | -                 | Bru    |
| Pineland Yellow-eyed-grass                                 | Xyris stricta                        | E               | -                 | Bru    |
| Rain Lily                                                  | Zephyranthes simpsonii               | E               | FSC               | Bru    |
| Vertebrate Animal                                          |                                      |                 |                   |        |
| Shortnose Sturgeon                                         | Acipenser brevirostrum               | E               | E                 | Bru    |
| American Alligator                                         | Alligator mississippiensis           | Т               | T(S/A)            | Bru    |
| Eastern Henslow's Sparrow                                  | Ammodramus henslowii<br>susurrans    | SC              | FSC               | Bru    |
| Loggerhead Seaturtle                                       | Caretta caretta                      | Т               | Т                 | Bru    |
| Piping Plover                                              | Charadrius melodus                   | Т               | Т                 | Bru    |
| Wilson's Plover                                            | Charadrius wilsonia                  | SC              | -                 | Bru    |
| Green Seaturtle                                            | Chelonia mydas                       | Т               | Т                 | Bru    |
| Star-nosed Mole - Coastal<br>Plain population              | Condylura cristata pop. 1            | SC              | -                 | Bru    |
| Rafinesque's Big-eared Bat -<br>Coastal Plain subspecies   | Corynorhinus rafinesquii<br>macrotis | SC              | FSC               | Bru    |
| Eastern Diamondback<br>Rattlesnake                         | Crotalus adamanteus                  | E               | -                 | Bru    |
| Timber Rattlesnake                                         | Crotalus horridus                    | SC              | -                 | Bru    |
| Black-throated Green Warbler<br>- Coastal Plain population | Dendroica virens waynei              | SR              | FSC               | Bru    |
| Leatherback Seaturtle                                      | Dermochelys coriacea                 | E               | E                 | Bru    |
| Little Blue Heron                                          | Egretta caerulea                     | SC              | -                 | Bru    |
| Snowy Egret                                                | Egretta thula                        | SC              | -                 | Bru    |
| Tricolored Heron                                           | Egretta tricolor                     | SC              | -                 | Bru    |
| Carolina Pygmy Sunfish                                     | Elassoma boehlkei                    | т               | FSC               | Bru    |
| Peregrine Falcon                                           | Falco peregrinus                     | E               | -                 | Bru    |

| Common Name                                   | Scientific Name                        | State<br>Status | Federal<br>Status | County |
|-----------------------------------------------|----------------------------------------|-----------------|-------------------|--------|
| Gull-billed Tern                              | Gelochelidon nilotica                  | т               | -                 | Bru    |
| American Oystercatcher                        | Haematopus palliatus                   | SC              | -                 | Bru    |
| Bald Eagle                                    | Haliaeetus leucocephalus               | Т               | -                 | Bru    |
| Least Killifish                               | Heterandria formosa                    | SC              | -                 | Bru    |
| Southern Hognose Snake                        | Heterodon simus                        | SC              | FSC               | Bru    |
| Least Bittern                                 | Ixobrychus exilis                      | SC              | -                 | Bru    |
| Loggerhead Shrike                             | Lanius ludovicianus                    | SC              | -                 | Bru    |
| Northern Yellow Bat                           | Lasiurus intermedius                   | SC              | -                 | Bru    |
| Kemp's Ridley Seaturtle                       | Lepidochelys kempii                    | E               | E                 | Bru    |
| Diamondback Terrapin                          | Malaclemys terrapin                    | SC              | FSC, in part      | Bru    |
| Eastern Coral Snake                           | Micrurus fulvius                       | E               | -                 | Bru    |
| Wood Stork                                    | Mycteria americana                     | E               | E                 | Bru    |
| Eastern Woodrat - Coastal<br>Plain population | Neotoma floridana floridana            | т               | -                 | Bru    |
| Broadtail Madtom                              | Noturus sp. 2                          | SC              | FSC               | Bru    |
| Mimic Glass Lizard                            | Ophisaurus mimicus                     | SC              | FSC               | Bru    |
| Eastern Painted Bunting                       | Passerina ciris ciris                  | SC              | FSC               | Bru    |
| Bachman's Sparrow                             | Peucaea aestivalis                     | SC              | FSC               | Bru    |
| Red-cockaded Woodpecker                       | Picoides borealis                      | E               | E                 | Bru    |
| Northern Pine Snake                           | Pituophis melanoleucus<br>melanoleucus | SC              | FSC               | Bru    |
| Glossy Ibis                                   | Plegadis falcinellus                   | SC              | -                 | Bru    |
| Carolina Gopher Frog                          | Rana capito                            | т               | FSC               | Bru    |
| Black Skimmer                                 | Rynchops niger                         | SC              | -                 | Bru    |
| Pigmy Rattlesnake                             | Sistrurus miliarius                    | SC              | -                 | Bru    |
| Least Tern                                    | Sternula antillarum                    | SC              | -                 | Bru    |
| West Indian Manatee                           | Trichechus manatus                     | E               | E                 | Bru    |
|                                               |                                        |                 |                   |        |

# Appendix C Local Water Supply Plan

## **Brunswick County**

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.

### 1. System Information

**Contact Information** 

| Water System Name:        | Brunsw ick County                                     | PWSID:            | 04-10-045                                 | PROVISIONAL          |  |  |  |  |  |
|---------------------------|-------------------------------------------------------|-------------------|-------------------------------------------|----------------------|--|--|--|--|--|
| Mailing Address:          | PO Box 249<br>Bolivia, NC 28422                       | Ow nership:       | County                                    | TROUGICIAL           |  |  |  |  |  |
| Contact Person:<br>Phone: | Jerry W. Pierce, P.E.<br>910-253-2657                 | Title:<br>Fax:    | Public Utilities Director<br>910-253-4304 |                      |  |  |  |  |  |
| Distribution Syste        | m                                                     |                   |                                           |                      |  |  |  |  |  |
| Lir                       | пе Туре                                               |                   | Size Range (Inches)                       | Estimated % of lines |  |  |  |  |  |
| Asbestos Cement           |                                                       |                   | 6-16                                      | 1.00 %               |  |  |  |  |  |
| Ductile Iron              |                                                       |                   | 6-42                                      | 12.00 %              |  |  |  |  |  |
| Other                     |                                                       |                   | 6-18                                      | 1.00 %               |  |  |  |  |  |
| Polyvinyl Chloride        |                                                       |                   | 2-16                                      | 86.00 %              |  |  |  |  |  |
| What are the estimated    | total miles of distribution sys                       | tem lines? 949 N  | /iles                                     |                      |  |  |  |  |  |
| How many feet of distri   | bution lines were replaced d                          | uring 2011? 0 F   | eet                                       |                      |  |  |  |  |  |
| How many feet of new      | water mains were added du                             | iring 2011? 63,3  | 60 Feet                                   |                      |  |  |  |  |  |
| How many meters were      | e replaced in 2011? 7,000                             |                   |                                           |                      |  |  |  |  |  |
| How old are the oldest    | meters in this system? 10 Y                           | 'ear(s)           |                                           |                      |  |  |  |  |  |
| -                         |                                                       | -                 | billed for sew er services? 4,            | 4,500                |  |  |  |  |  |
| <u>,</u>                  | nished water storage capaci                           | ,<br>,            |                                           |                      |  |  |  |  |  |
| Has water pressure be     | en inadequate in any part of                          | the system since  | e last update? Yes                        |                      |  |  |  |  |  |
| Programs                  |                                                       |                   |                                           |                      |  |  |  |  |  |
| Does this system have     | a program to w ork or flush h                         | ydrants? Yes, A   | As Needed                                 |                      |  |  |  |  |  |
| Does this system have     | a valve exercise program?                             | Yes, Annually     |                                           |                      |  |  |  |  |  |
| Does this system have     | Does this system have a cross-connection program? Yes |                   |                                           |                      |  |  |  |  |  |
| Does this system have     | a program to replace meters                           | ? Yes             |                                           |                      |  |  |  |  |  |
| Does this system have     | a plumbing retrofit program?                          | No                |                                           |                      |  |  |  |  |  |
| Does this system have     | an active water conservation                          | n public educatio | n program? Yes                            |                      |  |  |  |  |  |
| Does this system have     | a leak detection program?                             | 'es               |                                           |                      |  |  |  |  |  |

We annually inspect all lines and repair all reported leaks within 24 hours regardless of severity. We have an active meter replacement program with a goal of replacing all meters within 10 years.

Water Conservation

What type of rate structure is used? Increasing Block

How much reclaimed water does this system use? 0.000 MGD For how many connections? 0

Does this system have an interconnection with another system capable of providing water in an emergency? No

We are in the process of negotiating an agreement with a neigboring utility from South Carolina. All other interconnections are not feasible at this time.

### 2. Water Use Information

### Local Water Supply Planning - North Carolina Division of Water Resources

Service Area

| Sub-Basin(s)           | % of Service Population | County(s)  | % of Service Population |
|------------------------|-------------------------|------------|-------------------------|
| Cape Fear River (02-3) | 52 %                    | Brunsw ick | 100 %                   |
| Shallotte River (09-4) | 46 %                    |            |                         |
| Waccamaw River (09-3)  | 2 %                     |            |                         |

What was the year-round population served in 2011? 75,230

What was the seasonal population and months served in 2011? (if applicable) 195,600 ( May Jun Jul Aug Sep )

Has this system acquired another system since last report? No

This system has been identified as a Surface Water Transfer. Please dow nload the IBT Worksheets and submit to your Review Engineer, Wayne How and.

| Water | Use | bv | Type |
|-------|-----|----|------|
|       |     |    |      |

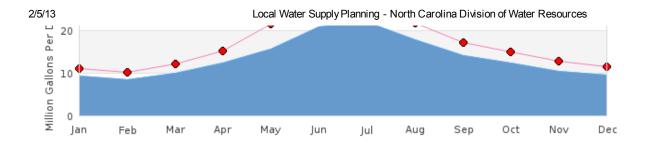
| Type of Use   | Metered<br>Connections | Metered<br>Average Use (MGD) | Non-Metered<br>Connections | Non-Metered<br>Estimated Use (MGD) |
|---------------|------------------------|------------------------------|----------------------------|------------------------------------|
| Residential   | 34,120                 | 5.370                        | 0                          | 0.000                              |
| Commercial    | 0                      | 0.000                        | 0                          | 0.000                              |
| Industrial    | 4                      | 2.193                        | 0                          | 0.000                              |
| Institutional | 0                      | 0.000                        | 0                          | 0.000                              |
|               |                        |                              |                            |                                    |

How much water was used for system processes (backwash, line cleaning, flushing, etc.)? 1.026 MGD

Commercial and Institutional flows are not tracked spearately and are included in the retail or residential category.

Water Sales

|                           |           | Average             | Davs | Contract |            |           | Required to                            | Pipe Size(s) | Use     |
|---------------------------|-----------|---------------------|------|----------|------------|-----------|----------------------------------------|--------------|---------|
| Purchaser                 | PWSID     | Daily Sold<br>(MGD) |      | MGD      | Expiration | Recurring | comply with water<br>use restrictions? | (Inches)     | Туре    |
| Bald Head Utilities       | 04-10-130 | 0.034               | 365  | 0.500    | 2050       | Yes       | Yes                                    | 10           | Regular |
| Brunswick Regional (H2GO) | 04-10-070 | 1.650               | 365  | 0.940    | 2034       | Yes       | Yes                                    | 24;12        | Regular |
| Casw ell Beach            | 04-10-055 | 0.138               | 365  | 0.300    | 2020       | Yes       | Yes                                    | 12           | Regular |
| Holden Beach              | 04-10-060 | 0.396               | 365  | 0.818    | 2020       | Yes       | Yes                                    | 12;12        | Regular |
| Leland, Tow n of          | 70-10-058 | 0.166               | 365  | 2.000    | 2035       | Yes       | Yes                                    | 16           | Regular |
| Navassa                   | 04-10-065 | 0.094               | 365  |          | 2023       | Yes       | Yes                                    | 12           | Regular |
| Northw est                | 70-10-045 | 0.072               | 365  |          | 2027       | Yes       | Yes                                    | 12           | Regular |
| Oak Island                | 04-10-020 | 0.787               | 365  | 1.380    | 2020       | Yes       | Yes                                    | 12;16        | Regular |
| Ocean Isle Beach          | 04-10-035 | 0.681               | 365  | 1.062    |            | Yes       | Yes                                    | 12;8         | Regular |
| Shallotte                 | 04-10-025 | 0.398               | 365  |          |            | Yes       | Yes                                    | 30;12        | Regular |
| Southport                 | 04-10-010 | 0.461               | 365  |          | 2020       | Yes       | Yes                                    | 24;24        | Regular |
|                           |           |                     |      |          |            |           |                                        |              |         |


### 3. Water Supply Sources

Monthly Withdrawals & Purchases

|     | Average Daily<br>Use (MGD) | Max Day<br>Use (MGD) |     | Average Daily<br>Use (MGD) | Max Day<br>Use (MGD) |     | Average Daily<br>Use (MGD) | Max Day<br>Use (MGD) |
|-----|----------------------------|----------------------|-----|----------------------------|----------------------|-----|----------------------------|----------------------|
| Jan | 9.350                      | 10.940               | May | 15.660                     | 21.430               | Sep | 14.050                     | 17.220               |
| Feb | 8.450                      | 10.210               | Jun | 20.740                     | 24.030               | Oct | 12.350                     | 14.920               |
| Mar | 9.910                      | 12.140               | Jul | 22.000                     | 25.800               | Nov | 10.350                     | 12.690               |
| Apr | 12.220                     | 15.210               | Aug | 17.730                     | 21.740               | Dec | 9.430                      | 11.480               |

Brunswick County's 2011 Monthly Withdrawals & Purchases





### Ground Water Sources

| Name or Number | Average Daily Withdraw al (MGD) |           | Max Day Withdraw al (MGD) | 12-Hour Supply | CUA Reduction | Year Offline | Use Type |
|----------------|---------------------------------|-----------|---------------------------|----------------|---------------|--------------|----------|
|                | MGD                             | Days Used | Max Day Withdraw at (MOD) | (MGD)          |               |              | USC Type |
| 1              | 0.240                           | 107       | 0.24                      | 0.900          |               |              | Regular  |
| 11             | 1.020                           | 347       |                           | 1.660          |               |              | Regular  |
| 12             | 0.620                           | 299       |                           | 0.620          |               |              | Regular  |
| 12-A           | 0.300                           | 327       |                           | 0.300          |               |              | Regular  |
| 15             | 0.570                           | 297       |                           | 0.820          |               |              | Regular  |
| 16             | 0.730                           | 214       |                           | 0.720          |               |              | Regular  |
| 17             | 0.290                           | 137       |                           | 0.300          |               |              | Regular  |
| 18             | 0.340                           | 197       |                           | 0.350          |               |              | Regular  |
| 19             | 0.300                           | 204       |                           | 0.730          |               |              | Regular  |
| 2              | 0.187                           | 238       |                           | 0.260          |               |              | Regular  |
| 3              | 0.300                           | 245       |                           | 0.300          |               |              | Regular  |
| 5              | 0.240                           | 165       |                           | 0.240          |               |              | Regular  |
| 6a             | 0.365                           | 332       |                           | 0.375          |               |              | Regular  |
| 8              | 0.950                           | 200       |                           | 1.300          |               |              | Regular  |
|                |                                 |           |                           |                |               |              |          |

Ground Water Sources (continued)

| Name or Number | Well Depth (Feet) | Casing Depth | Screen Depth (Feet) |        | Well Diameter (Inches) | Pump Intake Depth (Feet) | Metered?   |
|----------------|-------------------|--------------|---------------------|--------|------------------------|--------------------------|------------|
|                |                   | (Feet)       | Тор                 | Bottom |                        |                          | Weter eu : |
| 1              | 175               | 174          | 90                  | 170    | 10                     | 84                       | Yes        |
| 11             | 164               | 164          | 0                   | 0      | 10                     | 84                       | Yes        |
| 12             | 96                | 96           | 0                   | 0      | 8                      | 50                       | Yes        |
| 12-A           | 114               | 114          | 60                  | 110    | 10                     | 63                       | Yes        |
| 15             | 129               | 129          | 75                  | 125    | 10                     | 74                       | Yes        |
| 16             | 155               | 155          | 63                  | 153    | 10                     | 52                       | Yes        |
| 17             | 155               | 155          | 0                   | 0      | 8                      | 70                       | Yes        |
| 18             | 155               | 155          | 0                   | 0      | 10                     | 0                        | No         |
| 19             | 150               | 150          | 64                  | 144    | 10                     | 0                        | No         |
| 2              | 163               | 163          | 60                  | 160    | 10                     | 65                       | Yes        |
| 3              | 159               | 159          | 70                  | 155    | 10                     | 72                       | Yes        |
| 5              | 156               | 156          | 68                  | 148    | 10                     | 73                       | Yes        |
| 6a             | 280               | 180          | 100                 | 160    | 12                     | 90                       | Yes        |
| 8              | 153               | 153          | 65                  | 150    | 10                     | 70                       | Yes        |
|                |                   |              |                     |        |                        |                          |            |

Are ground water levels monitored? Yes, Daily

Does this system have a wellhead protection program? No

Water Purchases From Other Systems

| 0-11                                                                                               |       | Average                  | Days | Contract |            |           | Required to                            | Pipe Size(s) | Use  |
|----------------------------------------------------------------------------------------------------|-------|--------------------------|------|----------|------------|-----------|----------------------------------------|--------------|------|
| Seller                                                                                             | PWSID | Daily Purchased<br>(MGD) | Used | MGD      | Expiration | Recurring | comply with water<br>use restrictions? | (Inches)     | Туре |
| www.ncwater.org/Water_Supply_Planning/Local_Water_Supply_Plan/report.php?pwsid=04-10-045&year=2011 |       |                          |      |          |            |           |                                        |              | :    |

#### Local Water Supply Planning - North Carolina Division of Water Resources

| Cape Fear WASA                      | 04-65-999           | 10.260                | 365          | 24.000                           | Yes                     | Yes                | 48 | Regular |
|-------------------------------------|---------------------|-----------------------|--------------|----------------------------------|-------------------------|--------------------|----|---------|
| Water Treatment                     | Plants              |                       |              |                                  |                         |                    |    |         |
| Plant Name Permitted Capacity (MGD) |                     | Is Raw Water Metered? |              | Is Finished Water Ouput Metered? |                         | Source             |    |         |
| NC Highw ay 211 WT                  | Р                   | 6.000                 |              | Yes                              | Ye                      | Yes Castle Hayne A |    | Aquifer |
| Northw est WTP                      |                     | 24.000                |              | Yes                              | Ye                      | Yes Cap            |    | er      |
| Did average daily wate              | r production exce   | ed 80% of appro       | ved plant ca | pacity for five conse            | cutive days during 2011 | ? <b>No</b>        |    |         |
| If yes, was any wa                  | ter conservation in | nplemented? No        |              |                                  |                         |                    |    |         |
| Did average daily wate              | r production exce   | ed 90% of appro       | ved plant ca | pacity for five conse            | cutive days during 2011 | ? <b>No</b>        |    |         |
| 10                                  |                     |                       |              |                                  |                         |                    |    |         |

If yes, was any water conservation implemented? No

Are peak day demands expected to exceed the water treatment plant capacity in the next 10 years? Yes

### 4. Wastewater Information

Monthly Discharges

|     | Average Daily<br>Discharge (MGD) |     | Average Daily<br>Discharge (MGD) |     | Average Daily<br>Discharge (MGD) |
|-----|----------------------------------|-----|----------------------------------|-----|----------------------------------|
| Jan | 2.850                            | May | 3.220                            | Sep | 3.600                            |
| Feb | 3.930                            | Jun | 3.350                            | Oct | 3.400                            |
| Mar | 3.100                            | Jul | 3.830                            | Nov | 3.260                            |
| Apr | 3.320                            | Aug | 3.870                            | Dec | 3.300                            |

How many sew er connections does this system have? 9,961

How many water service connections with septic systems does this system have? 24,090

Are there plans to build or expand w astew ater treatment facilities in the next 10 years? Yes

Wastew ater discharges include flows from other water systems. The County operates the owastew ater treatment plant: the Northeast Brunswick Regional wastew ater treatment Plant and the West brunswick Water Reclamation facility. Flows into the Northeast Brunswick WWTP include flows from Brunswick Regional Water and Sew er, Town of Leland, Town of Navassa, Town of Sandy Creek, and City of Northwest. The West Brunswick WRF includes flows from the Town of Oak Island, Tow nof Holden Beach, Town of Shallotte, and City of Southport.

| Wastewater Permits | Was | tew | ater | Perm | its |
|--------------------|-----|-----|------|------|-----|
|--------------------|-----|-----|------|------|-----|

| Permit<br>Number | Permitted<br>Capacity<br>(MGD) | Design<br>Capacity<br>(MGD) | Average Annual<br>Daily Discharge<br>(MGD) | Maximum Day<br>Discharge<br>(MGD) | Receiving Stream          | Receiving Basin           |
|------------------|--------------------------------|-----------------------------|--------------------------------------------|-----------------------------------|---------------------------|---------------------------|
| NC0040061        | 0.000                          | 0.000                       | 0.000                                      | 0.000                             | Beaverdam Creek           | Cape Fear River (02-3)    |
| NC0044873        | 0.535                          | 0.535                       | 0.478                                      | 0.700                             | Caw Caw Drainage<br>Canal | Waccamaw River (09-<br>3) |
| NC0057533        | 0.000                          | 0.000                       | 0.698                                      | 2.500                             | Hood Creek                | Cape Fear River (02-3)    |
| NC0086819        | 1.650                          | 1.650                       | 1.200                                      | 2.100                             | Low er Cape Fear          | Cape Fear River (02-3)    |
| WQ0000798        | 0.500                          | 0.500                       | 0.081                                      | 0.113                             | Non Discharge             | Lumber River (09-1)       |
| WQ0011614        | 0.300                          | 0.300                       | 0.143                                      | 0.200                             | None                      | Shallotte River (09-4)    |
| WQ0012748        | 0.500                          | 0.300                       | 0.074                                      | 0.300                             | None                      | Shallotte River (09-4)    |
| WQ0023693        | 6.000                          | 6.000                       | 1.200                                      | 2.100                             | None                      | Cape Fear River (02-3)    |

### 5. Planning

Projections

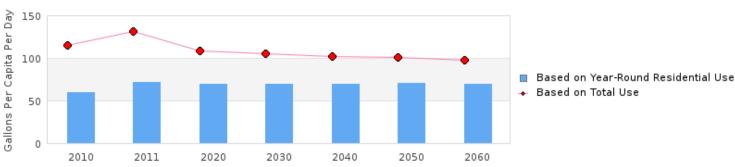
|                       | 2011    | 2020    | 2030    | 2040    | 2050    | 2060    |
|-----------------------|---------|---------|---------|---------|---------|---------|
| Year-Round Population | 75,230  | 96,374  | 117,025 | 138,790 | 158,803 | 182,622 |
| Seasonal Population   | 195,600 | 240,935 | 292,561 | 345,222 | 397,007 | 456,556 |

| 2/5/13          | Local Water Supply Planning - North Carolina Division of Water Resources |       |       |       |        |        |  |
|-----------------|--------------------------------------------------------------------------|-------|-------|-------|--------|--------|--|
| Residential     | 5.370                                                                    | 6.693 | 8.078 | 9.631 | 11.137 | 12.580 |  |
| Commercial      | 0.000                                                                    | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  |  |
| Industrial      | 2.193                                                                    | 2.190 | 2.193 | 2.193 | 2.193  | 2.193  |  |
| Institutional   | 0.000                                                                    | 0.000 | 0.000 | 0.000 | 0.000  | 0.000  |  |
| System Process  | 1.026                                                                    | 1.026 | 1.026 | 1.026 | 1.026  | 1.026  |  |
| Unaccounted-for | 1.247                                                                    | 1.248 | 1.516 | 1.807 | 2.090  | 2.362  |  |
|                 |                                                                          |       |       |       |        |        |  |

Commerical and Institutional flows are not tracked separately and are included in the retail or residential category.

### Future Water Sales

| DW/SID    | Contract  |                                           |                                                                                                                                    | Pine Size(s) (Inches)                                                                                             | Use Type                                                                                                                                                     |
|-----------|-----------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I WOLD    | MGD       | Year Begin                                | Year End                                                                                                                           | Tipe Size(3) (inclues)                                                                                            | Use Type                                                                                                                                                     |
| 04-10-045 | 0.029     | 2040                                      |                                                                                                                                    |                                                                                                                   | Regular                                                                                                                                                      |
| 04-10-045 | 1.399     | 2050                                      |                                                                                                                                    |                                                                                                                   | Regular                                                                                                                                                      |
| 04-10-045 | 2.720     | 2060                                      |                                                                                                                                    |                                                                                                                   | Regular                                                                                                                                                      |
|           | 04-10-045 | MGD<br>04-10-045 0.029<br>04-10-045 1.399 | PWSID         MGD         Year Begin           04-10-045         0.029         2040           04-10-045         1.399         2050 | PWSID         MGD         Year Begin         Year End           04-10-045         0.029         2040         2050 | PWSID         MGD         Year Begin         Year End         Pipe Size(s) (Inches)           04-10-045         0.029         2040         2050         2050 |


Brunswick County anticipates the above increases to our interconnected customers beyond their current contracted amounts.

| Future Supply Sources |           |             |                   |             |              |         |
|-----------------------|-----------|-------------|-------------------|-------------|--------------|---------|
| Source Name           | PWSID     | Source Type | Additional Supply | Year Online | Year Offline | Туре    |
| Castle Hayne Aquifer  | 04-10-045 | Ground      | 0.500             | 2014        |              | Regular |

We plan to drill an additional well for the NC 211 Water Treatment Plant and negotiate an interconnection agreement with the Little River Water Company.

### with the second terms of supply is a second term of supply is a second term of the second terms of term

|                              | 2011   | 2020   | 2030   | 2040   | 2050   | 2060   |
|------------------------------|--------|--------|--------|--------|--------|--------|
| Surface Water Supply         | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  | 0.000  |
| Ground Water Supply          | 8.875  | 8.875  | 8.875  | 8.875  | 8.875  | 8.875  |
| Purchases                    | 24.000 | 24.000 | 24.000 | 24.000 | 24.000 | 24.000 |
| Future Supplies              |        | 0.500  | 0.500  | 0.500  | 0.500  | 0.500  |
| Total Available Supply (MGD) | 32.875 | 33.375 | 33.375 | 33.375 | 33.375 | 33.375 |
| Service Area Demand          | 9.836  | 10.535 | 12.277 | 14.216 | 16.096 | 17.896 |
| Sales                        | 4.877  | 8.735  | 8.735  | 8.735  | 8.735  | 8.735  |
| Future Sales                 |        | 0.000  | 0.000  | 0.029  | 1.428  | 4.148  |
| Total Demand (MGD)           | 14.713 | 19.270 | 21.012 | 22.980 | 26.259 | 30.779 |
| Demand as Percent of Supply  | 45%    | 58%    | 63%    | 69%    | 79%    | 92%    |



Brunswick County's Projected Gallons Per Capita Per Day (GPCD) Over Time

The purpose of the above chart is to show a general indication of how the long-term per capita water demand changes over time. The per capita water demand may actually be different than indicated due to seasonal populations and the accuracy of data submitted. Water systems that have calculated long-term per capita water demand based on a methodology that produces different results may submit their information in the notes field.

#### 2/5/13

#### Local Water Supply Planning - North Carolina Division of Water Resources

Your long-term water demand is 71 gallons per capita per day. What demand management practices do you plan to implement to reduce the per capita water demand (i.e. conduct regular water audits, implement a plumbing retrofit program, employ practices such as rainwater harvesting or reclaimed water)? If these practices are covered elsewhere in your plan, indicate where the practices are discussed here.

Are there other demand management practices you will implement to reduce your future supply needs? We plan to implement a residential effluent reuse program to to decrease the demand for potable water used for irrigation.

What supplies other than the ones listed in future supplies are being considered to meet your future supply needs? We also plan to drill an additional well to supplement the NC 211 Water Plant supply. We will enter into a new agreement with the Low er Cape Fear Water and Sew er Authority for additional raw water supply.

How does the water system intend to implement the demand management and supply planning components above? We have already begun work on the IBT certificate needed for the expansin of the Northwest Water Treatment Plant. We have already constructed a signiciant amount of the improvements needeed to

expand the water plant. LCFWASA has started planning and design to increase the amount of available water supply to brunswick County and CFPUA.

**Additional Information** 

Has this system participated in regional water supply or water use planning? No

What major water supply reports or studies were used for planning? Brunswick County Water Master Plan

Please describe any other needs or issues regarding your water supply sources, any water system deficiencies or needed improvements (storage, treatment, etc.) or your ability to meet present and future water needs. Include both quantity and quality considerations, as well as financial, technical, managerial, permitting, and compliance issues: The County must obtain an IBT Certitifcate prior to expanding the Northwest Water Treatment Plant for additional long term potable water capacity.

The Division of Water Resources (DWR) provides the data contained within this Local Water Supply Plan (LWSP) as a courtesy and service to our customers. DWR staff does not field verify data. Neither DWR, nor any other party involved in the preparation of this LWSP attests that the data is completely free of errors and omissions. Furthermore, data users are cautioned that LWSPs labeled **PROVISIONAL** have yet to be reviewed by DWR staff. Subsequent review may result in significant revision. Questions regarding the accuracy or limitations of usage of this data should be directed to the water system and/or DWR.