Teaching the Preoperational Child
(Toddler and Early Childhood)

<table>
<thead>
<tr>
<th>Principle</th>
<th>Application</th>
</tr>
</thead>
</table>
| Use concrete props and visual aids to illustrate lessons and help children understand what is being presented. | • Use physical illustrations.
• Use drawings and illustrations. |
| Make instructions relatively short, using actions as well as words, to lessen likelihood that the students will get confused. | • After giving instructions, ask a student to demonstrate them as a model for the rest of the class.
• Explain a game by acting out the part of a participant. |
| Do not expect the students to find it easy to see the world from someone else's perspective since they are likely to be very egocentric at this point. | • Avoid lessons about worlds too far removed from the child's experience.
• Discuss sharing from the child's own experience. |
| Give children a great deal of physical practice with the facts and skills that will serve as building blocks for later development. | • Use cut-out letters to build words.
• Avoid overuse of workbooks and other paper-and-pencil tasks. |
| Encourage the manipulation of physical objects that can change in shape while retaining a constant mass, giving the students a chance to move toward the understanding of conservation and two-way logic needed in the next stage. | • Provide opportunities to play with clay, water, or sand.
• Engage students in conversations about the changes the students are experiencing when manipulating objects. |
| Provide many opportunities to experience the world in order to build a foundation for concept learning and language. | • Take field trips.
• Use and teach words to describe what they are seeing, doing, touching, tasting, etc.
• Discuss what they are seeing on TV. |

Teaching the Concrete Operational Child
<table>
<thead>
<tr>
<th>Principle</th>
<th>Application</th>
</tr>
</thead>
</table>
| Continue to use concrete props and visual aids, especially when dealing with sophisticated material. | • Provide time-lines for history lessons.
• Provide three-dimensional models in science. |
| Continue to give students a chance to manipulate objects and test out their ideas. | • Demonstrate simple scientific experiments in which the students can participate.
• Show craftwork to illustrate daily occupations of people of an earlier period. |
| Make sure that lectures and readings are brief and well organized. | • Use materials that present a progression of ideas from step to step.
• Have students read short stories or books with short, logical chapters, moving to longer reading assignments only when the students are ready. |
| Ask students to deal with no more than three or four variables at a time. | • Require readings with a limited number of characters.
• Demonstrate experiments with a limited number of steps. |
| Use familiar examples to help explain more complex ideas so students will have a beginning point for assimilating new information. | • Compare students' own lives with those of the characters in a story.
• Use story problems in mathematics. |
| Give opportunities to classify and group objects and ideas on increasingly complex levels. | • Give students separate sentences on slips of paper to be grouped into paragraphs.
• Use outlines, hierarchies, and analogies to show the relationship of unknown new material to already acquired knowledge. |
| Present problems which require logical, analytical thinking to solve. | • Provide materials such as Mind Twisters, Brain Teasers, and riddles.
• Focus discussions on open-ended questions which stimulate thinking (e.g., are the mind and the brain the same thing?) |
<table>
<thead>
<tr>
<th>Principle</th>
<th>Application</th>
</tr>
</thead>
</table>
| Continue to use many of the teaching strategies and materials appropriate for students at the concrete operational stage. | - Use visual aids such as charts and illustrations, as well a simple but somewhat more sophisticated graphs and diagrams.
- Use well-organized materials that offer step by step explanations. |
| Give students an opportunity to explore many hypothetical questions. | - Provide students opportunities to discuss social issues.
- Provide consideration of hypothetical "other worlds." |
| Encourage students to explain how they solve problems. | - Ask students to work in pairs with one student acting as the problem solver, thinking aloud while tackling a problem, with the other student acting as the listener, checking to see that all steps are mentioned and that everything seems logical.
- Make sure that at least some of the tests you give ask for more than rote memory or one final answer; essay questions, for example, might ask students to justify two different positions on an issue. |
| Whenever possible, teach broad concepts, not just facts, using materials and ideas relevant to the students. | - While discussing a topic such as the Civil War, consider what other issues have divided the country since then.
- Use lyrics from popular music to teach poetic devices, to reflect on social problems, and so on. |

Return to:
- [Overview of Piaget's Theory of Cognitive Development](#)
- [EdPsyc Interactive: Coursese](#)
- [Home Page](#)