FIGURE 1(A) ALKALINITY VS pH

FIGURE 1(B) ALKALINITY VS TOTAL FREE CARBON DIOXIDE
FIGURE 2:

- DELETED -
FIGURE 2:

- DELETED -
FIGURE 3(A): DEMAND WEIGHT OF FIXTURES IN FIXTURE UNIT

<table>
<thead>
<tr>
<th>Fixture type</th>
<th>Weight in fixture units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathtub</td>
<td>4</td>
</tr>
<tr>
<td>Bedpan washer</td>
<td>10</td>
</tr>
<tr>
<td>Bedit</td>
<td>4</td>
</tr>
<tr>
<td>Dental unit or cuspidor</td>
<td>1</td>
</tr>
<tr>
<td>Dental laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Drinking fountain</td>
<td>2</td>
</tr>
<tr>
<td>Kitchen sink</td>
<td>4</td>
</tr>
<tr>
<td>Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Laundry tray (1 or 2 compartments)</td>
<td>4</td>
</tr>
<tr>
<td>Shower, each head</td>
<td>4</td>
</tr>
<tr>
<td>Sink: service</td>
<td>4</td>
</tr>
<tr>
<td>Urinal, pedestal</td>
<td>10</td>
</tr>
<tr>
<td>Urinal (wall lip)</td>
<td>5</td>
</tr>
<tr>
<td>Urinal stall</td>
<td>5</td>
</tr>
<tr>
<td>Urinal with flush tank</td>
<td>3</td>
</tr>
<tr>
<td>Urinal trough (for every 2 foot section)</td>
<td>2</td>
</tr>
<tr>
<td>Wash sink, circular or multiple (each set of faucets)</td>
<td>2</td>
</tr>
<tr>
<td>Water closet: F.V.</td>
<td>10</td>
</tr>
<tr>
<td>Water closet: tank</td>
<td>5</td>
</tr>
</tbody>
</table>

FIGURE 3(B): EXAMPLE – FIXTURE UNITS AND ESTIMATED DEMANDS

<table>
<thead>
<tr>
<th>Kind of Fixtures</th>
<th>Building Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Fixtures</td>
</tr>
<tr>
<td>Water closets</td>
<td>130</td>
</tr>
<tr>
<td>Urinals</td>
<td>30</td>
</tr>
<tr>
<td>Shower heads</td>
<td>12</td>
</tr>
<tr>
<td>Laboratories</td>
<td>130</td>
</tr>
<tr>
<td>Service sinks</td>
<td>27</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,839</td>
</tr>
</tbody>
</table>
FIGURE 3(C): ESTIMATE CURVES FOR DEMAND LOAD

FIGURE 3(D): ENLARGED SCALE DEMAND LOAD
FIGURE 4: TYPICAL WELL HEAD DETAILS

LEGEND
1. Control box
2. Blow off line
3. Gate valve
4. Check valve
5. dresser coupling (or union)
6. Meter
7. Pressure gauge (w/needle valve)
8. Sample faucet (non-threaded)
9. Screened vent
10. Sanitary well seal
11. Electrical conduit
12. Electrical cable seal
13. Electrical lighting

NOTES
A. Leave clearance between wall and valve for turning valve
B. Slope ground surface away from slab
C. Grout around casing to impervious stratum (20’ min. depth)
D. Slope floor to drain
E. Provide hatch in roof above well casing.

NOTE*
Grout the annular space between the casing and the surrounding soil to a distance of at least twenty (20) feet below ground surface, provided that this distance may be reduced when available water is found at a lesser depth, but in no case shall the grouting depth be less than ten (10) feet.
FIGURE 5:
PRESSURE & VOLUME DIFFERENTIALS FOR HYDROPNEUMATIC TANKS

VOLUME OF WATER IN TANK – IN PERCENT OF TOTAL VOLUME
FIGURE 6: VOLUME OF HYDROPNEUMATIC TANKS

The following examples are offered in further explanation of the requirements for proper sizing of hydropneumatic tanks. As previously indicated, it is required to supply the indicated peak demand for a period of twenty minutes, and it is assumed that a combination of hydropneumatic storage and pumping will be utilized. The Effective Volume of the tank is considered to be the volume of water discharged between the high and low pressure setting.

Required Effective Volume = (Peak Demand – Pumping Capacity) x 20 minutes

For example, a mobile home system to serve 50 spaces and having a pumping capacity of 30 gpm would require an effective volume of:

Req’d. Effective Volume = (Peak Demand – Pumping Capacity) x 20 minutes = (60-30) x 20 = 600 gallons

(For peak demands, see Rule .0802)

The actual tank size required to furnish the 600 gallons effective volume depends upon the pressure settings, air-water volume controls, etc. A system without controls would require the largest tank, whereas a system with air charging device and automatic air-water volume controls would require a much smaller tank.

The curves indicating air-water volume relationships shown in Figure 5 may be utilized to determine required tank sizes.

Continuing the above example, assume further that it is necessary to operate the tank on a 60-40 psi pressure cycle, and assume that the tank has no air-water volume controls and was not precharged. These conditions are indicated by the top curve in Figure 5 since this curve passes through the 0% water – 100% air point.

At 60 psi, water volume: 80%
At 40 psi, water volume: 73%

Therefore, the percent water volume discharges during the 60-40 psi cycle is 80-73%=7% of the total tank volume. The total volume of a tank necessary to produce the required effective volume of 600 gallons:

\[
\text{Total Volume} = \frac{600}{0.07} = 8570 \text{ gallons}
\]

The tank size can also be determined by direct calculation rather than by using Figure 5. By using the principle of Boyle’s Law and assuming the effects of temperature to be negligible, the tank is sized accordingly.

Continuing the above example and converting the pressure to Absolute (gauge + 14.7 psi), the volume is calculated as follows:

If there is no water (100% air) in the tank originally and it is filled with water until a pressure of 60 psi gauge is reached, the volume of air at that point is:

\[
P_1V_1 = P_2V_2
\]

\[
Vol.\frac{P_1V_1}{P_2} = \frac{(0 + 14.7 \text{ psi}) \times (100)}{(60 + 14.7 \text{ psi})} = 19.7\% \text{ (air)}
\]

On a 60-40 psi cycle, the tank would discharge to a pressure of 40 psi, and the air volume would be:

\[
P_2V_2 = \frac{(60 + 14.7 \text{ psi}) \times (19.7\%)}{(60 + 14.7 \text{ psi})}
\]
Vol.₃ = \frac{P₃}{(40 + 14.7 \text{ psi})} = 26.9\% \text{ (air)}

The percent volume of water discharged during the 60-40 cycle is:

Percent volume: 26.9 – 19.7 = 7.2\%

The total tank volume necessary to produce the required effective volume of 600 gallons is:

\[
\text{Total Volume} = \frac{600 \text{ gal.}}{0.072} = 8330 \text{ gallons}
\]

By utilizing an air charging system with automatic air-water volume controls, it is possible to discharge up to 25% of the tank volume during a 60-40 psi pressure cycle. The total tank volume necessary to furnish the required effective volume in this case would be:

\[
\text{Total Tank Volume} = \frac{\text{Required Effective Volume (gallons)}}{0.25}
\]